Solving fixed-point equations by derivation tree analysis

Javier Esparza

Technische Universität München

Joint work with
Stefan Kiefer and Michael Luttenberger

Fixed-point equations

We study systems of equations of the form

$$
\begin{aligned}
x_{1} & =f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
x_{2} & =f_{2}\left(x_{1}, \ldots, x_{n}\right) \\
& \ldots \\
x_{n} & =f_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

where the f_{i} 's are "polynomial expressions".

Shortest paths

Lengths d_{i} of shortest paths from vertex 0 to vertex i in graph $G=(V, E)$ are the largest solution of

$$
d_{i}=\min _{(i, j) \in E}\left(d_{i}, d_{j}+w_{j i}\right)
$$

where $w_{i j}$ is the distance from i to j.

Context-free languages

Context-free grammar

$$
\begin{aligned}
& X \rightarrow Z X \mid Z \\
& Y \rightarrow a Y a \mid Z X \\
& Z \rightarrow b \mid a Y a
\end{aligned}
$$

Languages generated from X, Y, Z are the least solution of

$$
\begin{aligned}
& L_{X}=\left(L_{Z} \cdot L_{X}\right) \cup L_{Z} \\
& L_{Y}=\left(\{a\} \cdot L_{Y} \cdot\{a\}\right) \cup\left(L_{Z} \cdot L_{X}\right) \\
& L_{Z}=\{b\} \cup\left(\{a\} \cdot L_{Y} \cdot\{a\}\right)
\end{aligned}
$$

Nuclear chain reaction

${ }^{235} \mathrm{U}$ ball of radius D, spontaneous fission.
Probability of a chain reaction is $\left(1-p_{0}\right)$, where p_{α} for $0 \leq \alpha \leq D$ is least solution of

$$
p_{\alpha}=k_{\alpha}+\int_{0}^{D} R_{\alpha, \beta} f\left(p_{\beta}\right) d \beta
$$

for constants $k_{\alpha}, R_{\alpha, \beta}$ and polynomial $f(x)$.

Discretizing the interval $[0, D]$ we get

$$
p_{i}=k_{i}+\sum_{j=1}^{n} r_{i, j} f\left(p_{j}\right)
$$

for constants $k_{i}, r_{i, j}$.

And many others ...

Stochastic theory: Stationary distribution of Markov chains
Extinction probability of branching processes
Physics:
Heat equation
Electrostatic equilibrium

Biology:
RNA structure prediction
Population dynamics
Computer science: Dataflow equations (abstract interpretation)
Reputation systems
Provenance in databases

Underlying structure: ω-continuous semirings

Semiring ($C,+, \times, 0,1$):
$(C,+, 0)$ is a commutative monoid $\quad \times$ distributes over +
$(C, \times, 1)$ is a monoid
$0 \times a=a \times 0=0$
ω-continuity:
the relation $a \sqsubseteq b \Leftrightarrow \exists c: a+c=b$ is a partial order
\sqsubseteq-chains have limits

Examples: nonnegative integers and reals plus ∞, min-plus (tropical), languages, complete lattices, multisets, Viterbi ...

In the rest of the talk: semiring $\equiv \omega$-continuous semiring.

Research program

Develop generic solution methods valid for all semirings, or at least for large classes.

- Generic implementations.
- Exchange of algorithms and proof techniques between numerical mathematics, algebraic computation and language theory.

Research program

Develop generic solution methods valid for all semirings, or at least for large classes.

- Generic implementations.
- Exchange of algorithms and proof techniques between numerical mathematics, algebraic computation and language theory.

In this talk: brief survey of our work on derivation tree analysis.

THE generic solution method: Kleene iteration

Theorem [Klee 38, Tars 55, Kui 97]: A system f of fixed-point equations over a semiring has a least solution μf w.r.t. the natural order \sqsubseteq.
This least solution is the supremum of the Kleene approximants, denoted by $\left\{k_{i}\right\}_{i \geq 0}$, and given by

$$
\begin{aligned}
k_{0} & =f(0) \\
k_{i+1} & =f\left(k_{i}\right)
\end{aligned}
$$

Basic algorithm for calculation of μf : compute $k_{0}, k_{1}, k_{2}, \ldots$ until either $k_{i}=k_{i+1}$ or the approximation is considered adequate.

