Relation lifting on preorders, metric spaces, etc.

Marta Bílková

joint work with
Alexander Kurz and Daniela Petrișan and Jiří Velebil

The characterisation theorem (V. Trnková 1977)
For a functor T : Set \longrightarrow Set, the following are equivalent:
(1) There is a functor $\bar{T}: \operatorname{Rel}(S e t) \longrightarrow \operatorname{Rel}(\operatorname{Set})$ such that the square

$$
\begin{aligned}
& \operatorname{Rel}(\text { Set })--\bar{T} \rightarrow \operatorname{Rel}(\text { Set }) \\
& (-)_{\diamond} \prod_{\text {Set }} \uparrow_{T}(-)_{\diamond}
\end{aligned}
$$

commutes.
(2) T preserves weak pullbacks.

Here, for $f: A \longrightarrow B, f_{\diamond}(b, a)=1$ iff $b=f a$.

Where is relation lifting useful?

The semantics of Moss' coalgebraic language with ∇, for T : Set \longrightarrow Set
(1) The modal language \mathcal{L}

$$
\varphi::=p|\top|(\varphi \wedge \varphi)|(\neg \varphi)| \nabla \alpha
$$

for $p \in$ At, $\alpha \in T \mathcal{L}$.
(2) Semantics in a coalgebra $c: X \longrightarrow T X$. Define

$$
x \Vdash \nabla \alpha \quad \text { iff } \quad c(x) \bar{T}(\Vdash) \alpha
$$

for every $x \in X, \alpha \in T \mathcal{L}$.
Liftings of relations $\bar{T}(\in)$ and $\bar{T}(\leq)$ are used formulating proof systems for Moss' logics.

Where is relation lifting useful?

Characterizing bisimulation: B is a bisimulation between $c: X \rightarrow T X$ and $d: Y \rightarrow T Y$ iff

$$
B(x, y) \text { implies } \bar{T}(B)(c(x), d(y)) .
$$

The largest bisimulation on $c: X \rightarrow T X$ is the largest fixed point of the operator

$$
(c \times c)^{-1} \circ \bar{T}(-)
$$

Definition

A relation from A to B is a map $R: B \times A \longrightarrow 2$, denoted by $R: A \longrightarrow B$

Relation R is tabulated by the span

if $R={ }_{\left(r_{0}\right)_{\Delta}}^{E} \times\left(r_{1}\right)^{\Delta}$
where $\left(r_{0}\right)_{\diamond}(b, e)=1$ iff $b=r_{0}(e),\left(r_{1}\right)^{\diamond}(e, a)=1$ iff $r_{1}(e)=a$.

Weak pullbacks

$$
\mathcal{P} \xrightarrow{p_{1}} \mathcal{B}
$$

A square $p_{0} \mid \underset{\mathcal{A}}{ } \underset{f}{\downarrow} \mathcal{C}$

$$
\mathcal{P} \stackrel{\left(p_{1}\right)^{\diamond}}{\rightleftarrows} \mathcal{B}
$$

or, equivalently, iff for every a and b

$$
f a=g b \text { iff there exists } w \text { s.t. } a=p_{0}(w) \text { and } p_{1}(w)=b .
$$

Definition of \bar{T}

Suppose $R: A \longrightarrow B$ is tabulated by

Define $\bar{T}(R): T A \longrightarrow T B$
by putting $\begin{aligned} &\left(T r_{0}\right)_{\Delta} \\ & T B^{T E} \times\left(T r_{1}\right)^{\diamond} \\ & T A\end{aligned}$

$$
\bar{T}(R)(\beta, \alpha)=\bigvee_{w}\left(\beta=\operatorname{Tr}_{0}(w)\right) \wedge\left(\operatorname{Tr}_{1}(w)=\alpha\right)
$$

How to compose two relations: tabulate the relations...

How to compose two relations:

... form the pullback...

How to compose two relations:

... form the quotient. . .

