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Motivation

Most of coalgebraic logic is focussed on Set-coalgebras and their
associated (Boolean) logics.

Investigation of coalgebraic logic over Poset already started –
expressivity results [Kurz-Kapulkin-Velebil CMCS2010].

Would deserve a systematic investigation of Poset-functors and their
coalgebras.

In this talk: we restrict on how to move from (finitary) Set-functors
(fairly-well understood) to Preord and Poset-functors with a quick
look on their properties and coalgebras.
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Extensions and liftings

We fix a Set-functor T

Recall the adjunction Set ⊥
D ��

Preord
U

��

Extension: Preord Γ �� Preord

Set

D

��

T �� Set

D

�� Lifting: Preord

U
��

Γ �� Preord

U
��

Set T �� Set

Similarly we can define extensions/liftings to Poset.

We require for Γ (lifting or extension) to be locally monotone and also
finitary if T is finitary.

If Γ : Preord → Preord is a lifting/extension of T , then T = UΓD.

What about the composition Γ = DTU? DTU is not locally
monotone.
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Example of a finitary Set-functor having an extension

which is not finitary

Consider the functor T : Set → Set,

TX = {l : N → X | l(n) = l(n + 1) for all but a finite number of n}

T is finitary

and has the Preord-extension

Γ(X ,≤) = {l : (N,≤) → (X ,≤) | l(n) ≤ l(n + 1)

for all but a finite number of n}

with the pointwise order.

But Γ is not finitary: take the sequence

(1,≤) ⊆ (2,≤) ⊆ . . . −→ (N,≤)

Then Γ(N,≤) � colimΓ(n,≤).
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More on extensions/liftings

Extensions and liftings are not unique.

Examples:

Extension
T = Id
Γ1 = Id
Γ2=(discrete) connected
component functor

Lifting
TX = 2× X

Γ1(X ,≤) = 2× X , product order
Γ2(X ,≤) = 2� X , lexicographic
order
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About coalgebras

Γ extension of T

Set �
D ��

Preord
C

��

Coalg(T ) �
D̃ ��

Coalg(Γ)
C̃
��

Final Γ-coalgebra is the
(discrete) final T -coalgebra.

Γ lifting of T

Set ⊥
D ��

Preord
U

��

Coalg(T ) ⊥
D̃ ��

Coalg(Γ)
Ũ
��

Final Γ-coalgebra is the final
T -coalgebra with some

preorder.
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First construction: order on variables

T finitary Set-functor ⇐⇒ quotient of a polynomial functor.

Canonical
presentation:
Now: (X ,≤) preordered set. And compute the coequalizer in Preord

�
n<ω

Σn × X n �� �� TX

Obtain functor T̃ (X ,≤) = (TX ,�) : Preord → Preord

Locally monotone

Both lifting and extension

Call T̃ the preordification of T
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Proposition

T̃ is independent of the chosen presentation of T .

Examples

TX = X ∗

Then � compares lists of same length element by element:

[x0 . . . xn−1]�[y0 . . . ym−1] ⇔ m = n ∧ xi ≤ yi , ∀i < n

TX = Pf X

Then � is the Egli-Milner preorder on Pf (X ,≤):

u�v for u, v ⊆ X finite ⇔
�
∀a ∈ u ∃b ∈ v . a ≤ b

∀b ∈ v ∃a ∈ u. a ≤ b
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Second construction: order on operations

T finitary Set functor.

Take (Tn,≤) preordered such that Tf : (Tm,≤) → (Tn,≤) is
monotone for any map f : m → n.

Motivation: there are natural examples, like Pf with inclusion.

But also easy general example:

T1 �= ∅ �� pick ≤
preorder on T1

�� obtain ≤
preorder on Tn

n
!→ 1

��
Tn

T !→ T1

��
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Second construction: order on operations

Preorder on signature (Tn,≤)n<ω

Coequalizer in

�
m,n<ω

Set(m, n)× × X n ��
�� �
n<ω

× X n ��

Obtain (finitary) functor T̄X = (TX ,�) : Set → Preord, called
order on T .

Proposition

The preorder on the signature is recovered.