Kleene iteration may be slow

Set interpretations: Kleene iteration never terminates if μf is an infinite set.

- $X=\{a\} \cdot X \cup\{b\} \quad \mu f=a^{*} b$

Kleene approximants are finite sets: $k_{i}=\left(\epsilon+a+\ldots+a^{i}\right) b$

Real semiring: convergence can be very slow.

- $X=0.5 X^{2}+0.5 \quad \mu f=1=0.99999 \ldots$
"Logarithmic convergence": k iterations give $O(\log k)$ correct digits.

$$
k_{n} \leq 1-\frac{1}{n+1} \quad k_{2000}=0.9990
$$

Language-theoretic characterization of μf

An equation $X=f(X)$ over a semiring induces a context-free grammar G and a valuation V

Language-theoretic characterization of μf

An equation $X=f(X)$ over a semiring induces a context-free grammar G and a valuation V

Example: $\quad X=0.25 X^{2}+0.25 X+0.5$
Grammar: $X \rightarrow a X X|b X| c$
Valuation: $\quad V(a)=0.25, V(b)=0.25, V(c)=0.5$

Language-theoretic characterization of μf

An equation $X=f(X)$ over a semiring induces a context-free grammar G and a valuation V

Example: $X=0.25 X^{2}+0.25 X+0.5$
Grammar: $X \rightarrow a X X|b X| c$
Valuation: $\quad V(a)=0.25, V(b)=0.25, V(c)=0.5$
V extends to derivation trees and sets of derivation trees:

$$
\begin{aligned}
V(t) & :=\text { ordered product of the leaves of } t \\
V(T) & :=\sum_{t \in T} V(t)
\end{aligned}
$$

$$
X \rightarrow a X X|b X| c \quad V(a)=V(b)=0.25, V(c)=0.5
$$

$$
V\left(t_{1}\right)=0.5 \quad V\left(t_{2}\right)=0.25 \cdot 0.5 \cdot 0.5=0.0625 \quad V\left(t_{3}\right)=0.015625 \quad c
$$

$$
V\left(\left\{t_{1}, t_{2}, t_{3}\right\}\right)=0.5+0.0625+0.015625=0.578125
$$

Language-theoretic characterization of μf

Fundamental Theorem [Boz99,EKL10]: Let G be the grammar for $X=f(X)$, and let $T(G)$ be the set of derivation trees of G. Then $\mu f=V(T(G)) \stackrel{\text { def }}{=} V(G)$

Derivation tree analysis

Use language-theoretic results about the
set of derivation trees of the associated context-free grammar
to derive approximation or solution algorithms for the
system of equations.

Approximating grammars

Let G be the grammar for $X=f(X)$.

An unfolding of G is a sequence $U^{1}, U^{2}, U^{3}, \ldots$ of grammars such that

- $T\left(U^{i}\right) \cap T\left(U^{j}\right)$ for every $i \neq j$, and
- there is a bijection between $\bigcup_{i=1}^{\infty} T\left(U^{i}\right)$ and $T(G)$ that preserves the yield.

From $U^{1}, U^{2}, U^{3}, \ldots$ we get another sequence $G^{1}, G^{2}, G^{3}, \ldots$ such that $T\left(G^{j}\right)=\bigcup_{i=1}^{j} T\left(U^{i}\right)$

Approximating grammars

Let $O p$ be the operator on the semiring such that

- $V\left(G^{1}\right)=O p(0)$ and
- $V\left(G^{i+1}\right)=O p\left(V\left(G^{i}\right)\right)$ for every $i \geq 1$

By the fundamental theorem we get $\mu f=\sup _{i=1}^{\infty} O p^{i}(0)$
$O p$ yields a procedure to approximate μf.

