Solving fixed-point equations
by derivation tree analysis

Javier Esparza

Technische Universitat Miinchen

Joint work with
Stefan Kiefer and Michael Luttenberger

Fixed-point equations

We study systems of equations of the form

X1 = hH(Xy, ..., Xn)
Xo = h(Xy,...,Xn)
Xn — fn(X]_, « e ,Xn)

where the f;’s are “polynomial expressions”.

Shortest paths

Lengths d; of shortest paths from vertex O to vertex /in graph G = (V, E)
are the largest solution of

d, = min (d;, d; + w;
] (i,j)eE(I /+ //)

where wj; is the distance from i to j.

Context-free languages

Context-free grammar

X — ZX|Z
Y — aYa|ZX
Z — b|aYa

Languages generated from
X,Y,Z are the least solution of

= UL
Ly = ({a}-Ly-{a}) U (Ly-Ly) _.
L = {b} U ({a}-Ly-{a})

Nuclear chain reaction

235U ball of radius D, spontaneous fission.
Probability of a chain reaction is (1 — pg),
where p, for 0 < a < D is least solution of

D
Pa = Ka +/ Ra,ﬁ f(Pﬂ) ag
0

for constants k., R, g and polynomial f(x).
Discretizing the interval [0, D] we get

n
pi=ki+) rjf(p)

=1
for constants ki, r; ;.

And many others ...

Stochastic theory: Stationary distribution of Markov chains
Extinction probability of branching processes

Physics: Heat equation
Electrostatic equilibrium

Biology: RNA structure prediction
Population dynamics

Computer science: Dataflow equations (abstract interpretation)
Reputation systems
Provenance in databases

Underlying structure: w-continuous semirings

Semiring (C, 4+, x,0, 1):

(C,+,0) is a commutative monoid x distributes over +
(C, x,1) is a monoid Oxa=ax0=0

w-continuity:
the relation aC b < dc: a4 ¢ = b is a partial order

[C-chains have limits

Examples: nonnegative integers and reals plus oo, min-plus (tropical),
languages, complete lattices, multisets, Viterbi ...

In the rest of the talk: semiring = w-continuous semiring.

Research program

Develop generic solution methods valid for all semirings, or at least for
large classes.

e Generic implementations.

e Exchange of algorithms and proof techniques between numerical
mathematics, algebraic computation and language theory.

Research program

Develop generic solution methods valid for all semirings, or at least for
large classes.

e Generic implementations.

e Exchange of algorithms and proof techniques between numerical
mathematics, algebraic computation and language theory.

In this talk: brief survey of our work on derivation tree analysis.

THE generic solution method: Kleene iteration

Theorem [Klee 38, Tars 55, Kui 97]: A system f of fixed-point equations
over a semiring has a least solution uf w.r.t. the natural order L.

This least solution is the supremum of the Kleene approximants, denoted
by {ki}i>0,and given by

S
|

f(0)
kipt1 = f(kj) .

Basic algorithm for calculation of uf : compute kg, k1, ko, ... until either
Ki = ki1 or the approximation is considered adequate.

Kleene iteration may be slow

Set interpretations: Kleene iteration never terminates if if is an infinite set.

e X=1{al-XU/{b} puf=ab

Kleene approximants are finite sets: ki = (c +a-+ ...+ a)b

Real semiring: convergence can be very slow.

e X=05X°4+05 uf=1=0.99999...
“Logarithmic convergence”: k iterations give O(log k) correct digits.

1

kn <1 -—
n-—+1

ko000 = 0.9990

Language-theoretic characterization of uf

An equation X = f(X) over a semiring induces a context-free grammar G
and a valuation V

Language-theoretic characterization of uf

An equation X = f(X) over a semiring induces a context-free grammar G
and a valuation V

Example: X = 0.25X2 4 0.25X + 0.5

Grammar: X — aXX | bX | ¢
Valuation: V(a) = 0.25,V(b) = 0.25,V(c) = 0.5

Language-theoretic characterization of uf

An equation X = f(X) over a semiring induces a context-free grammar G
and a valuation V

