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Fixed-point equations

We study systems of equations of the form

X1 = f1(X1, . . . ,Xn)

X2 = f2(X1, . . . ,Xn)

· · ·
Xn = fn(X1, . . . ,Xn)

where the fi ’s are “polynomial expressions”.



Shortest paths

Lengths di of shortest paths from vertex 0 to vertex i in graph G = (V ,E)

are the largest solution of

di = min
(i,j)∈E

(di , dj + wji)

where wij is the distance from i to j .



Context-free languages

Context-free grammar

X → ZX | Z
Y → aYa | ZX

Z → b | aYa

Languages generated from
X ,Y ,Z are the least solution of

LX = (LZ · LX) ∪ LZ

LY = ({a} · LY · {a}) ∪ (LZ · LX)

LZ = {b} ∪ ({a} · LY · {a})



Nuclear chain reaction

235U ball of radius D, spontaneous fission.
Probability of a chain reaction is (1− p0),
where pα for 0 ≤ α ≤ D is least solution of

pα = kα +

∫ D

0
Rα,β f(pβ) dβ

for constants kα,Rα,β and polynomial f(x).

Discretizing the interval [0,D] we get

pi = ki +
n∑

j=1

ri,j f(pj)

for constants ki , ri,j .



And many others . . .

Stochastic theory: Stationary distribution of Markov chains

Extinction probability of branching processes

Physics: Heat equation

Electrostatic equilibrium

Biology: RNA structure prediction

Population dynamics

Computer science: Dataflow equations (abstract interpretation)

Reputation systems

Provenance in databases



Underlying structure: ω-continuous semirings

Semiring (C,+,×,0,1):

(C,+,0) is a commutative monoid × distributes over +

(C,×,1) is a monoid 0× a = a× 0 = 0

ω-continuity:

the relation a v b ⇔ ∃c : a + c = b is a partial order

v-chains have limits

Examples: nonnegative integers and reals plus∞, min-plus (tropical),
languages, complete lattices, multisets, Viterbi . . .

In the rest of the talk: semiring ≡ ω-continuous semiring.



Research program

Develop generic solution methods valid for all semirings, or at least for
large classes.

• Generic implementations.

• Exchange of algorithms and proof techniques between numerical
mathematics, algebraic computation and language theory.

In this talk: brief survey of our work on derivation tree analysis.
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THE generic solution method: Kleene iteration

Theorem [Klee 38, Tars 55, Kui 97]: A system f of fixed-point equations
over a semiring has a least solution µf w.r.t. the natural order v.

This least solution is the supremum of the Kleene approximants, denoted
by {ki}i≥0 , and given by

k0 = f(0)

ki+1 = f(ki) .

Basic algorithm for calculation of µf : compute k0, k1, k2, . . . until either
ki = ki+1 or the approximation is considered adequate.



Kleene iteration may be slow

Set interpretations: Kleene iteration never terminates if µf is an infinite set.

• X = {a} · X ∪ {b} µf = a∗b

Kleene approximants are finite sets: ki = (ε+ a + . . .+ ai)b

Real semiring: convergence can be very slow.

• X = 0.5 X2 + 0.5 µf = 1 = 0.99999 . . .

“Logarithmic convergence”: k iterations give O(log k) correct digits.

kn ≤ 1−
1

n + 1
k2000 = 0.9990



Language-theoretic characterization of µf

An equation X = f(X) over a semiring induces a context-free grammar G
and a valuation V

Example: X = 0.25X2 + 0.25X + 0.5

Grammar: X → a X X | b X | c

Valuation: V(a) = 0.25,V(b) = 0.25,V(c) = 0.5

V extends to derivation trees and sets of derivation trees:

V(t) := ordered product of the leaves of t

V(T) :=
∑
t∈T

V(t)
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X → a X X | b X | c V(a) = V(b) = 0.25,V(c) = 0.5

X

Xa

c

X

c

t2:X

c

t1: t3: X

X Xa

c

V(t3) = 0.015625V(t2) = 0.25 · 0.5 · 0.5 = 0.0625V(t1) = 0.5

b X

c

V({t1, t2, t3}) = 0.5 + 0.0625 + 0.015625 = 0.578125



Language-theoretic characterization of µf

Fundamental Theorem [Boz99,EKL10]: Let G be the grammar for
X = f(X), and let T(G) be the set of derivation trees of G . Then

µf = V(T(G))
def
= V(G)

X = f(X)

µf

=

V(T(G)) T(G)

G

V



Derivation tree analysis

Use language-theoretic results about the

set of derivation trees of the associated context-free grammar

to derive approximation or solution algorithms for the

system of equations.



Approximating grammars

Let G be the grammar for X = f(X).

An unfolding of G is a sequence U1,U2,U3, . . . of grammars such that

• T(U i) ∩ T(U j) for every i 6= j , and

• there is a bijection between
⋃∞

i=1 T(U i) and T(G) that preserves the
yield.

