Coalgebraic Semantics of Recursion on Circular Data Structures

Baltasar Trancón y Widemann

(Technische Universität Berlin) Universität Bayreuth

> CALCO-Jnr 2011-08-29

- Context
- The Problem

- Technique
- Semantics

3 Applications

- Context
- The Problem

2 Solution

- Technique
- Semantics

3 Applications

4 Conclusion

2 Solution

- Technique
- Semantics

3 Applications

4 Conclusion

Introduction Solution Applications Conclusion

Context The Problem

The Story of a PhD Thesis

Timeline 2000–2002 Search 2002–2004 Experiments 2004–2006 Writing 2007 Success!

For my Thesis I Wanted to do

- something with functional programming,
- something with coalgebra,
- something funny, or at least surprising.

Introduction Solution Applications Conclusion

Context The Problem

The Story of a PhD Thesis

Timeline

2000-2002 Search

2002–2004 Experiments

2004-2006 Writing

2007 Success!

For my Thesis I Wanted to do

- something with functional programming,
- something with coalgebra,
- something funny, or at least surprising.

My Inspirations

Karczmarczuk, Jerzy (1998). "The Most Unreliable Technique in the World to Compute PI". In: Workshop at the 3rd International Summer School on Advanced Functional Programming.

Ruiz de Santayana, Jorge Augustín Nicolás (1906). The Life of Reason.

2 Solution

- Technique
- Semantics

3 Applications

4 Conclusion

- Data structures as cells in memory
- Substructure relation as pointers between cells
- Computation by recursion along pointer chains

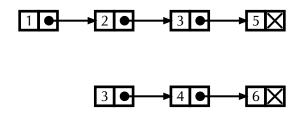
1 • 2 • 3 • 5 ×

- Data structures as cells in memory
- Substructure relation as pointers between cells
- Computation by recursion along pointer chains

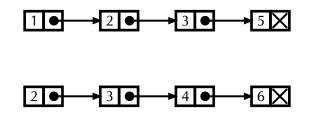
1 • 2 • 3 • 5 ×

- Data structures as cells in memory
- Substructure relation as pointers between cells
- Computation by recursion along pointer chains

- Data structures as cells in memory
- Substructure relation as pointers between cells
- Computation by recursion along pointer chains



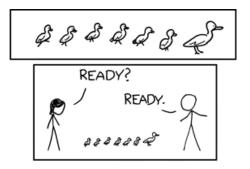
- Data structures as cells in memory
- Substructure relation as pointers between cells
- Computation by recursion along pointer chains



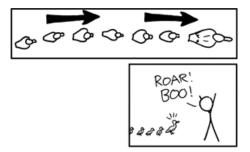
Extension #1: Laziness

Lazy Thunks (Ingerman 1961)

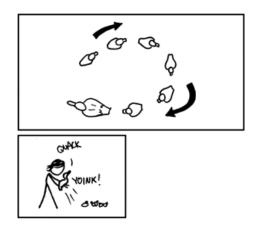
- Contain code to perform suspended computations
- Replaced on demand by data computed on the fly
- Allow for potentially infinite data
- Break temporal connection between call and result



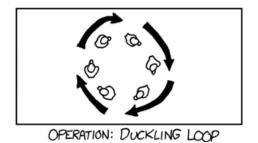
(xkcd 2009)



(xkcd 2009)



(xkcd 2009)



(xkcd 2009)

Extension #2: Cycles

- Pointer cycles arise naturally
 - ring lists, doubly linked lists, threaded trees, ...
- Traditional segregation:
 - **acyclic** data; referential transparency; structural recursion **cyclic** data; explicit mutable pointers; imperative updates
- Goal: Recursion in the presence of YOINK!

Extension #2: Cycles

- Pointer cycles arise naturally
 - ring lists, doubly linked lists, threaded trees, ...
- Traditional segregation:
 - **acyclic** data; referential transparency; structural recursion **cyclic** data; explicit mutable pointers; imperative updates
- Goal: Recursion in the presence of YOINK!

Heureka!

Motto (Ruiz de Santayana 1906)

Those who cannot remember the past are condemned to repeat it.

