

The Third Automated Negotiating Agent Competition

4th July 2012

Background

- Started in 2010, as a joint project of the universities of Delft (group of Prof. Catholijn Jonker, Dr. Koen Hindriks, Dr. Dmytro Tykhonov, Tim Baarslag) and Bar-Ilan (Prof. Sarit Kraus, Dr. Raz Lin)
- In 2011, organised by Nagoya Institute of Technology (Prof. Takayuki Ito, Dr. Katsuhide Fujita)
- In 2012, organised by University of Southampton (Colin Williams, Dr. Valentin Robu, Dr. Enrico Gerding, Prof. Nick Jennings)
- Aim: to provide a platform to compare and benchmark different state-of the-art heuristics developed for automated, bilateral negotiation

Competition Setup

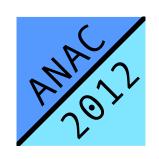
- Bi-lateral Negotiation
- Alternating Offers Protocol
- Real-time, 3-Minute Deadline
- Discounting Factor

Domains and Preferences

- Each domain consists of pair of preference profiles.
- Each preference profile specified as linearly additive utility function.

- Between 1 and 8 issues.
- Domains with between 3 and 390,625 possible outcomes.

Example Domain


- Property Rental
 - Rent Price per month
 - \$1,800, \$2,000, \$2,400, \$2,700
 - Number of Payments
 - 1, 2, 3
 - Advance Payment
 - 0.5%, 1%, 2%, 2.5%
 - Contract Period
 - 3 months, 6 months, 9 months, 12 months

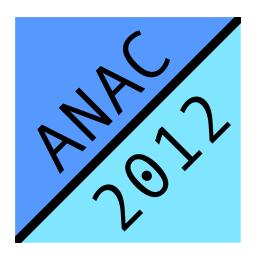
Example Preferences

Rent Price per month	Landlord	Tenant
weight	0.350	0.353
\$1,800	20	80
\$2,000	40	60
\$2,400	60	40
\$2,700	80	10

Number of Payments	Landlord	Tenant
weight	0.2	0.129
1	20	5
2	15	8
3	10	12

Previous Competitions

- 2010
 - 7 Entries
- 2011
 - 18 Entries (6 institutions)
- 2012
 - 17 Entries (8 institutions)


New Feature

- Reservation Value
 - Utility of conflict, which each party receives if no agreement is formed.
 - Affected by discounting factor.

Participants

- 17 Teams Entered
- 8 Institutions
- 5 Countries
 - China, Israel, Netherlands, Japan, United Kingdom

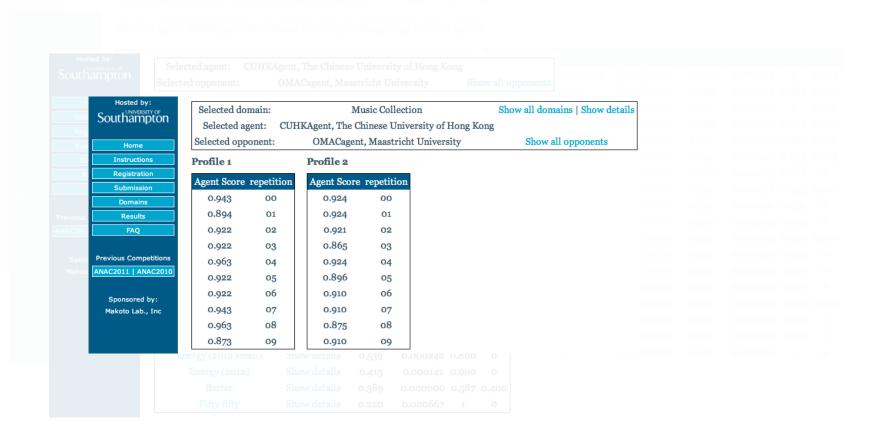
Qualifying Round

Qualifying Round

- Negotiations carried out for every combination of:
 - 17 Agents
 - 17 Opponents
 - 18 Domains
 - (17 submitted this year, plus *Travel* from 2010)
- Each repeated 10 times to establish statistical significance.
- Total of 52020 negotiations.

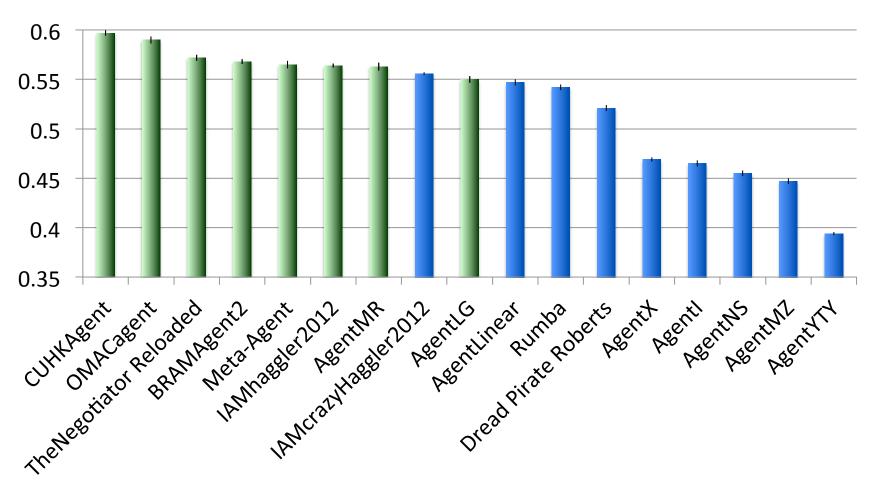
- Welch's T-test for statistical significance
 - Extension of Student's T-test
- All i, j in A, compute $w(\mu_i, \sigma_i, \mu_j, \sigma_j)$
- Determine lower bound on rank by calculating how many opponents beat the agent.
- Determine upper bound on rank by calculating how many opponents the agent beats.