From U1,U2,U3, . . . we get another sequence G1,G2,G3, . . . such that
T(Gj) =

⋃j
i=1 T(U i)



Approximating grammars

Let Op be the operator on the semiring such that

• V(G1) = Op(0) and

• V(Gi+1) = Op(V(Gi)) for every i ≥ 1

By the fundamental theorem we get µf = sup∞i=1 Op i(0)

Op yields a procedure to approximate µf .



Approximating grammars by height

Goal: Yield-preserving bijection between T(U i) (T(Gi)) and the
derivation trees of G of height i (at most i).

G : X → a X X | b X | c .

X 〈1〉 → c

X [1] → X 〈1〉

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−2]X 〈k−1〉 | aX 〈k−1〉X [k−2]| bX 〈k−1〉

X [k] → X 〈k〉 | X [k−1]

U i (Gi) is the grammar with X 〈i〉 (X [i]) as axiom.
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Approximating grammars by height

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−2]X 〈k−1〉 | aX 〈k−1〉X [k−2]| bX 〈k−1〉

X [k] → X 〈k〉 | X [k−1]

”Taking values” we get:

V(Uk) = V(a) · V(Uk−1)2 + V(a) · V(Gk−2) · V(Uk−1)

+ V(a) · V(Uk−1) · V(Gk−2) + V(b) · V(Uk−1)

V(Gk) = V(Gk−1) + V(Uk)

and since f(X) = V(a) · X2 + V(b) · X + V(c)

V(G1) = f(0)

V(Gi+1) = f(V(Gi)) for every i ≥ 1



Kleene approximation corresponds to evaluating
the derivation trees of G by increasing height.



A ”faster” approximation

G : X → a X X | b X | c .

Recall the approximation by height

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−2]X 〈k−1〉 | aX 〈k−1〉X [k−2]| bX 〈k−1〉

To capture more trees we allow linear recursion.

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−1]X 〈k〉 | aX 〈k〉X [k−1]| bX 〈k−1〉

U i (Gi) defined as before.



Taking values

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−1]X 〈k〉 | aX 〈k〉X [k−1]| bX 〈k−1〉

V(U i) is the least solution of the linear equation

X = V(a) · V(U i−1)2 + V(a) · V(Gi−1) · X
+ V(a) · X · V(Gi−1) + V(b) · X

Iterative approximation of V(G):

• V(G1) = least solution of X = V(b) · X + V(c)

• V(Gi+1) = V(Gi) + V(U i+1) for every i ≥ 1

Recipe to approximate µf by solving linear equations.



Interpreting the new approximation

Consider equations X = f(X) on the real semiring

Let g(X) = f(X)− X . Then µf is a zero of g(X).

Simple arithmetic yields

V(Gi+1) = V(Gi)−
g(V(Gi))

g′(V(Gi))

where g′(X) is the derivative of g.

This is Newton’s method for approximating a zero of a differentiable
function.



Newton’s method for X = f(X) (univariate case)
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Language theoretic view of Newton’s method

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−1]X 〈k〉 | aX 〈k〉X [k−1]| bX 〈k−1〉

Say a tree of G has dimension k if it is derived from Uk

A derivation tree has dimension 0 if it has one node.

A derivation tree has dimension k > 0 if it consists of a spine with subtrees
of dimension at most k − 1 (and at least one subtree of dimension k − 1).

k−1

k−1

k−1

k−1

k−1

k−1

k−1k−1



Understanding dimension

The dimension of a derivation tree is the height of the largest full binary
tree embeddable in it (ignoring terminals).

X

X X

X

a

X

b b

b a



Newton approximation corresponds to evaluating
the derivation trees of G by increasing dimension.



Convergence speed of Newton’s method

At least as good as Kleene’s approximation

For every value v let αi(v) be the number of trees of Gi with that value, if
the number is finite, and αi(v) =∞ otherwise.

V(Gi) =
∑

v

αi(v)∑
i=1

v V(G) =
∑

v

α(v)∑
i=1

v

Intuitively:
∑α(v)

i=1 v is the ”contribution” of v to V(G).∑αi(v)
i=1 v is the ”contribution” of v to V(Gi .

We analyze how fast αi(v) converges to α(v).



Convergence speed for commutative semirings

Theorem (Luttenberger, unpublished): Given a system of n equations over
a commutative semiring,

αk ·n+1(v) ≥ min{α(v), k}

for every semiring value v and every k ≥ 1.

In words: k · n + 1 Newton steps ”capture” at least k trees of each value v
(if there are that many).



Convergence speed for commutative and

idempotent semirings

In idempotent semirings v + v = v holds, and so

capturing one single tree of value v amounts to
capturing the whole contribution of v to V(G).

Theorem [EKL 10]: Let X = f(X) be a system with n equations over an
idempotent and commutative semiring. Then µf = V(Gn+1).

Stronger version of a theorem by Hopkins and Kozen in LICS’99.