- Context
- The Problem

- Technique
- Semantics

3 Applications

4 Conclusion

Introduction

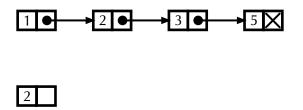
- Context
- The Problem

Semantics

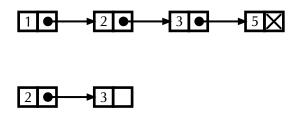
3 Applications

4 Conclusion

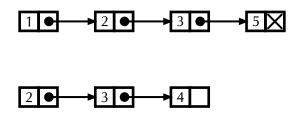
- Destination-passing style (Minamide 1998)
- Tail recursion modulo cons(tructor) (Warren 1980)
 - can be used to eliminate tail calls, or
 - alternatively allows to handle duckling loops!



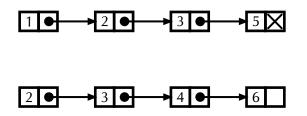
- Destination-passing style (Minamide 1998)
- Tail recursion modulo cons(tructor) (Warren 1980)
 - can be used to eliminate tail calls, or
 - alternatively allows to handle duckling loops!



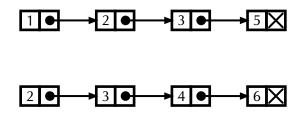
- Destination-passing style (Minamide 1998)
- Tail recursion modulo cons(tructor) (Warren 1980)
 - can be used to eliminate tail calls, or
 - alternatively allows to handle duckling loops!



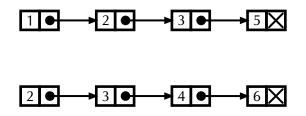
- Destination-passing style (Minamide 1998)
- Tail recursion modulo cons(tructor) (Warren 1980)
 - can be used to eliminate tail calls, or
 - alternatively allows to handle duckling loops!



- Destination-passing style (Minamide 1998)
- Tail recursion modulo cons(tructor) (Warren 1980)
 - can be used to eliminate tail calls, or
 - alternatively allows to handle duckling loops!



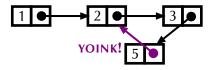
- Destination-passing style (Minamide 1998)
- Tail recursion modulo cons(tructor) (Warren 1980)
 - can be used to eliminate tail calls, or
 - alternatively allows to handle duckling loops!

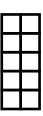


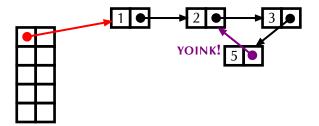
- Destination-passing style (Minamide 1998)
- Tail recursion modulo cons(tructor) (Warren 1980)
 - can be used to eliminate tail calls, or
 - alternatively allows to handle duckling loops!

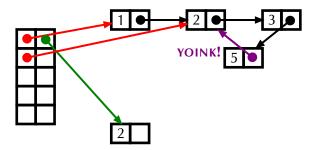
Introduction Solution Applications Conclusion

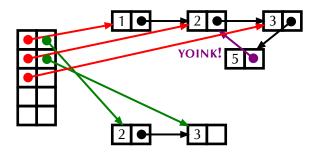
Technique Semantics

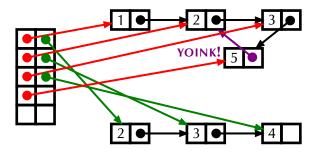


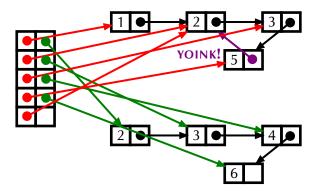




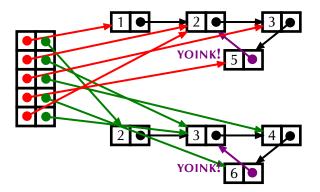




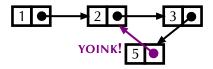




Cycle Detection & Handling



Search Problems



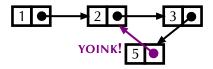
Search Problem Examples

- Is there an even number?
- Is there a perfect number?
- In the additional of the second se
- Are all numbers Fibonacci?