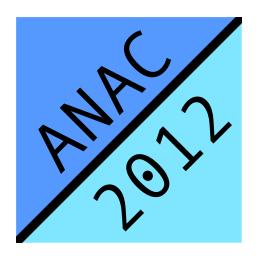

Rank	Agent	Mean Score	Variance
1-2	CUHKAgent	0.597	0.000058
1-2	OMACagent	0.590	0.000106
3-5	TheNegotiator Reloaded	0.572	0.000073
3-7	BRAMAgent2	0.568	0.000045
3-7	Meta-Agent	0.565	0.000104
4-7	IAMhaggler2012	0.564	0.000029
4-8	AgentMR	0.563	0.000136
7-9	IAMcrazyHaggler2012	0.556	0.000016
8-10	AgentLG	0.550	0.000090
9-11	AgentLinear	0.547	0.000071
10-11	Rumba	0.542	0.000064
12	Dread Pirate Roberts	0.521	0.000068
13-14	AgentX	0.469	0.000034
13-14	AgentI	0.465	0.000071
15-16	AgentNS	0.455	0.000063
15-16	AgentMZ	0.447	0.000064
17	AgentYTY	0.394	0.000018

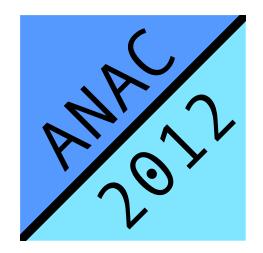

Rank	Agent	Mean Score	Variance
1-2	CUHKAgent	0.597	0.000058
1-2	OMACagent	0.590	0.000106
3-5	TheNegotiator Reloaded	0.572	0.000073
3-7	BRAMAgent2	0.568	0.000045
3-7	Meta-Agent	0.565	0.000104
4-7	IAMhaggler2012	0.564	0.000029
4-8	AgentMR	0.563	0.000136
7-9	IAMcrazyHaggler2012	0.556	0.000016
8-10	AgentLG	0.550	0.000090
9-11	AgentLinear	0.547	0.000071
10-11	Rumba	0.542	0.000064
12	Dread Pirate Roberts	0.521	0.000068
13-14	AgentX	0.469	0.000034
13-14	AgentI	0.465	0.000071
15-16	AgentNS	0.455	0.000063
15-16	AgentMZ	0.447	0.000064
17	AgentYTY	0.394	0.000018



Rank	Agent	Mean Score	Variance
1-2	CUHKAgent	0.597	0.000058
1-2	OMACagent	0.590	0.000106
3-5	TheNegotiator Reloaded	0.572	0.000073
3-7	BRAMAgent2	0.568	0.000045
3-7	Meta-Agent	0.565	0.000104
4-7	IAMhaggler2012	0.564	0.000029
4-8	AgentMR	0.563	0.000136
7-9	IAMcrazyHaggler2012	0.556	0.000016
8-10	AgentLG	0.550	0.000090
9-11	AgentLinear	0.547	0.000071
10-11	Rumba	0.542	0.000064
12	Dread Pirate Roberts	0.521	0.000068
13-14	AgentX	0.469	0.000034
13-14	AgentI	0.465	0.000071
15-16	AgentNS	0.455	0.000063
15-16	AgentMZ	0.447	0.000064
17	AgentYTY	0.394	0.000018

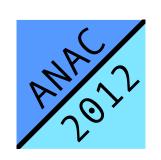



http://anac2012.ecs.soton.ac.uk



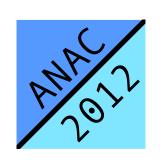
Qualifying Round

Agent Presentations


AgentLG

Bar-Ilan University

Luba Golosman (presented by Assaf Frieder)



First Stage

0.0 - 0.6 of the total time

- Bids are offered in order of agent's utility until the lower bound
- Decrease threshold based on discount factor
- Up to 25% of the difference between first bids
- Learn opponent's preference profile



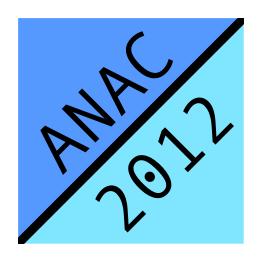
Second Stage

0.6 - 0.9 of the total time

- Estimate opponent's compromise based on utility profile
- Decrease threshold based on opponent's compromise and utility profile

Last Stages

• Time 0.9- 0.9995:


Maximal compromise is half of the utility difference

• Time >0.9995:

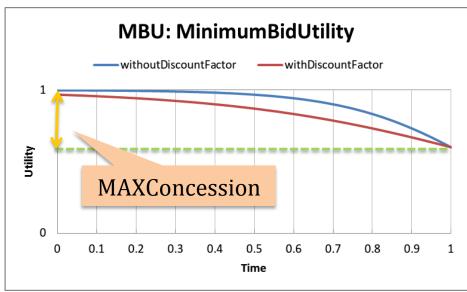
Offers opponent's best bid if higher than the reserve value

Acceptance:

- Opponent's bid utility is higher than 99% of the agent's bid
- After 0.999 of time, 90% of the agent's bid utility

AgentMR

Nagoya Institute of Technology


Shota Morii

AgentMR has the following features:

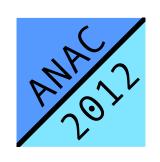
Concedes slowly Makes "acceptable" bids

Concede slowly

- MBU is threshold value.
- Our bid > MBU

$$MBU=1-1/1+e\uparrow-a(t-b)$$
 t:time

a: constant

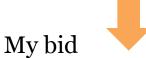

b: MBU(t=1) = 1 - MAXConcession

$MAXConcession \propto (our Maximum Utility - Opponent First Bid)$

- In Win-Win domains we don't need to concede much to make deal.
- In Win-Lose domains we need to concede more in order to make deal.

We assume, *OpponentFirstBid* = Opponent's best bid

If MAXConcession > 0.3, make it 0.3

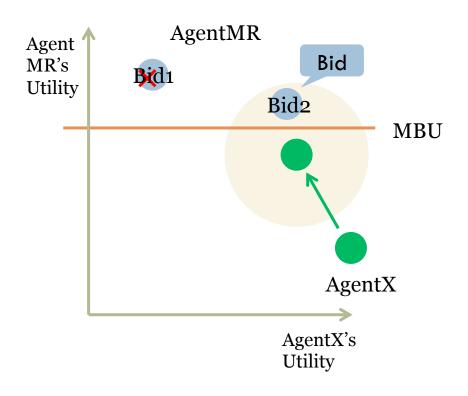

Make 'acceptable' bid

Heuristic

• Bids "similar" to opponent bid have high utility for the opponent and hence are more 'acceptable'.