The composition diagram written more carefully

The presence of (weak) pullbacks in Set makes the following commutative in $\operatorname{Rel}(\mathrm{Set})$

The presence of (weak) pullbacks in Set makes the following commutative in $\operatorname{Rel}(\mathrm{Set})$

The presence of (weak) pullbacks in Set makes the following commutative in $\operatorname{Rel}(\mathrm{Set})$

The presence of (weak) pullbacks in Set makes the following commutative in $\operatorname{Rel}(\mathrm{Set})$

The previous makes composition work smoothly

The previous makes composition work smoothly

The previous makes composition work smoothly

The previous makes composition work smoothly

The previous makes composition work smoothly

The previous makes composition work smoothly

The previous makes composition work smoothly

And if T preserves weak pullbacks, \bar{T} preserves composition

And if T preserves weak pullbacks, \bar{T} preserves composition

And if T preserves weak pullbacks, \bar{T} preserves composition

And if T preserves weak pullbacks, \bar{T} preserves composition

And if T preserves weak pullbacks, \bar{T} preserves composition

And if T preserves weak pullbacks, \bar{T} preserves composition

And if T preserves weak pullbacks, \bar{T} preserves composition

We want to pass from Set to more general categories to obtain more general applications.
The level of generality:
Set is replaced by \mathcal{V}-cat, \mathcal{V} being rather simple.
Problem:
"Relations" can no longer be tabulated by spans, we need to cotabulate them by cospans.
Advantages:
(1) Hermida's idea goes through with only small modifications.
(2) All "Kripke-polynomial" functors on \mathcal{V}-cat admit a functorial relation lifting.

Definition

A commutative quantale ${ }^{a} \mathcal{V}$ is a tuple $\left(\mathcal{V}_{o}, \otimes, I,[-,-]\right)$ where
(1) \mathcal{V}_{0} is a complete lattice.
(2) The tensor \otimes is commutative, associative, has I as a unit.
(3) There is an adjunction $-\otimes a \dashv[a,-]: \mathcal{V}_{o} \longrightarrow \mathcal{V}_{o}$, i.e., $x \otimes a \leq y$ iff $x \leq[a, y]$ holds, for every a, x and y.
${ }^{\text {a }}$ Or, a commutative complete residuated lattice.

Examples

(1) $\mathcal{V}_{0}=$ two-element chain, $\otimes=$ meet, $I=$ top.
(2) $\mathcal{V}_{0}=$ unit interval with reversed order, $\otimes=\max , I=$ zero.
(3) ... many others.

Definition

A small \mathcal{V}-category \mathcal{A} consists of a small set of objects, a, b, \ldots, and $\mathcal{A}(a, b)$ in \mathcal{V}_{o}, for every pair a, b of objects, such that
(1) $I \leq \mathcal{A}(a, a)$, for every a.
(2) $\mathcal{A}(a, b) \otimes \mathcal{A}(b, c) \leq \mathcal{A}(a, c)$, for every a, b, c.

A \mathcal{V}-functor $f: \mathcal{A} \longrightarrow \mathcal{B}$ consists of an object-assignment $a \mapsto f a$ such that $\mathcal{A}(a, b) \leq \mathcal{B}(f a, f b)$ holds, for every a, b.

Small \mathcal{V}-categories and \mathcal{V}-functors form a 2-category

$$
\mathcal{V} \text {-cat }
$$

The 2-cell $f \rightarrow g$ witnesses the inequality $I \leq \bigwedge_{x} \mathcal{B}(f x, g x)$.

Examples

(1) $\mathcal{V}_{0}=$ two-element chain, $\otimes=$ meet, $I=$ top. Then \mathcal{V}-cat $=$ preorders and monotone maps.
(2) $\mathcal{V}_{0}=$ unit interval with reversed order, $\otimes=\max , I=$ zero. Then \mathcal{V}-cat $=$ ultrametric spaces and nonexpanding maps.
(3)... many others.

Definition

A relation ${ }^{\text {a }}$ from \mathcal{A} to \mathcal{B} is a \mathcal{V}-functor $R: \mathcal{B}^{\circ p} \otimes \mathcal{A} \longrightarrow \mathcal{V}$, denoted by $R: \mathcal{A} \longrightarrow \mathcal{B}$

Relation R is cotabulated by the cospan

where $\left(r_{1}\right)_{\diamond}(e, a)=\mathcal{E}\left(e, r_{1}(a)\right),\left(r_{0}\right)^{\diamond}(b, e)=\mathcal{E}\left(r_{0}(b), e\right)$.
${ }^{a}$ Or, module, or, profunctor, or, distributor.