There is an one-to-one correspondence

order T̄X = (TX ,�) ⇐⇒ preorder on signature (Tn,≤)n<ω
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Second ingredient in second construction: T–relators

For relation R ⊆ X × Y , the T -relation lifting RelT (R) ⊆ TX × TY

is described as

(u, v) ∈ RelT (R) ⇔ ∃w ∈ TR . Tπ1(w) = u ∧ Tπ2(w) = v ,

where X R
π1�� π2 ��Y .

Now: assume order T̄X = (TX ,�) on T .

For any relation R ⊆ X × Y , the T -relator Rel�T (R) ⊆ TX × TY is
given by

(u, v) ∈ Rel�T (R) ⇔ ∃w ∈ T (R). u�Tπ1(w) ∧ Tπ2(w)�v

[Thijs 1996, Hughes-Jacobs 2004]
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Properties of T -relators

�TX = Rel�T (=X ) . If R ⊆ S then Rel�T (R) ⊆ Rel�T (S) .

For any functions f : X → X �, g : Y → Y � and any relation
R � ⊆ X � × Y � , Rel�T ((f × g)−1(R �)) ⊆ (Tf × Tg)−1(Rel�T (R

�))

If holds with equality, say that the order T̄ is stable.

If R ⊆ X ×Y and S ⊆ Y ×Z , then Rel�T (S ◦R) ⊆ Rel�T (S) ◦Rel
�
T (R)

If holds with equality, say that the order T̄ preserves composition of

relations.

In particular, Rel�T (≤) ⊆ Rel�T (≤) ◦ Rel�T (≤) for any preordered set
(X ,≤).

If holds with equality, say that the order T̄ preserves composition of

preorders.
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If holds with equality, say that the order T̄ preserves composition of

preorders.

A. Balan (UPB), A. Kurz (UL) Finitary functors: from Set to Preord CALCO 2011 16 / 27



And now comes the lifting...

Let T̄X = (TX ,�) an order on T .

Assume T̄ preserves composition of preorders.

Obtain Preord-lifting of T given by T̂ (X ,≤) = (TX ,Rel�T (≤)).

Examples

If the order on T is discrete and T preserves weak pullbacks, then
RelT (≤) = � and consequently T̂ = T̃ Preordification

If the order is indiscrete then T̂ (X ,≤) = (TX ,TX × TX )
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More examples

T = Pf

Order: the inclusion; stable.
Lifting with: (u, v) ∈ Rel⊆Pf

(≤) ⇔ ∀a ∈ u ∃b ∈ v . a ≤ b, where
u, v ∈ Pf X and (X ,≤) is preordered.

TX = N× X

Order: lexicographic; not stable, but preserves composition of
preorders.
Lifting: T̂ (X ,≤) = N� X lexicographically ordered.
T = (−)3

2

Order: zig-zag

. . . (x1, x2, x1) (x2, x2, x3) . . .

(x1, x1, x1) (x2, x2, x2) (x3, x3, x3)

Order does not preserve composition of preorders, thus Rel�T (≤) is
not necessarily a preorder, for (X ,≤) preordered set.
No lifting using relators.
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Preservation-type properties of lifted functor

Set: weak pullback-preserving functors

Weak pullback: P
α ��

β
��

X

f
��

Y
g �� Z

with f α =gβ, such that

∀x ∈ X , y ∈ Y . f (x) =g(y) ⇒ ∃p ∈ P . x =α(p) ∧ β(p) =y

Proposition

Let T be a finitary Set-functor having an order T̄ (X ,≤) = (TX ,�) which
preserves composition of preorders. Then the following are equivalent:

1 The order is stable.

2 The order maps weak pullbacks to exact squares.

3 The lifting T̂ (X ,≤) = (TX ,Rel�T (≤)) preserves exact squares.

Consequence: if T is a finitary Set-functor, then T preserves weak
pullbacks if and only if its preordification T̃ preserves exact squares.
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T -Liftings are uniquely determined by restriction to

discrete preordered sets

Theorem

Let T be a Set-functor (not necessarily finitary). There is a bijective

correspondence between:

1 Liftings of T to Preord preserving exact squares.

2 Stable orders on T .

3 T-relators preserving inverse images.
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Preservation-type properties of lifted functor II

Set-functors which preserve weak
pullbacks also preserve all injectives.