YESexampleeasyNOno examplehardNOcounterex.easyYESno counterex.hard

- The hard cases require cycle detection
 no need to look twice!
- Lazy languages condemned to repeat

Search Problems

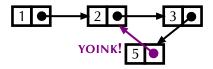


Search Problem Examples

0	Is there an even number?	YES	example	easy
2	Is there a perfect number?	NO	no example	hard
3	Are all numbers prime?	NO	counterex.	easy
0	Are all numbers Fibonacci?	YES	no counterex.	hard

- The hard cases require cycle detection
 no need to look twice!
- Lazy languages condemned to repeat

Search Problems



Search Problem Examples

0	Is there an even number?	YES	example	easy
2	Is there a perfect number?	NO	no example	hard
3	Are all numbers prime?	NO	counterex.	easy
0	Are all numbers Fibonacci?	YES	no counterex.	hard

- The hard cases require cycle detection
 - no need to look twice!
- Lazy languages condemned to repeat

Implementation

Virtual Machine

- Similar to Java VM
 - memory management, safe references
 - destination-passing style calling conventions
 - cycle detection by stack inspection
- Alternative function body upon cycle detection
 - limited access to call stack (YOINK!)

Efficiency

- Blanket cycle detection on every call too slow
- Mark at least one edge per cycle
 - detection only for marked cases
 - eliminate tail calls for unmarked cases
 - trivial to maintain (YOINK!)
- No cycle \Rightarrow no mark \Rightarrow (almost) no cost

Implementation

Virtual Machine

- Similar to Java VM
 - memory management, safe references
 - destination-passing style calling conventions
 - cycle detection by stack inspection
- Alternative function body upon cycle detection
 - limited access to call stack (YOINK!)

Efficiency

- Blanket cycle detection on every call too slow
- Mark at least one edge per cycle
 - detection only for marked cases
 - eliminate tail calls for unmarked cases
 - trivial to maintain (YOINK!)
- No cycle \Rightarrow no mark \Rightarrow (almost) no cost

- Context
- The Problem

3 Applications

4 Conclusion

• Functor $F(X) = \{0, 1\}^* \times X^*$ (bits and pointers)

- Memory state as F-coalgebra
 - Carrier live addresses
 - **Operation** dereferencing
- Final coalgebra semantics
 - restricted to finite representatives
 - decidable semantic equivalence (bisimilarity)
- Referential transparency
 - monotonocity w.r.t. final semantics
 - modulo garbage collection
- A natural improvement over pointer algebra (Möller 1993)?

- Functor $F(X) = \{0, 1\}^* \times X^*$ (bits and pointers)
- Memory state as F-coalgebra Carrier live addresses
 Operation dereferencing
- Final coalgebra semantics
 - restricted to finite representatives
 - decidable semantic equivalence (bisimilarity)
- Referential transparency
 - monotonocity w.r.t. final semantics
 - modulo garbage collection

• A natural improvement over pointer algebra (Möller 1993)?

- Functor $F(X) = \{0, 1\}^* \times X^*$ (bits and pointers)
- Memory state as F-coalgebra Carrier live addresses
 Operation dereferencing
- Final coalgebra semantics
 - restricted to finite representatives
 - decidable semantic equivalence (bisimilarity)
- Referential transparency
 - monotonocity w.r.t. final semantics
 - modulo garbage collection
- A natural improvement over pointer algebra (Möller 1993)?

- Functor $F(X) = \{0, 1\}^* \times X^*$ (bits and pointers)
- Memory state as F-coalgebra

Carrier live addresses

Operation dereferencing

- Final coalgebra semantics
 - restricted to finite representatives
 - decidable semantic equivalence (bisimilarity)
- Referential transparency
 - monotonocity w.r.t. final semantics
 - modulo garbage collection

• A natural improvement over pointer algebra (Möller 1993)?

Technique Semantics

Pointer Coalgebra

- Functor $F(X) = \{0, 1\}^* \times X^*$ (bits and pointers)
- Memory state as F-coalgebra

Carrier live addresses

Operation dereferencing

- Final coalgebra semantics
 - restricted to finite representatives
 - decidable semantic equivalence (bisimilarity)
- Referential transparency
 - monotonocity w.r.t. final semantics
 - modulo garbage collection
- A natural improvement over pointer algebra (Möller 1993)?

Structural Corecursion

- Recursion preserving **YOINK!** implements structural corecursion
 - primitive corecursion/coiteration
- Generic algorithm
 - given a coalgebra compatible with final semantics
 - performs referentially transparent memory operations
 - such that final semantics of result
 - equal image of final semantics of input
 - under unique homomorphism (anamorphism)
- Proof of correctness by coinduction

Structural Corecursion

- Recursion preserving **YOINK!** implements structural corecursion
 - primitive corecursion/coiteration
- Generic algorithm
 - given a coalgebra compatible with final semantics
 - performs referentially transparent memory operations
 - such that final semantics of result
 - equal image of final semantics of input
 - under unique homomorphism (anamorphism)
- Proof of correctness by coinduction