Example: X = 0.25X2 4+ 0.25X + 0.5

Grammar: X — aXX | bX | ¢
Valuation: V(a) = 0.25,V(b) = 0.25,V(c) = 0.5

V extends to derivation trees and sets of derivation trees:

V(t) := ordered product of the leaves of t

V(T) == » V(b

X — aXX | bX | c V(a) = V(b) = 0.25,V(c) = 0.5

fy X Ir: X I3: X
1IN AN
C a X X a X X
\ /\
C C C b X
\
V(t1) = 0.5 V() =0.25-0.5-0.5 = 0.0625 V(tz) = 0.015625 C

V({t;, t>, t3}) = 0.5 + 0.0625 + 0.015625 = 0.578125

Language-theoretic characterization of uf

Fundamental Theorem [Boz99,EKL10]: Let G be the grammar for

X = f(X), and let T(G) be the set of derivation trees of G. Then

uf = V(T(G) € v(G)

X = f(X) - G

:

uf

V(T(G)) = 7(G)

Derivation tree analysis

Use language-theoretic results about the

set of derivation trees of the associated context-free grammar

to derive approximation or solution algorithms for the

system of equations.

Approximating grammars

Let G be the grammar for X = f(X).

An unfolding of G is a sequence Ul, U2, U3, ... of grammars such that
o T(UNNT(U forevery i # j, and
e there is a bijection between | J;Z T(U" and T(G) that preserves the

yield.

From UL, U2, U3, ... we get another sequence G, G2, G3, ... such that
T(G) = Uf T(U’

Approximating grammars

Let Op be the operator on the semiring such that
e V(GY) = 0Op(0) and

o V(G = Op(V(G)) forevery i > 1

By the fundamental theorem we get .f = sup?® , Op'(0)

Op yields a procedure to approximate w.f.

Approximating grammars by height

Goal: Yield-preserving bijection between T(U'") (T(G')) and the
derivation trees of G of height / (at most /).

G: X — aXX | bX | c.

Approximating grammars by height

Goal: Yield-preserving bijection between T(U'") (T(G')) and the
derivation trees of G of height / (at most /).

G: X — aXX | bX | c.

X<1> — C

Approximating grammars by height

Goal: Yield-preserving bijection between T(U'") (T(G')) and the
derivation trees of G of height / (at most /).

G: X — aXX | bX | c.
X<1>%C

x[1] - x(1)

Approximating grammars by height

Goal: Yield-preserving bijection between T(U') (T(G')) and the
derivation trees of G of height / (at most /).

G: X — aXX | bX | c.

x[1] - x(1)

XK ax k=) x(k=1) | gxlk=2] x{k=1) | gx(k—1) xlk=2]| pxtk—1)

Approximating grammars by height

Goal: Yield-preserving bijection between T(U') (T(G')) and the
derivation trees of G of height / (at most /).

G: X — aXX | bX | c.

x[1] - x(1)

XK ax k=) x(k=1) | gxlk=2] x{k=1) | gx(k—1) xlk=2]| pxtk—1)

XK x| xTk—1]

Approximating grammars by height

Goal: Yield-preserving bijection between T(U') (T(G')) and the
derivation trees of G of height / (at most /).

G: X — aXX | bX | c.

x[1] - x(1)

XK ax k=) x(k=1) | gxlk=2] x{k=1) | gx(k—1) xlk=2]| pxtk—1)

XK x| xTk—1]

U' (G') is the grammar with X (xl1) as axiom.

Approximating grammars by height

XK axk=1) x(k=1) | gxlk=2] x{k=1) | gx(k—1) xlk=2]| px(k—1)

XK x(k) | xlk-1]

"Taking values” we get:

V(UK) = V(a) - V(UK-1)2 4+ V(a) - V(GK2) . v(UK-1)
+ V(a) - V(UK=1) . V(GK=2) + v(b) - V(UK—1)
V(GK) = V(GK—1) 4 v(UX)

and since f(X) = V(a) - X2+ V(b)- X+ V(c)

V(GY) = £(0)
V(GTY = f(V(G")) foreveryi>1

Kleene approximation corresponds to evaluating
the derivation trees of G by increasing height.