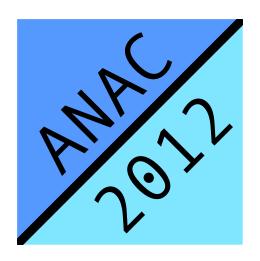
Opponent bid

os	Display	HDD	Mem	Utility
Mac	22	320GB	2GB	75%



Generate "Similar" bids by changing only one issue value at a time

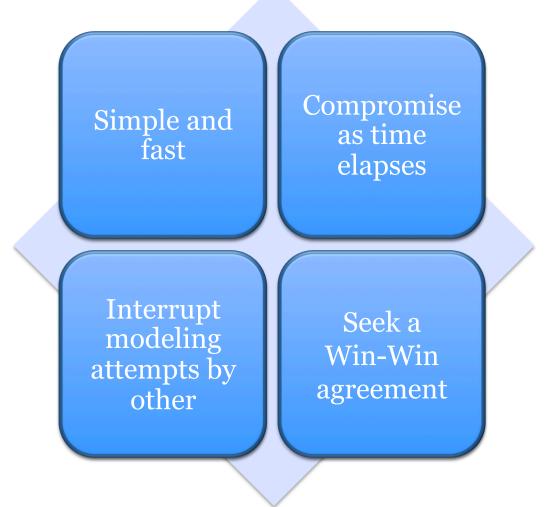
os	Display	HDD	Mem	Utility
Mac	22	320GB	4GB	80%



Make 'acceptable' bid

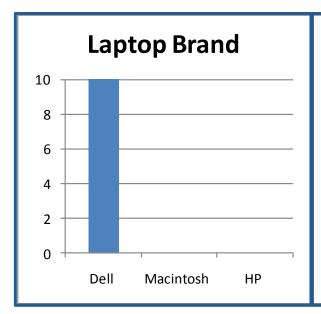
- 1. Bid1 and Bid2 have utility grater than MBU
- 2. The circle region represents location of bids which are close to AgentX's recent bid
- 3. Since Bid2 is in this region we choose to offer it to AgentX

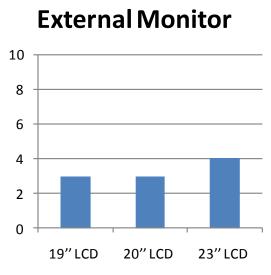
✓ Generally our strategy is to concede slowly and make bids which are acceptable.

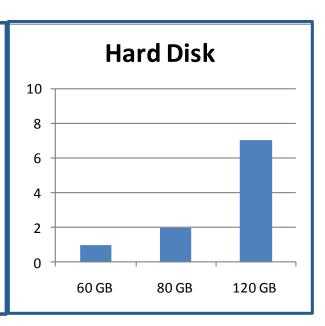

BRAMAgent2


Department of Information Systems Engineering and Deutsche Telekom Laboratories Ben-Gurion University of the Negev, Beer-Sheva, Israel

Radmila Fishel, Maya Bercovitch

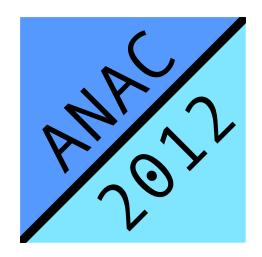

BRAM's Characteristics






Seek a Win-Win Agreement

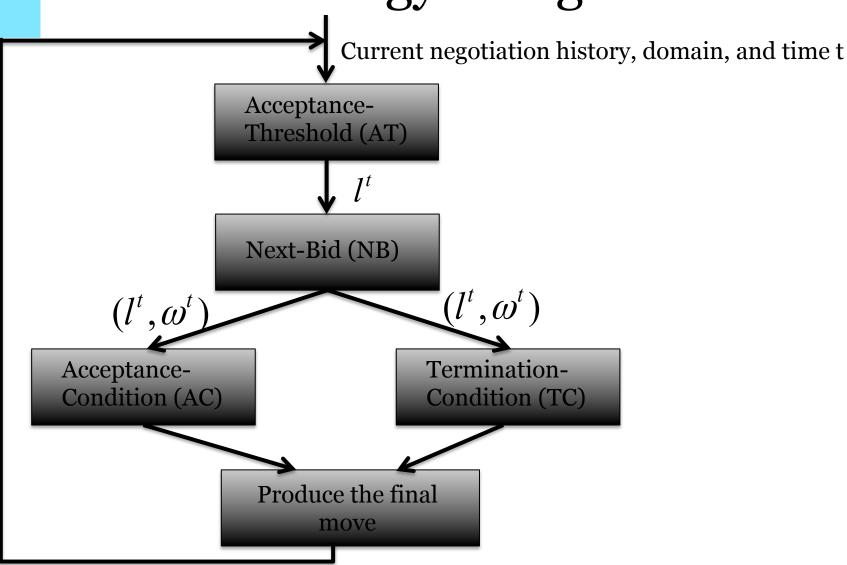
• BRAM creates a histogram for each issue according to the last 10 offers received from the other agent and create a new offer with as many "top required" values as possible


Improved Version of BRAM

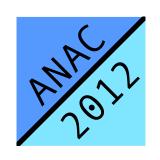
- BRAM ends the negotiation if it is willing to offer a bid with utility lower than the reservation value
- BRAM is more tough and stubborn

Thank you!

BercovitchMaya@gmail.com Rada.fishel@gmail.com

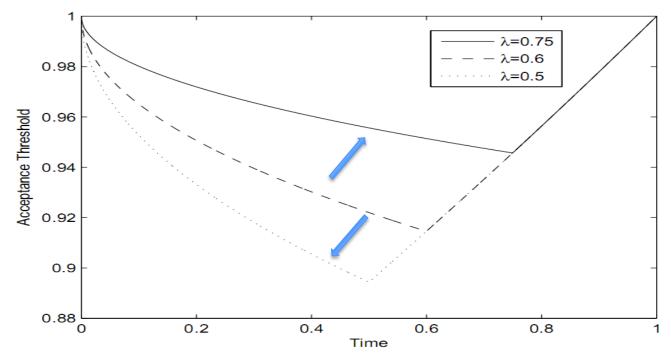

CUHKAgent

The Chinese University of Hong Kong


Jianye Hao, Ho-fung Leung

WAY OUT

Strategy Design



Automated Negotiating Agent Competition 2012 CUHKAgent

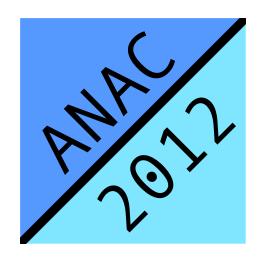


Component Description

- Acceptance-Threshold (AT) component
 - Non-exploitation point λ
 - Adaptively adjusting Non-exploitation point λ
 - Domain-dependent, e.g., discount factor, domain size.
 - Behavior-dependent, e.g., Concession degree of the opponent

Automated Negotiating Agent Competition 2012 CUHKAgent

Component Description (cont.)