Injectives = strong monos in
Set.

Preord-functors which preserve exact
squares also preserve embeddings.

Embeddings = strong monos
in Preord.

Corollary

Order on T is stable =⇒ T̂ preserves embeddings.

Remark: Converse is false: take for example

TX = {∗} + (X × X −∆X )/∼

Then T fails to preserve weak pullbacks, thus the discrete order on T is
not stable, but T̃ does preserve embeddings (notice that T̃ (X ,≤) is
ordered component-wise with ∗ as bottom element).
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Preorder on final coalgebra

Recall: for T finitary Set-functor and Γ a lifting of T to Preord, the
final Γ-coalgebra exists and has the final T -coalgebra as underlying
set.

Now: take the lifting to be T̂ , for fixed stable order T̄ .

[Rutten CMCS1998, Worrell 2000, Hughes-Jacobs 2004, Levy 2011]
The preorder on the final T̂ -coalgebra is the similarity.

� Recall: given an order T̄X = (TX ,�) and two T -coalgebras X
c→ TX ,

Y
d→ TY , a relation R ⊆ X ×Y is called a T -simulation wrt order T̄ iff

x

��

y

��

R

c(x) d(y)

Rel�T (R)

� Similarity: greatest simulation. Similarity on a T -coalgebra X → TX is
a preorder.
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Outline

1 Extensions and liftings

2 From Set-functors to Preord-functors
Order on variables
Order on operations
Order both variables and operations

3 Finally, from Preord to Poset

4 Further work
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Third construction: order both variables and operations

T finitary Set-functor

(X ,≤) preordered set Preorder on signature
(Tn,�)n<ω

�
m,n<ω

Set(m, n)× Tm × X n ��
�� �
n<ω

Tn × X n �� TX

Obtain T -lifting Ť (X ,≤) = (TX ,�)

Proposition

If T preserves weak pullbacks and T̄ preserves composition of preorders,

then Ť = T̂ .

Relator Lifting

Remark: still a T -lifting independently of the properties of the order T̄ .
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Obtain T -lifting Ť (X ,≤) = (TX ,�)

Proposition

If T preserves weak pullbacks and T̄ preserves composition of preorders,
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Finally, from Preord to Poset

Set

T

��
Preord ⊥

Γ

�� Q ��
Poset

J
��

Coalg(T ) Coalg(T �)

Define T � = QΓJ locally
monotone, finitary.
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Finally, from Preord to Poset
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Poset

J
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T �

��

Coalg(T ) Coalg(T �)

Define T � = QΓJ locally
monotone, finitary.

Γ extension of T to Preord ⇒ T � extension of T to Poset.

Final
T �-coalgebra exists and is discrete.

Example: for T = Pf and Γ = P̃f , we obtain that P �
f is the finitely

generated convex powerset functor
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Coalg(Γ)��

�� Coalg(T �)

Define T � = QΓJ locally
monotone, finitary.

Γ extension of T to Preord ⇒ T � extension of T to Poset. Final
T �-coalgebra exists and is discrete.

Example: for T = Pf and Γ = P̃f , we obtain that P �
f is the finitely

generated convex powerset functor
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Coalg(T ) ⊥
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Coalg(Γ)��

�� Coalg(T �)

Define T � = QΓJ locally
monotone, finitary.

Γ lifting of T , then T � is not necessarily a lifting, just a quotient.

However, if we have an order preserving composition of preorders and
satisfying Rel�T (R1) ∩ Rel�

op

T (R2) ⊆ RelT (R1 ∩ R2) then the lifting T̂

restricts to posets.
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Further work

Investigate coalgebraic logic over Poset and merge it with Set-based
functors’ logic into a big picture.

Set

T

��

��

�� BA��

L

��

��
Poset

T �

��

��

��
DLat��

L�

��

��
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Further work

Investigate coalgebraic logic over Poset and merge it with Set-based
functors’ logic into a big picture.

Set

Thank you!

T

��

��

�� BA��

L

��

��
Poset
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