A "faster” approximation

G: X — aXX | bX | c.

Recall the approximation by height

XK ax(k=1) x{k=1) | gxlk=2] x{k=1) | gx(k—1) xlk=2] px(k—1)

To capture more trees we allow linear recursion.

Xk axtk=1) x(k=1) | gxlk=1x{k) | gx (k) xlk=1]| px(k—1)

U' (G') defined as before.

Taking values

XK ax(k=1)x(k=1) | gxTk—11x(k) | gx (k) xTk—11| px(k—1)

V(U") is the least solution of the linear equation

X = V(a) - V(U"H2 4+ V(a)- V(G- X
+ V(a) - X- V(G + V(b)) -X

lterative approximation of V(G):
e V(G') = least solution of X = V(b) - X + V(¢)

e V(GTYH = V(G + V(UTL) forevery i >1

Recipe to approximate uf by solving linear equations.

Interpreting the new approximation

Consider equations X = f(X) on the real semiring
Let g(X) = f(X) — X . Then ufis a zero of g(X).

Simple arithmetic yields

g(V(G))

Gt = v(@) - .
VIGT=VIE) = s via)

where g’(X) is the derivative of g.

This is Newton’s method for approximating a zero of a differentiable
function.

Newton’s method for X = f(X) (univariate case)

1.2

F(X)

02

04

06

08

1.2

Newton’s method for X = f(X) (univariate case)

Newton’s method for X = f(X) (univariate case)

Newton’s method for X = f(X) (univariate case)

Newton’s method for X = f(X) (univariate case)

Newton’s method for X = f(X) (univariate case)

Language theoretic view of Newton’s method

Xk gxthk=1) x(k=1) | gxlk=1l x(k) | gx (k) xTk—=1]| px({k=1)

Say a tree of G has dimension k if it is derived from UK

A derivation tree has dimension O if it has one node.

A derivation tree has dimension k > O if it consists of a spine with subtrees
of dimension at most kK — 1 (and at least one subtree of dimension kK — 1).

Understanding dimension

The dimension of a derivation tree is the height of the largest full binary
tree embeddable in it (ignoring terminals).

1IN
/ I\

X
\
X X
| /]
b a X X
u
b

b

Newton approximation corresponds to evaluating
the derivation trees of G by increasing dimension.

Convergence speed of Newton’s method

At least as good as Kleene’s approximation

For every value v let o/(v) be the number of trees of G’ with that value, if
the number is finite, and o/(v) = oo otherwise.

| ol (v) a(v)
vigh= Y v Vvie=) > v
vV =1 vV =1

intuitively: 5% v is the "contribution” of v to V(G).
Z;i(lv) v is the "contribution” of v to V(G'.

We analyze how fast o/(v) converges to a(v).

Convergence speed for commutative semirings

Theorem (Luttenberger, unpublished): Given a system of n equations over
a commutative semiring,

oML (v) > min{a(v), k}

for every semiring value v and every k > 1.

In words: k - n+ 1 Newton steps "capture” at least k trees of each value v
(if there are that many).

Convergence speed for commutative and
idempotent semirings

In idempotent semirings v 4 v = v holds, and so

capturing one single tree of value v amounts to
capturing the whole contribution of v to V(G).

Theorem [EKL 10]: Let X = f(X) be a system with n equations over an
idempotent and commutative semiring. Then uf = V(G'T1).

Stronger version of a theorem by Hopkins and Kozen in LICS'99.

Solving the linear equations

Recall: V(U') is the least solution of

X = V(a)- V(U~D2 4+ V(a)- V(G~1) X
+ V(a) - X- V(G 4+ V(b)) X

Neither left- nor right linear!

In a commutative and idempotent semiring the equation is equivalent to
X=V(a V(U D>+ (V(a)- V(G™) + V(b)) - X
which gives

V(U = (V(a) - V(G™1) + V(b)* - V(a) - V(U'1)?

Solving equations over 1-bounded semirings

A semiring S, +,-,0,1 1-bounded if it is idempotent and a = 1 for every
semiring element a.