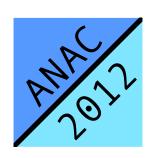

- Next-Bid (NB) component
 - Select the estimated best one for opponent from the set of candidate negotiation outcomes
- Acceptance-Condition (AC) component
 - Acceptance conditions
 - Our agent's utility of the opponent's offer > our acceptance threshold

OR

- Our agent's utility of the opponent's offer >its utility of our offer to be proposed
- Termination-Condition (TC) component
 - Treating the reservation value simply as an alternative offer proposed by the opponent
 - Termination conditions

Thank you! Q&A

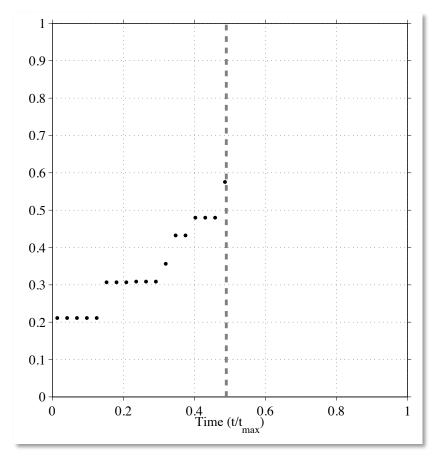
IAMhaggler2012


University of Southampton

Colin R Williams, Valentin Robu, Enrico H Gerding, Nicholas R Jennings

Our Approach

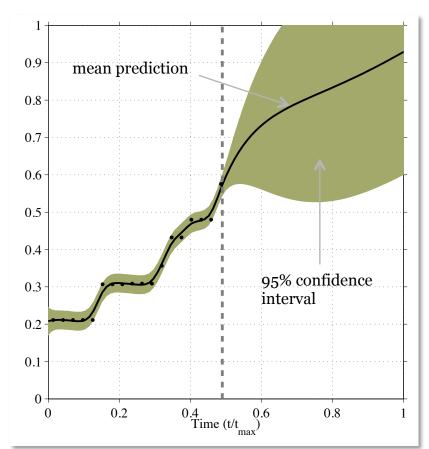
- Principled, decision-theoretic approach
 - Sets behaviour as best response to negotiation environment and opponent behaviour.
- Considers
 - The discounting factor
 - The **remaining time**
 - The effect of the opponent's future
 concession on our utility


Gaussian Process Regression

- Use a Gaussian process regression technique in an attempt to learn the opponent's concession.
 - Mean prediction
 - Confidence measure
- Set concession rate according to this prediction.

Gaussian Process Regression

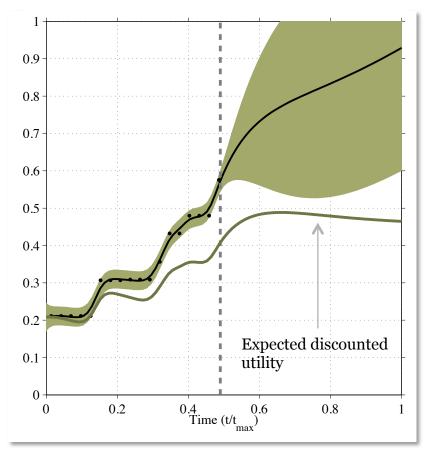
Use a Gaussian process regression


technique in an attempt to learn the opponent's concession.

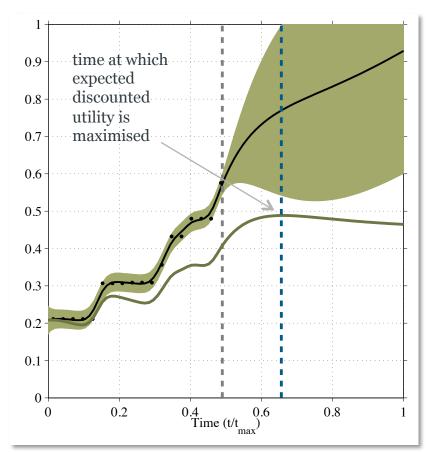
Observed data points at time t



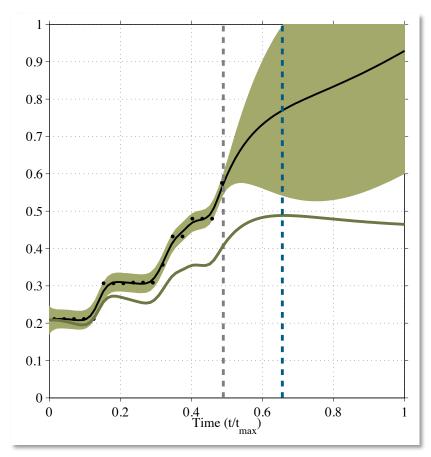
Gaussian Process Regression

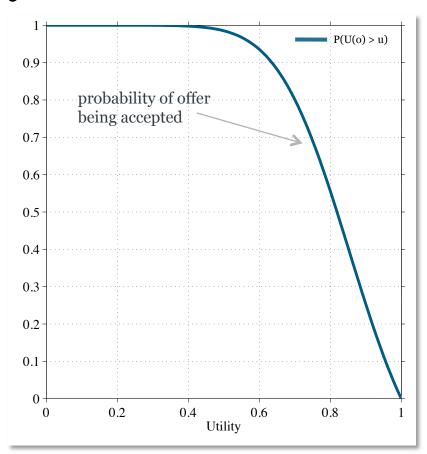

Predict future concession by opponent.