Structural Corecursion

- Recursion preserving **YOINK!** implements structural corecursion
 - primitive corecursion/coiteration
- Generic algorithm
 - given a coalgebra compatible with final semantics
 - performs referentially transparent memory operations
 - such that final semantics of result
 - equal image of final semantics of input
 - under unique homomorphism (anamorphism)
- Proof of correctness by coinduction

- Given a search problem as a monotonic deduction system acyclic single fixpoint cyclic lattice of fixpoints (Tarski 1955)
- Generic algorithm
 - deduce recursively (depth-first search)
 - break cycles with expectation YES or NO
 - always $\mathbf{NO}
 ightarrow$ least fixpoint (3)
 - always **YES** \rightarrow greatest fixpoint (\forall)
 - otherwise (some consistency conditions) \rightarrow intermediate fixpoints
 - monotonic, modular choice
- Proof of correctness by lattice-theoretic methods
- Special case: bisimilarity as greatest fixpoint

- Given a search problem as a monotonic deduction system acyclic single fixpoint cyclic lattice of fixpoints (Tarski 1955)
- Generic algorithm
 - deduce recursively (depth-first search)
 - break cycles with expectation YES or NO
 - always $\mathbf{NO} \rightarrow$ least fixpoint (\exists)
 - always $\textbf{YES} \rightarrow \textbf{greatest fixpoint}~(\forall)$
 - otherwise (some consistency conditions) \rightarrow intermediate fixpoints
 - monotonic, modular choice
- Proof of correctness by lattice-theoretic methods
- Special case: bisimilarity as greatest fixpoint

- Given a search problem as a monotonic deduction system acyclic single fixpoint cyclic lattice of fixpoints (Tarski 1955)
- Generic algorithm
 - deduce recursively (depth-first search)
 - break cycles with expectation YES or NO
 - always $\mathbf{NO} \rightarrow$ least fixpoint (\exists)
 - always $\textbf{YES} \rightarrow \textbf{greatest fixpoint}~(\forall)$
 - otherwise (some consistency conditions) \rightarrow intermediate fixpoints
 - monotonic, modular choice
- Proof of correctness by lattice-theoretic methods

• Special case: bisimilarity as greatest fixpoint

- Given a search problem as a monotonic deduction system acyclic single fixpoint cyclic lattice of fixpoints (Tarski 1955)
- Generic algorithm
 - deduce recursively (depth-first search)
 - break cycles with expectation YES or NO
 - always $\mathbf{NO} \rightarrow$ least fixpoint (\exists)
 - always $\textbf{YES} \rightarrow \textbf{greatest fixpoint}~(\forall)$
 - otherwise (some consistency conditions) \rightarrow intermediate fixpoints
 - monotonic, modular choice
- Proof of correctness by lattice-theoretic methods
- Special case: bisimilarity as greatest fixpoint

- Context
- The Problem

- Technique
- Semantics

3 Applications

4 Conclusion

Rational Decimal Arithmetics

• Renaissance algorithms for decimal arithmetics (Ries 1522)

- Extended to cyclic sequences of digits
- With (Karczmarczuk 1998) in mind
- Addition/subtraction proceed right to left
 - but there is no right end to start with
- Half addition/subtraction compute local result and carrier independently (coiteration)
 - shift & repeat
 - each digit overflows at most once (iteration)
- Division computes digits by repeated subtraction (iteration)
 - eventually a remainder recurs (coiteration)
- Multiplication (directly) remains hard

- Renaissance algorithms for decimal arithmetics (Ries 1522)
 - Extended to cyclic sequences of digits
 - With (Karczmarczuk 1998) in mind
- Addition/subtraction proceed right to left
 - but there is no right end to start with
- Half addition/subtraction compute local result and carrier independently (coiteration)
 - shift & repeat
 - each digit overflows at most once (iteration)
- Division computes digits by repeated subtraction (iteration)
 - eventually a remainder recurs (coiteration)
- Multiplication (directly) remains hard

- Renaissance algorithms for decimal arithmetics (Ries 1522)
 - Extended to cyclic sequences of digits
 - With (Karczmarczuk 1998) in mind
- Addition/subtraction proceed right to left
 - but there is no right end to start with
- Half addition/subtraction compute local result and carrier independently (coiteration)
 - shift & repeat
 - each digit overflows at most once (iteration)
- Division computes digits by repeated subtraction (iteration)
 - eventually a remainder recurs (coiteration)
- Multiplication (directly) remains hard