Approximating grammars by height

Goal: Yield-preserving bijection between $T\left(U^{i}\right)\left(T\left(G^{i}\right)\right)$ and the derivation trees of G of height i (at most i).
$G: X \rightarrow a X X|b X| c$.

Approximating grammars by height

Goal: Yield-preserving bijection between $T\left(U^{i}\right)\left(T\left(G^{i}\right)\right)$ and the derivation trees of G of height i (at most i).
$G: X \rightarrow a X X|b X| c$.
$X^{\langle 1\rangle} \rightarrow c$

Approximating grammars by height

Goal: Yield-preserving bijection between $T\left(U^{i}\right)\left(T\left(G^{i}\right)\right)$ and the derivation trees of G of height i (at most i).

$$
\begin{aligned}
G: X & \rightarrow a X X|b X| c . \\
X^{\langle 1\rangle} & \rightarrow c \\
X^{[1]} & \rightarrow X^{\langle 1\rangle}
\end{aligned}
$$

Approximating grammars by height

Goal: Yield-preserving bijection between $T\left(U^{i}\right)\left(T\left(G^{i}\right)\right)$ and the derivation trees of G of height i (at most i).

$$
\begin{aligned}
G: X & \rightarrow a X X|b X| c \\
X^{\langle 1\rangle} & \rightarrow c \\
X^{[1]} & \rightarrow X^{\langle 1\rangle} \\
X^{\langle k\rangle} & \rightarrow a X^{\langle k-1\rangle} X^{\langle k-1\rangle}\left|a X^{[k-2]} X^{\langle k-1\rangle}\right| a X^{\langle k-1\rangle} X^{[k-2]}\left|b X^{\langle k-1\rangle}\right\rangle
\end{aligned}
$$

Approximating grammars by height

Goal: Yield-preserving bijection between $T\left(U^{i}\right)\left(T\left(G^{i}\right)\right)$ and the derivation trees of G of height i (at most i).

$$
\begin{aligned}
G: X & \rightarrow a X X|b X| c \\
X^{\langle 1\rangle} & \rightarrow c \\
X^{[1]} & \rightarrow X^{\langle 1\rangle} \\
X^{\langle k\rangle} & \rightarrow a X^{\langle k-1\rangle} X^{\langle k-1\rangle}\left|a X^{[k-2]} X^{\langle k-1\rangle}\right| a X^{\langle k-1\rangle} X^{[k-2]} \mid b X^{\langle k-1\rangle} \\
X^{[k]} & \rightarrow X^{\langle k\rangle} \mid X^{[k-1]}
\end{aligned}
$$

Approximating grammars by height

Goal: Yield-preserving bijection between $T\left(U^{i}\right)\left(T\left(G^{i}\right)\right)$ and the derivation trees of G of height i (at most i).

$$
\begin{aligned}
G: X & \rightarrow a X X|b X| c \\
X^{\langle 1\rangle} & \rightarrow c \\
X^{[1]} & \rightarrow X^{\langle 1\rangle} \\
X^{\langle k\rangle} & \rightarrow a X^{\langle k-1\rangle} X^{\langle k-1\rangle}\left|a X^{[k-2]} X^{\langle k-1\rangle}\right| a X^{\langle k-1\rangle} X^{[k-2]} \mid b X^{\langle k-1\rangle} \\
X^{[k]} & \rightarrow X^{\langle k\rangle} \mid X^{[k-1]}
\end{aligned}
$$

$U^{i}\left(G^{i}\right)$ is the grammar with $X^{\langle i\rangle}\left(X^{[i]}\right)$ as axiom.