Street's characterisation of relations in \mathcal{V}-cat (1980)

Relations in \mathcal{V}-cat correspond to cospans that are codiscrete cofibrations in \mathcal{V}-cat.
Composition of these cospans involves pushouts in \mathcal{V}-cat and fully-faithful \mathcal{V}-functors.
\mathcal{V}-functor $f: \mathcal{A} \longrightarrow \mathcal{B}$:

$$
\mathcal{A}(a, b) \leq \mathcal{B}(f a, f b)
$$

Fully-faithful \mathcal{V}-functor $f: \mathcal{A} \longrightarrow \mathcal{B}$:

$$
\mathcal{A}(a, b)=\mathcal{B}(f a, f b)
$$

(Weak) pullbacks are replaced by exact squares

$\mathcal{P} \xrightarrow{p_{1}} \mathcal{B}$

$\mathcal{P} \stackrel{\left(p_{1}\right)^{\diamond}}{\leftarrow} \mathcal{B}$

iff, for all a and b

$$
\mathcal{C}(f a, g b)=\bigvee_{w} \mathcal{A}\left(a, p_{0}(w)\right) \otimes \mathcal{B}\left(p_{1}(w), b\right)
$$

The characterisation theorem

For a 2-functor $T: \mathcal{V}$-cat $\longrightarrow \mathcal{V}$-cat, the following are equivalent:
(1) There is a 2 -functor $\bar{T}: \operatorname{Rel}(\mathcal{V}$-cat $) \longrightarrow \operatorname{Rel}(\mathcal{V}$-cat $)$ such that the square

$$
\begin{aligned}
& \operatorname{Rel}(\mathcal{V} \text {-cat })--\stackrel{\bar{T}}{-} \operatorname{Rel}(\mathcal{V} \text {-cat }) \\
& (-)_{\diamond} \uparrow \quad \uparrow(-)_{\diamond} \\
& \mathcal{V} \text {-cat } \underset{T}{ } \mathcal{V} \text {-cat }
\end{aligned}
$$

commutes.
(2) T preserves exact squares.

Here, for $f: \mathcal{A} \longrightarrow \mathcal{B}, f_{\diamond}(b, a)=\mathcal{B}(b, f a)$.

Definition of \bar{T}

Suppose $R: \mathcal{A} \longrightarrow \mathcal{B}$ is cotabulated by

$$
\text { Define } \bar{T}(R): T \mathcal{A} \longrightarrow T \mathcal{B}
$$

$$
\begin{aligned}
\text { as the composite }
\end{aligned}
$$

The composition diagram

And the rest of the reasoning is analogous to sets.

Kripke-polynomial functors

All 2-functors $T: \mathcal{V}$-cat $\longrightarrow \mathcal{V}$-cat, given by

$$
T::=\operatorname{ld} \mid \text { const } \mathcal{X}|T+T| T \times T|T \otimes T| T^{\partial} \mid \mathcal{X} \mapsto\left[\mathcal{X}^{\circ p}, \mathcal{V}\right]
$$

where $T^{\partial} \mathcal{X}=\left(T\left(\mathcal{X}^{o p}\right)\right)^{o p}$, preserve exact squares. Hence they give rise to a "well-behaved" coalgebraic cover modality.

Examples for preorders

(1) All the Kripke-polynomial functors preserve exact squares.
(2) The lowerset functor $\mathcal{L X}=\left[\mathcal{X}^{\text {op }}, 2\right]$:

$$
\overline{\mathcal{L}}(R)(B, A) \text { iff } \forall b \in B \exists a \in A R(b, a)
$$

(3) The convex-set functor:
$\overline{\mathcal{P}}(B, A)$ iff $\forall b \in B \exists a \in A R(b, a) \& \forall a \in A \exists b \in B R(b, a)$

A counterexample for preorders

The connected-component functor does not preserve exact squares, since it does not preserve order embeddings, e.g., the embedding $f: \mathcal{A} \rightarrow \mathcal{B}$

\mathcal{A}
\mathcal{B}

Quoted references

(1) V. Trnková, Relational automata in a category and theory of languages. In Proc. FCT 1977, LNCS 56, Springer, 1977, 340-355
(2) C. Hermida, A categorical outlook on relational modalities and simulations, preprint, http://maggie.cs.queensu.ca/chermida/
(3) R. Street, Fibrations in bicategories, Cahiers de Top. et Géom. Diff. XXI. 2 (1980), 111-159