(Note: commutativity not required)

Example: Viterbi's semiring for computing maximal probabilities.

We use derivation tree analysis to show that for a system on n equations
(and so n variables)

pf = V(G") = (0)

Solving equations over 1-bounded semirings

Every tree t of height greater than nis pumpable: if t has yield w then
there is uvxyz = w and trees t' with yield uv/xy’z = w for every i > 0.

V() + V(9 = V(uwxyz) + V(uxz)
V(u)-1-V(x)-1-V(2)

+ V(u) - V(x) - V(2) (1-boundedness)
V(uxz) (idempotence)
= V(19)

N

So t9 captures the total contribution of value v.

Use now that t° has height at most n.

Solving equations over star-distributive semirings

A semiring is star-distributive if it is idempotent, commutative, and
(a+ b)* = a* + b* for any semiring elements a, b.

Example: tropical semiring.

We use derivation tree analysis to show that for a system on n equations
uf can be computed by n Kleene steps followed by one Newton step.

Solving equations over star-distributive semirings

A derivation tree is a bamboo if it has a path, the stem, such that the
height of every subtree not containing a node of the stem is at most n.

Proposition: For every tree t there is a bamboo t’ such that V(1) = V().
Corollary: Bamboos already capture the contribution of all trees.

To compute: n Kleene steps for the trees of height at most n followed by
one Newton step for the bamboos.

Some applications

Three new algorithms

O(n3) algorithm for computing the throughput of context-free grammars
(improving O(n*) algorithm by Caucal et al.) [EKL TCS *11].

New algorithm for pattern-based verification of multithreaded procedural
programs with fixed number of threads [GMM CAV 10, EG POPL "11].

Very simple algorithm for transforming a context-free grammar into a
Parikh-equivalent NFA [EGKL IPL "11].

Stochastic thread creation

Threads can spawn new threads with known probabilities.
Execution by one processor. We assume termination with probability 1.

Example (only one type of thread):

x 2L o oxox.x) x 22 xox) x %lx o x 96,

Probability generating function

f(X) =0.1X3 4 0.2X? 4+ 0.1X 4+ 0.6

Describing executions: family trees

0.1

0.6

Probability of a family tree: product of the probabilities of its nodes.

Execution order depends on a scheduler that chooses a thread from the
pool of inactive threads and executes it for one time unit.

Completion space S? for a scheduler o: maximal size reached by the pool
during execution.

Completion space of the optimal scheduler

Lemma: The family trees with completion space S°P = k “are” the
derivation trees of dimension k.

Theorem [BEKL I&C '11]: The probability Pr[S°P < k] of completing
execution within space at most k is equal to the k-th Newton approximant
of X = f(X).

Pr[S?=1]| =2 | =3 | =4 | =5
0.667 0.237 | 0.081 | 0.014 | 0.001

In our example:

Conclusions and future work

New connections between analysis and numerical mathematics and TCS,
leading to several new algorithms.

Open questions:

e Use language theory to derive convergence bounds of Newton'’s
method over the reals

e Algebraic proof of the convergence speed theorem

e Applications to linear programming ?

Thermal equilibrium (2d)

Solution to Heat Equation

Heat equation in 2d

ou o%u . O%u
— = h2 — 4+ —
ot ox? ~ 0y?
After discretization, temperature at = S
thermal equilibrium is a solution of 0.4
1
uj = kKij(Ui—1j+ Uity s
+Ujjy1 + Uijo1) . 05

0.1

for constants k; ; plus boundary condi-

tiOnS. 01 02 03 04 05 06 07 08 09

Abstract Interpretation: Collecting semantics

Collecting semantics of a program: assigns to each program point p the
possible values of the memory when the program reaches p.

Solution of the equations

p; Store = u fii(pj Store)
pjEpred(p;)

Basis of abstract interpretation

ldempotent semirings: derivation tree analysis

ldempotent semiring: a+ a= a

Technique for computing uf algebraically:
(1) Identify aset T C D of trees such that Y (T) can be

computed algebraically.
(2) Show that for every t € D thereis t' € T such that Y(t) C Y(t).

Then by idempotence we have uf = Y (D) = Y(T)