Approximating grammars by height

$$
\begin{aligned}
& X^{\langle k\rangle} \rightarrow a X^{\langle k-1\rangle} X^{\langle k-1\rangle}\left|a X^{[k-2]} X^{\langle k-1\rangle}\right| a X^{\langle k-1\rangle} X^{[k-2]} \mid b X^{\langle k-1\rangle} \\
& X^{[k]} \rightarrow X^{\langle k\rangle} \mid X^{[k-1]}
\end{aligned}
$$

"Taking values" we get:

$$
\begin{aligned}
V\left(U^{k}\right) & =V(a) \cdot V\left(U^{k-1}\right)^{2}+V(a) \cdot V\left(G^{k-2}\right) \cdot V\left(U^{k-1}\right) \\
& +V(a) \cdot V\left(U^{k-1}\right) \cdot V\left(G^{k-2}\right)+V(b) \cdot V\left(U^{k-1}\right) \\
V\left(G^{k}\right) & =V\left(G^{k-1}\right)+V\left(U^{k}\right)
\end{aligned}
$$

and since $f(X)=V(a) \cdot X^{2}+V(b) \cdot X+V(c)$

$$
\begin{aligned}
V\left(G^{1}\right) & =f(0) \\
V\left(G^{i+1}\right) & =f\left(V\left(G^{i}\right)\right) \text { for every } i \geq 1
\end{aligned}
$$

Kleene approximation corresponds to evaluating the derivation trees of G by increasing height.

A "faster" approximation

$G: X \rightarrow a X X|b X| c$.

Recall the approximation by height

$$
X^{\langle k\rangle} \rightarrow a X^{\langle k-1\rangle} X^{\langle k-1\rangle}\left|a X^{[k-2]} X^{\langle k-1\rangle}\right| a X^{\langle k-1\rangle} X^{[k-2]} \mid b X^{\langle k-1\rangle}
$$

To capture more trees we allow linear recursion.

$$
X^{\langle k\rangle} \rightarrow a X^{\langle k-1\rangle} X^{\langle k-1\rangle}\left|a X^{[k-1]} X^{\langle k\rangle}\right| a X^{\langle k\rangle} X^{[k-1]} \mid b X^{\langle k-1\rangle}
$$

$U^{i}\left(G^{i}\right)$ defined as before.

Taking values

$$
X^{\langle k\rangle} \rightarrow a X^{\langle k-1\rangle} X^{\langle k-1\rangle}\left|a X^{[k-1]} X^{\langle k\rangle}\right| a X^{\langle k\rangle} X^{[k-1]} \mid b X^{\langle k-1\rangle}
$$

$V\left(U^{i}\right)$ is the least solution of the linear equation

$$
\begin{aligned}
X= & V(a) \cdot V\left(U^{i-1}\right)^{2}+V(a) \cdot V\left(G^{i-1}\right) \cdot X \\
+ & V(a) \cdot X \cdot V\left(G^{i-1}\right)+V(b) \cdot X
\end{aligned}
$$

Iterative approximation of $V(G)$:

- $V\left(G^{1}\right)=$ least solution of $X=V(b) \cdot X+V(c)$
- $V\left(G^{i+1}\right)=V\left(G^{i}\right)+V\left(U^{i+1}\right)$ for every $i \geq 1$

Recipe to approximate μf by solving linear equations.

Interpreting the new approximation

Consider equations $X=f(X)$ on the real semiring

Let $g(X)=f(X)-X$. Then μf is a zero of $g(X)$.

Simple arithmetic yields

$$
V\left(G^{i+1}\right)=V\left(G^{i}\right)-\frac{g\left(V\left(G^{i}\right)\right)}{g^{\prime}\left(V\left(G^{i}\right)\right)}
$$

where $g^{\prime}(X)$ is the derivative of g.

This is Newton's method for approximating a zero of a differentiable function.

Newton's method for $X=f(X)$ (univariate case)

Language theoretic view of Newton's method

$$
X^{\langle k\rangle} \rightarrow a X^{\langle k-1\rangle} X^{\langle k-1\rangle}\left|a X^{[k-1]} X^{\langle k\rangle}\right| a X^{\langle k\rangle} X^{[k-1]} \mid b X^{\langle k-1\rangle}
$$

Say a tree of G has dimension k if it is derived from U^{k}
A derivation tree has dimension 0 if it has one node.
A derivation tree has dimension $k>0$ if it consists of a spine with subtrees of dimension at most $k-1$ (and at least one subtree of dimension $k-1$).