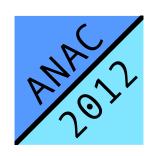
Completed Gaussian Process Regression (showing mean and 95% confidence interval)

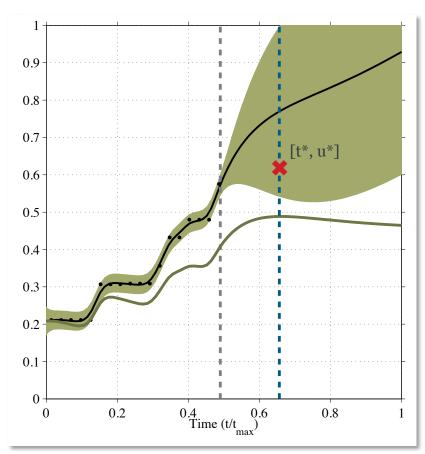

Apply discounting to determine expected

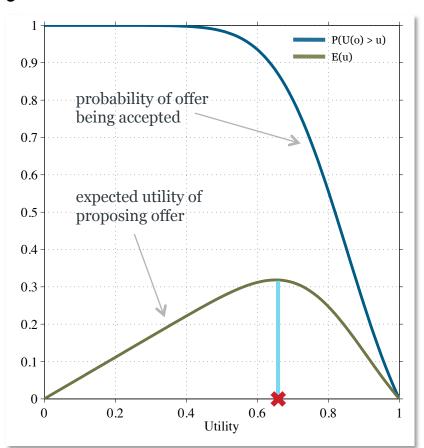
discounted utility of our opponent's offer at time t.


Find the time, t*, at which expected

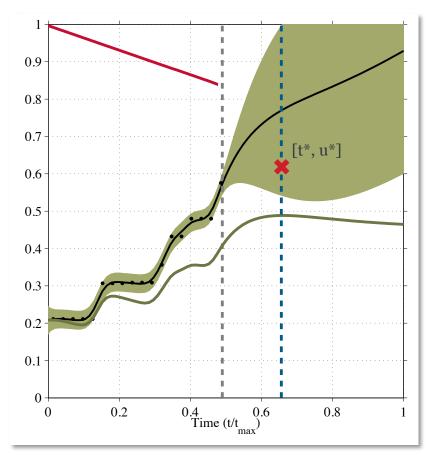


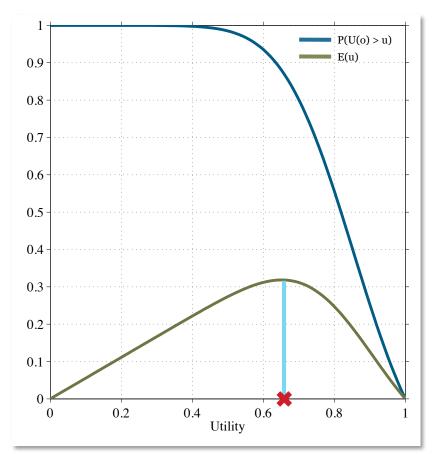

discounted utility of our opponent's offer is maximised.


Find the best utility, u* to offer at time t*



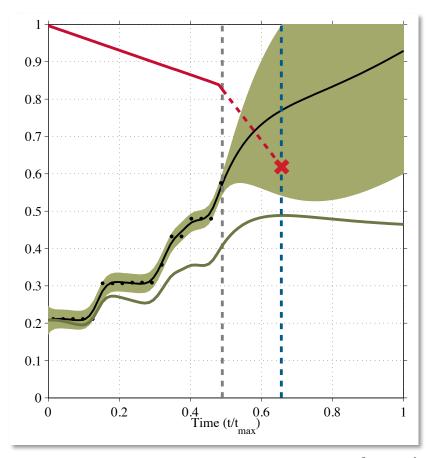
Find the best utility, u* to offer at time t*

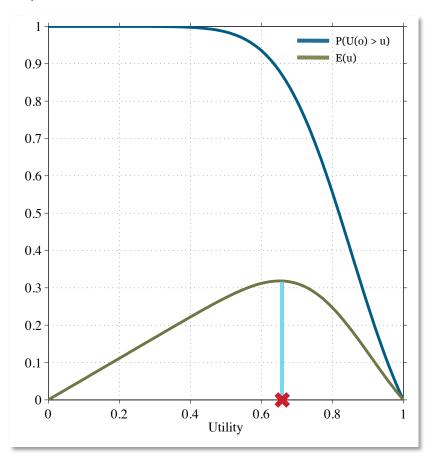




Choose Target Utility

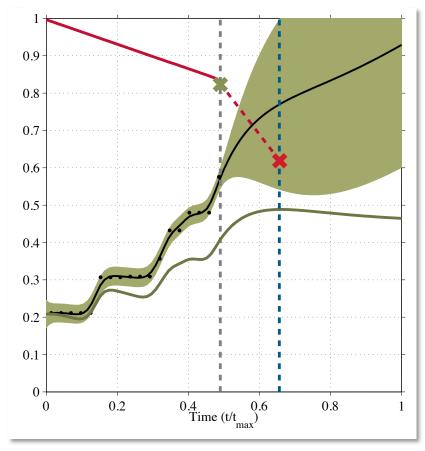
Concede towards [t*, u*].

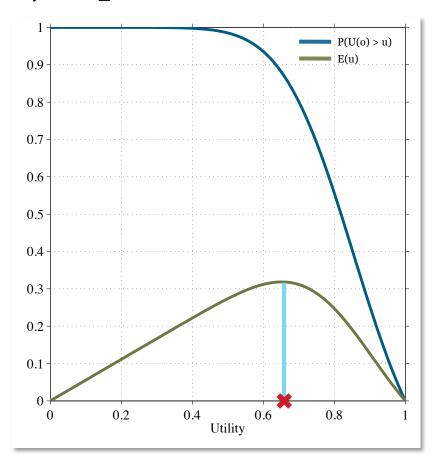




Choose Target Utility

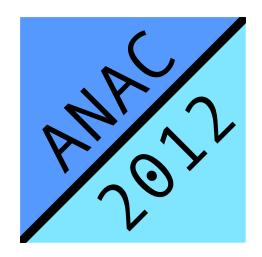
Concede towards [t*, u*].





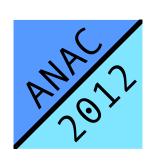
Choose Target Utility

• Concede towards [t*, u*].