- Renaissance algorithms for decimal arithmetics (Ries 1522)
 - Extended to cyclic sequences of digits
 - With (Karczmarczuk 1998) in mind
- Addition/subtraction proceed right to left
 - but there is no right end to start with
- Half addition/subtraction compute local result and carrier independently (coiteration)
 - shift & repeat
 - each digit overflows at most once (iteration)
- Division computes digits by repeated subtraction (iteration)
 - eventually a remainder recurs (coiteration)
- Multiplication (directly) remains hard

- Renaissance algorithms for decimal arithmetics (Ries 1522)
 - Extended to cyclic sequences of digits
 - With (Karczmarczuk 1998) in mind
- Addition/subtraction proceed right to left
 - but there is no right end to start with
- Half addition/subtraction compute local result and carrier independently (coiteration)
 - shift & repeat
 - each digit overflows at most once (iteration)
- Division computes digits by repeated subtraction (iteration)
 - eventually a remainder recurs (coiteration)
- Multiplication (directly) remains hard

Cyclic Lists

- Many list algorithms generalize to the cyclic case structural map, insert, delete, concat search any, all, sorted
- Man-or-boy test: filter
 - laziness fails if infinitely many consecutive elements are discarded (bust)
 - can be split in three phases:
 - mark instance of map
 - **busted** instance of all
 - sweep easy for non-busted case
- With filter, concat and sorted we have quicksort!

Cyclic Lists

- Many list algorithms generalize to the cyclic case structural map, insert, delete, concat search any, all, sorted
- Man-or-boy test: filter
 - laziness fails if infinitely many consecutive elements are discarded (bust)
 - can be split in three phases:
 - mark instance of map
 - **busted** instance of all
 - sweep easy for non-busted case
- With filter, concat and sorted we have quicksort!

Cyclic Lists

- Many list algorithms generalize to the cyclic case structural map, insert, delete, concat search any, all, sorted
- Man-or-boy test: filter
 - laziness fails if infinitely many consecutive elements are discarded (bust)
 - can be split in three phases:
 - mark instance of map
 - **busted** instance of all
 - sweep easy for non-busted case
- With filter, concat and sorted we have quicksort!

Structural Subtyping

• Recursive type declarations with ad-hoc products & coproducts

- Structural subtyping by interface emulation
 - opposed to layout compatibility (OOP)
 - transitive, deep, safe
- Subtyping witness objects
 - cyclically dependent layout maps (cf. vtables)
 - for static checking
 - for dynamic casting
 - composition by cyclic computation
 - dynamic deep "conversion" in O(1) time

Structural Subtyping

- Recursive type declarations with ad-hoc products & coproducts
- Structural subtyping by interface emulation
 - opposed to layout compatibility (OOP)
 - transitive, deep, safe
- Subtyping witness objects
 - cyclically dependent layout maps (cf. vtables)
 - for static checking
 - for dynamic casting
 - composition by cyclic computation
 - dynamic deep "conversion" in O(1) time

Structural Subtyping

- Recursive type declarations with ad-hoc products & coproducts
- Structural subtyping by interface emulation
 - opposed to layout compatibility (OOP)
 - transitive, deep, safe
- Subtyping witness objects
 - cyclically dependent layout maps (cf. vtables)
 - for static checking
 - for dynamic casting
 - composition by cyclic computation
 - dynamic deep "conversion" in O(1) time

Introduction

- Context
- The Problem

2 Solution

- Technique
- Semantics

3 Applications

Looking Back

Some Lessons Learned

- Aiming for a nice problem pays off.
- A position with time to merely think is invaluable.
- Coalgebra is very hard to sell to real programmers (and some theoreticians, too).
- Weird theory sometimes makes natural examples.

Status of Implementation

The MALICE System

- Java Application
- Executable VM Model
 - assembly-style code format
 - interpreter
- Compiler to lower-level code
 - optimization, specialization
 - static + just-in-time
 - compiles to threaded code
- IDE
 - editors, browsers, interactive, demos

Open Problems I

Front-end Language

- Leverage capabilities of the VM
 - cyclic detection & handling
 - destination-passing & tail recursion
- Nice high-level notation
 - pattern-based recursion
 - referential transparency
 - safe operation order
 - declaration of cycle handling strategy
 - declaration of intended fixpoint

Open Problems II

Generalized Search Problems

- Proof of soundness
 - completeness (all fixpoints selectable)?
- Relies on Boolean lattice of truth values
 - other lattices?
 - application to abstract interpretation?