Understanding dimension

The dimension of a derivation tree is the height of the largest full binary tree embeddable in it (ignoring terminals).

Newton approximation corresponds to evaluating the derivation trees of G by increasing dimension.

Convergence speed of Newton's method

At least as good as Kleene's approximation

For every value v let $\alpha^{i}(v)$ be the number of trees of G^{i} with that value, if the number is finite, and $\alpha^{i}(v)=\infty$ otherwise.

$$
V\left(G^{i}\right)=\sum_{v} \sum_{i=1}^{\alpha^{i}(v)} v \quad V(G)=\sum_{v} \sum_{i=1}^{\alpha(v)} v
$$

Intuitively: $\sum_{i=1}^{\alpha(v)} v$ is the "contribution" of v to $V(G)$.

$$
\sum_{i=1}^{\alpha^{i}(v)} v \text { is the "contribution" of } v \text { to } V\left(G^{i} .\right.
$$

We analyze how fast $\alpha^{i}(v)$ converges to $\alpha(v)$.

Convergence speed for commutative semirings

Theorem (Luttenberger, unpublished): Given a system of n equations over a commutative semiring,

$$
\alpha^{k \cdot n+1}(v) \geq \min \{\alpha(v), k\}
$$

for every semiring value v and every $k \geq 1$.
In words: $k \cdot n+1$ Newton steps "capture" at least k trees of each value v (if there are that many).

Convergence speed for commutative and idempotent semirings

In idempotent semirings $v+v=v$ holds, and so
capturing one single tree of value v amounts to capturing the whole contribution of v to $V(G)$.

Theorem [EKL 10]: Let $X=f(X)$ be a system with n equations over an idempotent and commutative semiring. Then $\mu f=V\left(G^{n+1}\right)$.

Stronger version of a theorem by Hopkins and Kozen in LICS'99.

Solving the linear equations

Recall: $V\left(U^{i}\right)$ is the least solution of

$$
\begin{aligned}
X= & V(a) \cdot V\left(U^{i-1}\right)^{2}+V(a) \cdot V\left(G^{i-1}\right) \cdot X \\
+ & V(a) \cdot X \cdot V\left(G^{i-1}\right)+V(b) \cdot X
\end{aligned}
$$

Neither left- nor right linear!

In a commutative and idempotent semiring the equation is equivalent to

$$
X=V(a) \cdot V\left(U^{i-1}\right)^{2}+\left(V(a) \cdot V\left(G^{i-1}\right)+V(b)\right) \cdot X
$$

which gives

$$
V\left(U^{i}\right)=\left(V(a) \cdot V\left(G^{i-1}\right)+V(b)\right)^{*} \cdot V(a) \cdot V\left(U^{i-1}\right)^{2}
$$

Solving equations over 1-bounded semirings

A semiring $S,+, \cdot, 0,11$-bounded if it is idempotent and $a \sqsubseteq 1$ for every semiring element a.
(Note: commutativity not required)

Example: Viterbi's semiring for computing maximal probabilities.

We use derivation tree analysis to show that for a system on n equations (and so n variables)

$$
\mu f=V\left(G^{n}\right)=f^{n}(0)
$$

Solving equations over 1-bounded semirings

Every tree t of height greater than n is pumpable: if t has yield w then there is $u v x y z=w$ and trees t^{i} with yield $u v^{i} x y^{i} z=w$ for every $i \geq 0$.

$$
\begin{aligned}
V(t)+V\left(t^{0}\right)= & V(u v x y z)+V(u x z) & & \\
\sqsubseteq & V(u) \cdot 1 \cdot V(x) \cdot 1 \cdot V(z) & & \text { (1-boundedness) } \\
& +V(u) \cdot V(x) \cdot V(z) & & \text { (idempotence) } \\
= & V(u x z) & & \\
= & V\left(t^{0}\right) & &
\end{aligned}
$$

So t^{0} captures the total contribution of value v.
Use now that t^{0} has height at most n.

Solving equations over star-distributive semirings

A semiring is star-distributive if it is idempotent, commutative, and $(a+b)^{*}=a^{*}+b^{*}$ for any semiring elements a, b.