Dealing with Multiple Issues

- Select a random package, with utility close to target (according to concession strategy).
 - Fast process allows many offers to be made.
 - Encourages exploration of outcome space.



Meta-Agent

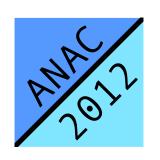
Ben-Gurion University of the Negev

Litan Ilany, Ya'akov (Kobi) Gal

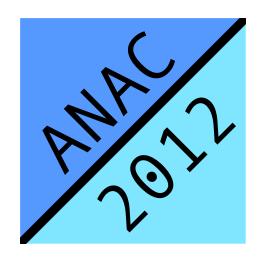
Not a regular agent...

• Based on "Wisdom of the Crowd" theory.

 Combined all publicly available ANAC 2011 strategies.


 Not a single line of strategic code.

(except reservation-value adding)

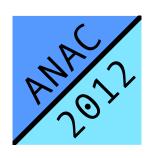


Methodology

- Used publicly available ANAC qualifying results as training set.
- Used Linear Regression to predict the best agent.
- Designed Meta agent that chooses the best agent for each role in each domain.

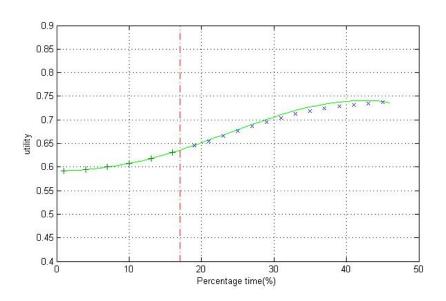


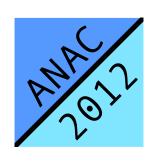
OMACagent


Maastricht University, The Netherlands

Siqi Chen, Gerhard Weiss

Introduction

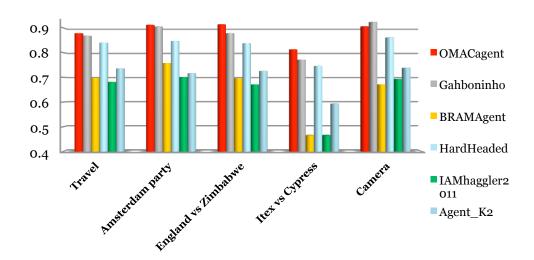

- OMAC = "Opponent Modeling + Adaptive Concession-making"
- OMACagent = a basic implementation of OMAC
- Following two slides about the two main components (OM + AC)

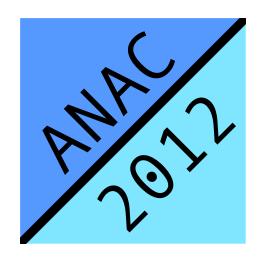


Modeling opponent's negotiation strategy

• Discrete wavelet transform (DWT)

Cubic smoothing spline

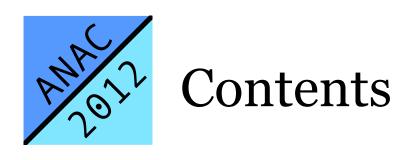




Adaptive concession-making mechanism

Estimation function of future opponent concession

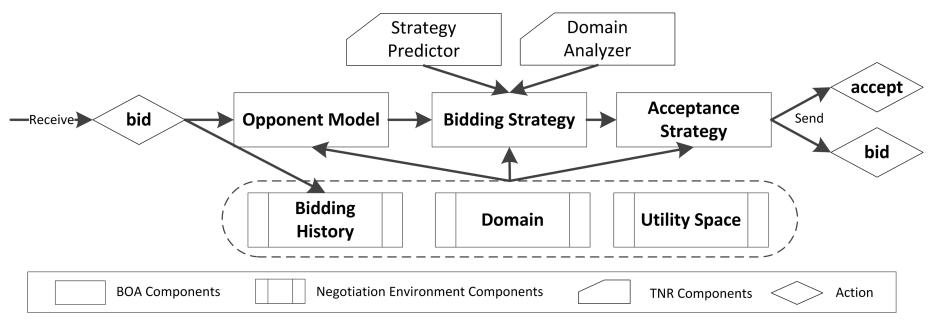
Dynamic conservative utility function



TheNegotiator Reloaded

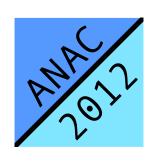

Delft University of Technology

Mark Hendrikx, Alex Dirkzwager



1. BOA Framework

- 2. Implementation BOA Components
 - Bidding strategy
 - Acceptance Strategy
- 3. Optimization of Agent
- 4. Conclusion



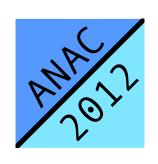
BOA Framework

Baarslag, T.; Hindriks, K.; Hendrikx, M.; Dirkzwager, A. & Jonker, C.

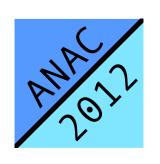
Decoupling Negotiating Agents to Explore the Space of Negotiation Strategies

Implementation BOA Components Bidding Strategy

Start of window


Estimate Kalai-point

Discount Kalai-point (DK)


Determine opponent strategy type (OS)

Determine TDT parameters using DK, OS, and discount

End of window

Implementation BOA Components Acceptance Strategy

Optimization of Agent

Basic components

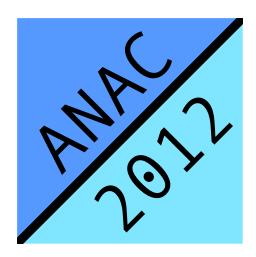
→ Database of BOA

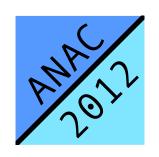
Bidding strategy

→ Distributed Genius

Opponent model

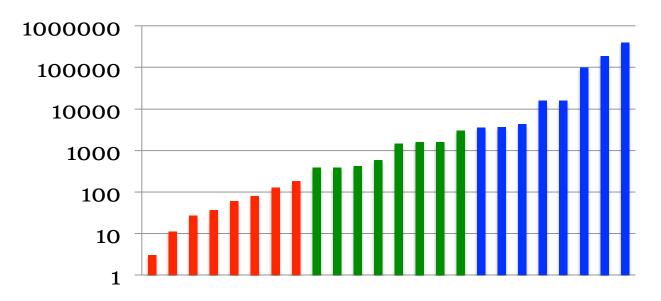
→ Model analyzer of BOA


Acceptance condition


 \rightarrow MAC of BOA

Conclusion

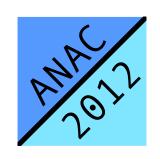
- First ANAC agent using the BOA framework
- Optimized using new methods
- Dynamic domain- and opponent-based strategy



- 8 Agents
- 8 Opponents
- 24 Base Domains
 - (17 submitted this year, 5 from 2011, 2 from 2010)
- 3 Discounting factors:
 - 1.00, 0.75, 0.50
- 3 Reservation values:
 - 0.00, 0.25, 0.50

24 base domains of varying size

• Split into small, medium, large.