Open Problems III

Compiler to Machine Code

- All ingredients ready
 - memory management in the presence of YOINK!
 - portable cycle detection & handling

Trancón y Widemann, Baltasar (2008a). "A reference-counting garbage collection algorithm for cyclical functional programming". In: *ISMM*. Ed. by Richard Jones and Stephen M. Blackburn. ACM, pp. 71–80. ISBN: 978-1-60558-134-7. DOI: 10.1145/1375634.1375645.

(2008b). "Stackless Stack Inspection. A Portable Escape Route from Vicious Circles". In: Programmiersprachen und Rechenkonzepte. Ed. by Michael Hanus and Sebastian Fischer. 0811.

Postscriptum

Vicious Circle (Reed 1976)

You're caught in a vicious circle Surrounded by your so-called friends You're caught in a vicious circle And it looks like it will never end

You're caught in a vicious circle Surrounded by all of your friends

Reed, Lou (1976). "Vicious Circle". In: Rock and Roll Heart.

- Arithmetics
- Lists
- Subtyping

Bibliography I

- Ingerman, P. Z. (1961). "Thunks. A Way of Compling Procedure Statements with Some Comments on Procedure Declarations". In: *CACM* 4.1, pp. 55–58.
- Karczmarczuk, Jerzy (1998). "The Most Unreliable Technique in the World to Compute PI". In: Workshop at the 3rd International Summer School on Advanced Functional Programming.
- Minamide, Yasuhiko (1998). "A functional representation of data structures with a hole". In: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of programming languages. POPL '98. San Diego, California, United States: ACM, pp. 75–84. ISBN: 0-89791-979-3. DOI: 10.1145/268946.268953.
- Möller, Bernhard (1993). "Towards pointer algebra". In: Science of Computer Programming 21.1, pp. 57–90. ISSN: 0167-6423. DOI: 10.1016/0167-6423(93)90008-D.
- Reed, Lou (1976). "Vicious Circle". In: Rock and Roll Heart.

Bibliography II

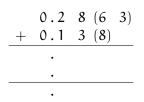
- Ries, Adam (1522). Rechenung auff der linihen und federn. Erfurt.
- Ruiz de Santayana, Jorge Augustín Nicolás (1906). The Life of Reason.
- Tarski, Alfred (1955). "A lattice-theoretical fixpoint theorem and its applications". In: *Pacific Journal of Mathematics* 5.2, pp. 285–309.
- Trancón y Widemann, Baltasar (2008a). "A reference-counting garbage collection algorithm for cyclical functional programming". In: *ISMM*. Ed. by Richard Jones and Stephen M. Blackburn. ACM, pp. 71–80. ISBN: 978-1-60558-134-7. DOI: 10.1145/1375634.1375645.
- (2008b). "Stackless Stack Inspection. A Portable Escape Route from Vicious Circles". In: Programmiersprachen und Rechenkonzepte. Ed. by Michael Hanus and Sebastian Fischer. 0811.
- Warren, David H. D. (1980). DAI Research Report 141. University of Edinburgh.

xkcd (Sept. 31, 2009). Ducklings. URL: http://xkcd.com/537/.

- Arithmetics
- Lists
- Subtyping

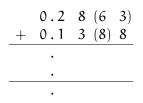
- Lists
- Subtyping

Rational Decimal Arithmetics



.

Rational Decimal Arithmetics



.

Rational Decimal Arithmetics

	0.2	8	(6	3)
+	0.1	3	(8)	8
	0.3	1	(4	1)
С	0.0	1	(1	1)

•

Rational Decimal Arithmetics

	0.2	8	(6	3)
+	0.1	3	(8)	8
	0.3	1	(4	1)
+	0.1	(1	1)	

•

Rational Decimal Arithmetics

+ 0.1 3 (8)	8
,	0
0.3 1 (4	1)
+ 0.1 (1 1)	1

•

Rational Decimal Arithmetics

		0.2	8	(6	3)
	+	0.1	3	(8)	8
_		0.3	1	(4	1)
	+	0.1	(1	1)	1
_	+	0.1			

5 References

- Arithmetics
- Lists
- Subtyping

$\mathsf{I} \mathsf{G} \mathsf{O} \mathsf{A} \mathsf{L} \mathsf{W} \mathsf{A} \mathsf{Y} \mathsf{S} (\mathsf{O} \mathsf{N})$