Solving the linear equations

Recall: V(U i) is the least solution of

X = V(a) · V(U i−1)2 + V(a) · V(Gi−1) · X
+ V(a) · X · V(Gi−1) + V(b) · X

Neither left- nor right linear!

In a commutative and idempotent semiring the equation is equivalent to

X = V(a) · V(U i−1)2 + (V(a) · V(Gi−1) + V(b)) · X

which gives

V(U i) = (V(a) · V(Gi−1) + V(b))∗ · V(a) · V(U i−1)2



Solving equations over 1-bounded semirings

A semiring S,+, ·,0,1 1-bounded if it is idempotent and a v 1 for every
semiring element a.

(Note: commutativity not required)

Example: Viterbi’s semiring for computing maximal probabilities.

We use derivation tree analysis to show that for a system on n equations
(and so n variables)

µf = V(Gn) = f n(0)



Solving equations over 1-bounded semirings

Every tree t of height greater than n is pumpable: if t has yield w then
there is uvxyz = w and trees t i with yield uv ixy iz = w for every i ≥ 0.

V(t) + V(t0) = V(uvxyz) + V(uxz)

v V(u) · 1 · V(x) · 1 · V(z)

+ V(u) · V(x) · V(z) (1-boundedness)

= V(uxz) (idempotence)

= V(t0)

So t0 captures the total contribution of value v .

Use now that t0 has height at most n.



Solving equations over star-distributive semirings

A semiring is star-distributive if it is idempotent, commutative, and
(a + b)∗ = a∗+ b∗ for any semiring elements a, b.

Example: tropical semiring.

We use derivation tree analysis to show that for a system on n equations
µf can be computed by n Kleene steps followed by one Newton step.



Solving equations over star-distributive semirings

A derivation tree is a bamboo if it has a path, the stem, such that the
height of every subtree not containing a node of the stem is at most n.

k−1

k−1

k−1

k−1

k−1

k−1

k−1k−1

Proposition: For every tree t there is a bamboo t ′ such that V(t) = V(t ′).

Corollary: Bamboos already capture the contribution of all trees.

To compute: n Kleene steps for the trees of height at most n followed by
one Newton step for the bamboos.



Some applications



Three new algorithms

O(n3) algorithm for computing the throughput of context-free grammars
(improving O(n4) algorithm by Caucal et al.) [EKL TCS ’11].

New algorithm for pattern-based verification of multithreaded procedural
programs with fixed number of threads [GMM CAV ’10, EG POPL ’11].

Very simple algorithm for transforming a context-free grammar into a
Parikh-equivalent NFA [EGKL IPL ’11].



Stochastic thread creation

Threads can spawn new threads with known probabilities.

Execution by one processor. We assume termination with probability 1.

Example (only one type of thread):

X 0.1−−−→ 〈X ,X ,X〉 X 0.2−−−→ 〈X ,X〉 X 0.1−−−→ X X 0.6−−−→ ε

Probability generating function

f(X) = 0.1X3 + 0.2X2 + 0.1X + 0.6



Describing executions: family trees

0.6

0.6

0.10.6 0.6 0.6

0.20.2

0.1

Probability of a family tree: product of the probabilities of its nodes.

Execution order depends on a scheduler that chooses a thread from the
pool of inactive threads and executes it for one time unit.

Completion space Sσ for a scheduler σ: maximal size reached by the pool
during execution.



Completion space of the optimal scheduler

Lemma: The family trees with completion space Sop = k “are” the
derivation trees of dimension k .

Theorem [BEKL I&C ’11]: The probability Pr[Sop ≤ k] of completing
execution within space at most k is equal to the k -th Newton approximant
of X = f(X).

In our example:
Pr[Sop = 1] = 2 = 3 = 4 = 5

0.667 0.237 0.081 0.014 0.001



Conclusions and future work

New connections between analysis and numerical mathematics and TCS,
leading to several new algorithms.

Open questions:

• Use language theory to derive convergence bounds of Newton’s
method over the reals

• Algebraic proof of the convergence speed theorem

• Applications to linear programming ?



Thermal equilibrium (2d)

Heat equation in 2d

∂u
∂t

= h2

(
∂2u
∂x2

+
∂2u
∂y2

)

After discretization, temperature at
thermal equilibrium is a solution of

ui,j = ki,j
(

ui−1,j + ui+1,j

+ui,j+1 + ui,j−1

)
for constants ki,j plus boundary condi-

tions.



Abstract Interpretation: Collecting semantics

Collecting semantics of a program: assigns to each program point p the
possible values of the memory when the program reaches p.

Solution of the equations

pi Store =
⊔

pj∈pred(pi)

fij(pj Store)

Basis of abstract interpretation



Idempotent semirings: derivation tree analysis

Idempotent semiring: a + a = a

Technique for computing µf algebraically:

(1) Identify a set T ⊆ D of trees such that Y(T) can be

computed algebraically.

(2) Show that for every t ∈ D there is t ′ ∈ T such that Y(t) v Y(t ′).

Then by idempotence we have µf = Y(D) = Y(T)