- From each base domain, generated three domains with different values of df and rv
 - These three domains covered all three values of df and all three values rv.

		rv		
		0.00	0.25	0.50
df	1.00	S	M	L
	0.75	L	S	M
	0.50	M	L	S

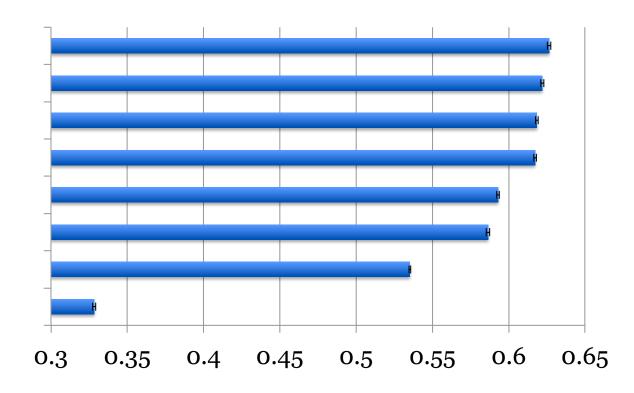
- 8 Agents
- 8 Opponents
- 72 Domains
- Entire setup repeated 10 times to establish statistical significance.
- Total of 46080 negotiations.

Prizes

1 st Place	\$500
2 nd Place	\$400
3 rd Place	\$300
Best in Discounted Domains	\$100
Best in Undiscounted Domains	\$100
Most Social Agent	\$100

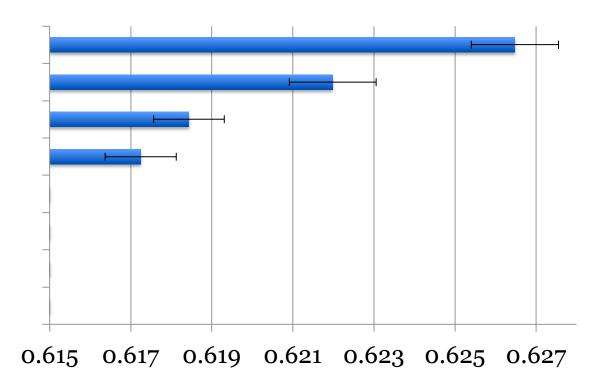
With thanks to our sponsors:

Prof. Dr. Catholijn Jonker


Prof. Dr. Sarit Kraus


Prof. Dr. Takayuki Ito / Makoto Lab., Inc.

Overall Rankings


 Agent which achieves best average score across all domains.

Overall Rankings

 Agent which achieves best average score across all domains.

0.618

3rd Place

Maastricht University Siqi Chen, Gerhard Weiss

and

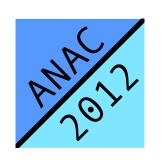
0.617

TheNegotiator Reloaded
Delft University of Technology
Mark Hendrikx, Alex Dirkzwager