$\begin{array}{c} \mathsf{I} \mathsf{G} \mathrel{\bigcirc} \mathsf{A} \mathsf{L} \mathsf{W} \mathsf{A} \mathsf{Y} \mathsf{S} (\mathsf{O} \mathsf{N}) \\ \bullet \quad \mathsf{I} \mathsf{G} \mathrel{\bigcirc} \mathsf{A} \mathsf{L} \mathsf{W} \mathsf{A} \mathsf{Y} \mathsf{S} (\mathrel{\bigcirc} \mathsf{N}) \rightsquigarrow \mathsf{G} \mathsf{A} \mathsf{A} \end{array}$

I G O A L W A Y S (O N) ↔ I I G O A L W A Y S (O N) ↔ O L W Y S (O N)

- $G O A L W A Y S (O N) \rightsquigarrow I$
- I G O A L W A Y S (O N) \rightsquigarrow O L W Y S (O N)

$\begin{array}{c} I \ G \ O \ A \ L \ W \ A \ Y \ S \ (O \ N) \\ \bullet \ | \ G \ O \ A \ L \ W \ A \ Y \ S \ (O \ N) \rightsquigarrow G \ A \ A \\ & - \ G \ A \ A \rightsquigarrow A \\ & - \ G \ A \ A \rightsquigarrow G \\ & - \ G \ A \ A \rightsquigarrow G \\ & - \ G \ A \ A \rightsquigarrow G \\ & - \ G \ A \ A \rightsquigarrow G \\ & \bullet \ I \ G \ O \ A \ L \ W \ A \ Y \ S \ (O \ N) \implies H \\ \hline \bullet \ I \ G \ O \ A \ L \ W \ A \ Y \ S \ (O \ N) \implies O \ L \ W \ Y \ S \ (O \ N) \\ & - \ O \ L \ W \ Y \ S \ (O \ N) \implies H \\ \hline \end{array}$

- $OLWYS(ON) \rightsquigarrow L(N)$
- O L W Y S (O N) \rightsquigarrow O (O) - O L W Y S (O N) \rightsquigarrow W Y S

I G O A L W A Y S (O N) • $| G O A L W A Y S (O N) \rightsquigarrow G A A$ $- G A A \rightsquigarrow A A$ $- G A A \rightsquigarrow G$ - GAA ~~ • $G O A L W A Y S (O N) \rightsquigarrow$ • $| G O A L W A Y S (O N) \rightarrow O L W Y S (O N)$ - O L W Y S (O N) \rightarrow L (N) - O L W Y S (O N) ↔ O (O) - O L W Y S (O N) \rightsquigarrow W Y S + $W Y S \rightsquigarrow S$ + WYS $\rightsquigarrow W$

+ WYS ⊶Y

I G O A L W A Y S (O N) • $| G O A L W A Y S (O N) \rightsquigarrow G A A$ $- G A A \rightsquigarrow A A$ - $G \land A \land \rightarrow G$ - GAA ~~ • $G O A L W A Y S (O N) \rightsquigarrow$ • $| G O A L W A Y S (O N) \rightarrow O L W Y S (O N)$ - O L W Y S (O N) \rightarrow L (N) - O L W Y S (O N) ↔ O (O) - O L W Y S (O N) \rightsquigarrow W Y S + $W Y S \rightsquigarrow S$ + WYS \rightsquigarrow W

AAGIL(N)

5 References

- Arithmetics
- Lists
- Subtyping

Recursive Structural Subtyping

 $\mathbf{c}(\mathbf{d}) = \begin{bmatrix} \mathbf{0} \to \mathbf{O}\big(\mathbf{c}(\mathbf{d}), \mathbf{c}(\mathbf{d})\big) \\ \mathbf{O} \to \mathbf{O}(\mathbf{d}) \end{bmatrix}$

Recursive Structural Subtyping

$$\mathbf{c}(\mathbf{d}) = \begin{bmatrix} \mathbf{0} \to \mathbf{O}\big(\mathbf{c}(\mathbf{d}), \mathbf{c}(\mathbf{d})\big) \\ \mathbf{O} \to \mathbf{O}(\mathbf{d}) \end{bmatrix}$$