Example: tropical semiring.

We use derivation tree analysis to show that for a system on n equations μf can be computed by n Kleene steps followed by one Newton step.

Solving equations over star-distributive semirings

A derivation tree is a bamboo if it has a path, the stem, such that the height of every subtree not containing a node of the stem is at most n.

Proposition: For every tree t there is a bamboo t^{\prime} such that $V(t)=V\left(t^{\prime}\right)$.
Corollary: Bamboos already capture the contribution of all trees.
To compute: n Kleene steps for the trees of height at most n followed by one Newton step for the bamboos.

Some applications

Three new algorithms

$O\left(n^{3}\right)$ algorithm for computing the throughput of context-free grammars (improving $O\left(n^{4}\right)$ algorithm by Caucal et al.) [EKL TCS '11].

New algorithm for pattern-based verification of multithreaded procedural programs with fixed number of threads [GMM CAV '10, EG POPL '11].

Very simple algorithm for transforming a context-free grammar into a Parikh-equivalent NFA [EGKL IPL'11].

Stochastic thread creation

Threads can spawn new threads with known probabilities.

Execution by one processor. We assume termination with probability 1.

Example (only one type of thread):

$$
x \xrightarrow{0.1}\langle x, x, x\rangle \quad x \xrightarrow{0.2}\langle X, x\rangle \quad x \xrightarrow{0.1} x \quad x \xrightarrow{0.6} \epsilon
$$

Probability generating function

$$
f(X)=0.1 X^{3}+0.2 X^{2}+0.1 X+0.6
$$

Describing executions: family trees

Probability of a family tree: product of the probabilities of its nodes.
Execution order depends on a scheduler that chooses a thread from the pool of inactive threads and executes it for one time unit.

Completion space S^{σ} for a scheduler σ : maximal size reached by the pool during execution.

Completion space of the optimal scheduler

Lemma: The family trees with completion space $S^{o p}=k$ "are" the derivation trees of dimension k.

Theorem [BEKL I\&C '11]: The probability $\operatorname{Pr}\left[S^{o p} \leq k\right]$ of completing execution within space at most k is equal to the k-th Newton approximant of $X=f(X)$.

In our example: | $\operatorname{Pr}\left[S^{o p}=1\right]$ | $=2$ | $=3$ | $=4$ | $=5$ |
| :---: | :---: | :---: | :---: | :---: |
| | 0.667 | 0.237 | 0.081 | 0.014 |

Conclusions and future work

New connections between analysis and numerical mathematics and TCS, leading to several new algorithms.

Open questions:

- Use language theory to derive convergence bounds of Newton's method over the reals
- Algebraic proof of the convergence speed theorem
- Applications to linear programming ?

Thermal equilibrium (2d)

Heat equation in 2 d

$$
\frac{\partial u}{\partial t}=h^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

After discretization, temperature at thermal equilibrium is a solution of

$$
\begin{array}{r}
u_{i, j}=k_{i, j}\binom{u_{i-1, j}+u_{i+1, j}}{+u_{i, j+1}+u_{i, j-1}}
\end{array}
$$

for constants $k_{i, j}$ plus boundary conditions.

Abstract Interpretation: Collecting semantics

Collecting semantics of a program: assigns to each program point p the possible values of the memory when the program reaches p.

Solution of the equations

$$
p_{i} \text { Store }=\bigsqcup_{p_{j} \in \operatorname{pred}\left(p_{i}\right)} f_{i j}\left(p_{j} \text { Store }\right)
$$

Basis of abstract interpretation

Idempotent semirings: derivation tree analysis

Idempotent semiring: $a+a=a$

Technique for computing μf algebraically:
(1) Identify a set $T \subseteq D$ of trees such that $Y(T)$ can be computed algebraically.
(2) Show that for every $t \in D$ there is $t^{\prime} \in T$ such that $Y(t) \sqsubseteq Y\left(t^{\prime}\right)$.

Then by idempotence we have $\mu f=Y(D)=Y(T)$