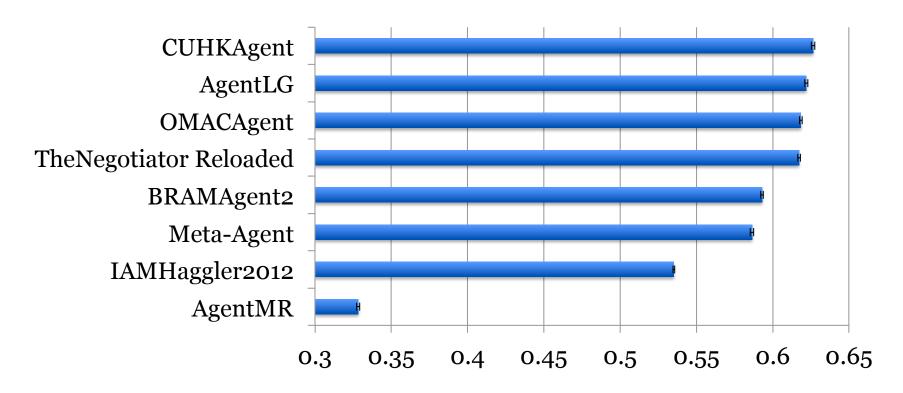
2nd Place

0.622

AgentLG Bar-Ilan University Luba Golosman

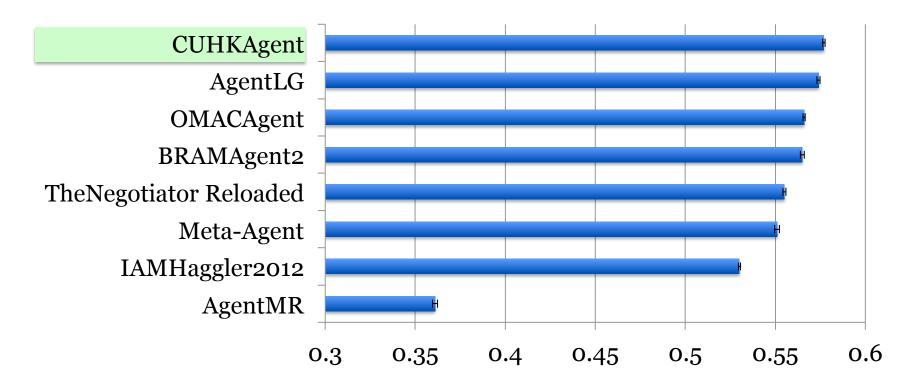

1st Place

0.626


CUHKAgent

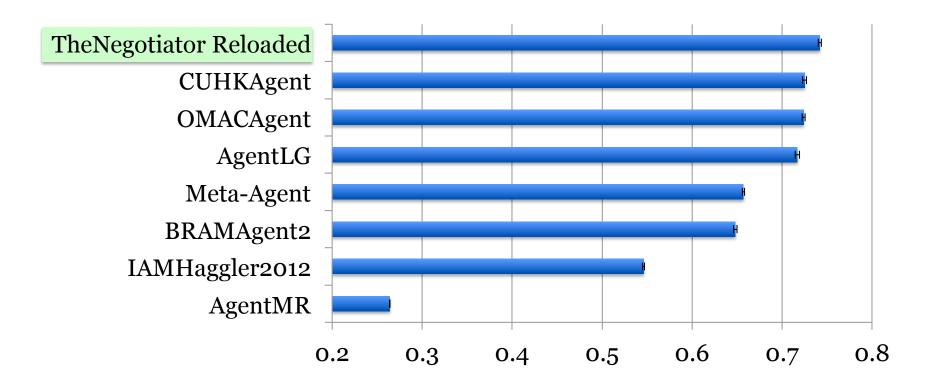
The Chinese University of Hong Kong Jianye Hao, Ho-fung Leung

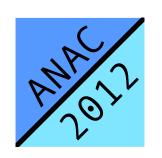
Overall Rankings


 Agent which achieves best average score across all domains.

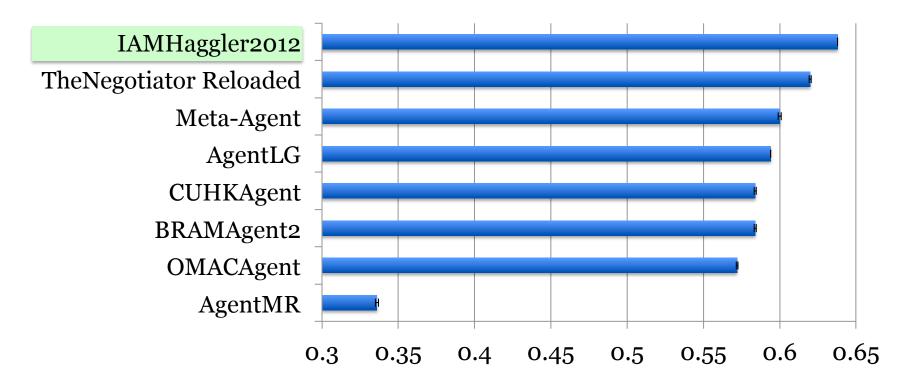


Best in Discounted Domains

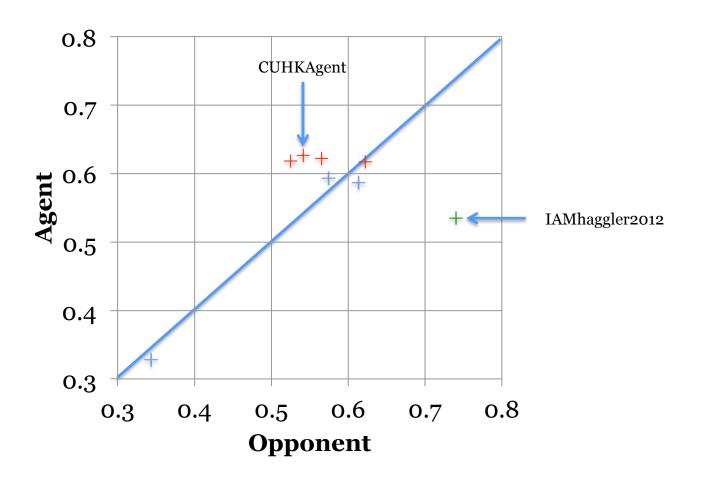

 Agent which achieves best average score over discounted domains.

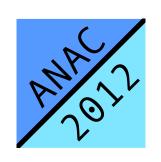


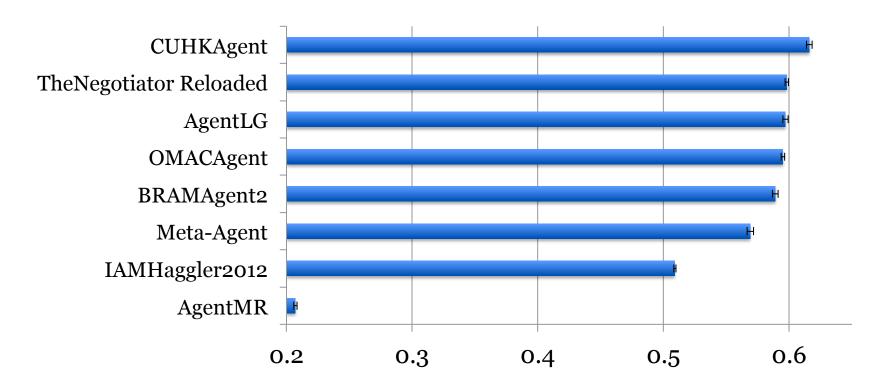
Best in Undiscounted Domains


 Agent which achieves best average score over undiscounted domains.

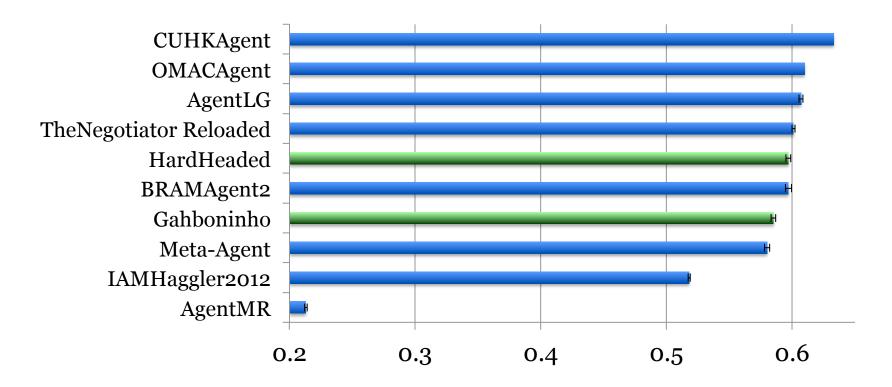



Most Social Agent


 Agent which maximises the sum of its own utility and its opponent's.


Agent vs Opponent

Compared to ANAC2011


• Considering only domains with zero reservation value.

Compared to ANAC2011

Considering only domains with zero reservation value.

