A Counterexample to Tensorability of Effects

Sergey Goncharov and Lutz Schröder

September 1, 2011

Very-very Abstract Picture

 Our work addresses the question of general existence of tensor products of monads open since 1969:

Ernie Manes. A triple theoretic construction of compact algebras. In Seminar on Triples and Categorical Homology Theory, volume 80 of Lect. Notes Math., pages 91–118. Springer, 1969.

This work is a complementary part of our paper

Sergey Goncharov and Lutz Schröder. Powermonads and tensors of unranked effects. In *LICS*, pages 227–236, 2011.

Monads, Effects and Metalanguage

Strong monad T: Underlying category \mathcal{C} , endofunctor $T:\mathcal{C}\to\mathcal{C}$, unit: $\eta:Id\to T$, multiplication $\mu:T^2\to T$, (!) plus *strength*: $\tau_{A,B}:A\times TB\to T(A\times B)$.

Metalanguage of effects:

- $\bullet \; \; \mathsf{Type}_W ::= W \, | \, 1 \, | \; \mathsf{Type}_W \times \mathsf{Type}_W \, | \, \mathsf{T}(\mathsf{Type}_W)$
- Term construction ((co-)Cartesian operators omitted):

$$\begin{split} \frac{x:A \in \Gamma}{\Gamma \rhd x:A} & \frac{\Gamma \rhd t:A}{\Gamma \rhd f(t):B} & (f:A \to B \in \Sigma) \\ \frac{\Gamma \rhd t:A}{\Gamma \rhd \text{ret } t:TA} & \frac{\Gamma \rhd p:TA}{\Gamma \rhd \text{do } x \leftarrow p; \, q:TB} \end{split}$$

Monads, Effects and Metalanguage: Usage

Rough idea:

- function spaces are morphisms: $[A \rightarrow B] = [A] \rightarrow T[B]$;
- sequencing is binding: $[x := p; q] = do x \leftarrow [p]; [q];$
- values are pure computations: $[\![\mathbf{c}]\!] = \mathsf{ret}[\![\mathbf{c}]\!]$.

Examples:

- Exceptions: TA = A + E.
- States: $TA = S \rightarrow (S \times A)$.
- Nondeterminism: $TA = \mathcal{P}(A)$, $\mathcal{P}_{\omega}(A)$, $\mathcal{P}^{\star}(A)$, ...
- Input/Output: $TA = \mu X.(A + (I \rightarrow O \times X)).$
- Continuations: $TA = (X \rightarrow R) \rightarrow R$.

For instance, for $TX = \mathcal{P}X$: $[A \rightarrow B] = \mathcal{P}([A] \times [B])$.

Algebraic effects

(Finitary) Lawvere theory: small Cartesian category L plus a strict-product-preserving, identity-on-objects functor: $I: \mathbb{N}^{op} \to L$ $(\mathbb{N} = \text{naturals and maps with summs as coproducts.})$

- L(n, 1) operations; L(0, 1) constants;
- $Mod(L, C) \subseteq Fun(L, C)$ models of L in C;
- forgetful functor $Mod(L, C) \rightarrow C$ leads to finitary monads.

Finite nondeterminism: one constant $\bot: 0 \to 1$, one operation: $+: 2 \to 1$. Then e.g. $(\lambda \alpha, b, c. \alpha + b + c): 3 \to 1$, $(\lambda \alpha. \langle \alpha, \bot \rangle): 1 \to 2$, etc.

 $\begin{array}{l} \textbf{States:} \ \ lookup_l: V \rightarrow 1, \ update_{l,\nu} 1 \rightarrow 1 \ \big(l \in L, \ \nu \in V\big). \\ \text{E.g.:} \ \ update_{l,\nu} \big(lookup_l \langle p_1, \ldots, p_{|V|} \rangle \big) = update_{l,\nu} \big(p_\nu). \end{array}$

Large Lawvere theory: L has all small products; $L: \mathbf{Set}^{op} \to L$ is strict-small-product-preserving, id-on-objects.

Theorem [Linton, 1966]: Large Lawvere theories = Monads on Set.

Sum and Tensor

Sum of effects: blind union of signatures. For example $\Sigma^{\star}+T=\mu\gamma.T(\Sigma\gamma+-)~(\Sigma^{\star}=I/O,~Resumptions,~Exeptions.)$

Tensor = Sum modulo commutativity of operations:

$$\begin{array}{ccc} n_1 \times n_2 & \xrightarrow{n_1 \otimes f_2} & n_1 \times m_2 \\ & & \downarrow & & \downarrow \\ f_1 \otimes n_2 & & & \downarrow f_1 \otimes m_2 \\ m_1 \times n_2 & \xrightarrow{m_1 \otimes f_2} & m_1 \times m_2. \end{array}$$

$$\big(n\otimes f=f\times\ldots\times f\text{ 'n times'.}\big)$$

$$\begin{split} \text{For instance: } & lookup_l \langle p_1 + q_1, p_2 + q_2 \rangle \\ & = lookup_l \langle p_1, p_2 \rangle + lookup_l \langle q_1, q_2 \rangle. \end{split}$$

Examples:
$$(-\times S)^S \otimes T = T(-\times S)^S$$
, $(-)^S \otimes T = T^S$, $(M \times -) \otimes T = T(M \times -)$ where M is a monoid (of messages).

Tensors and Powermonads

Tensors can be used as monad transoformers. Example:

$$\mathsf{T} \otimes (\mathsf{S} \times -)^{\mathsf{S}} = \big(\mathsf{T}(\mathsf{S} \times -)\big)^{\mathsf{S}}$$

Another example: $T^{\mathcal{P}} = T \otimes \mathcal{P}$ — a powermonad. Provided existence of $T^{\mathcal{P}}$,

- T → T^P is the left adjoint to the forgetful functor from completely additive monad (those enriched over complete semilattices with the bottom) to vanilla monads.
- ullet T^P supports generalised Fischer-Ladner encoding:

$$if(b, p, q) := do b?; p + do(\neg b)?; q,$$

$$while(b, p) := do x \leftarrow (init x \leftarrow ret x in(do b?; p)^*);$$

$$do(\neg b)?; ret x$$

Existence of tensors has been open since [Manes, 1969]

- Existence of a tensor with T \iff Smallness of $L_T(n, 1)$.
- From [Hyland, Plotkin, and Power, 2003], [Hyland, Levy, Plotkin, and Power, 2007] we know:
 - tensors of ranked (≈ algebraic) monads always exist;
 - tensors of ranked monads with continuations exist;
 - tensors with states always exist.
- Tensors with uniform monads exist [Goncharov and Schröder, 2011] (e.g. ${\mathcal P}$ and the continuations are uniform)
- Example: $\mathcal{P} \otimes T$ exists for $\mathsf{Lp}_{\mathcal{Q}, Y}(n, 1)$ is a quotient of $\mathscr{P}(\mathsf{L}_1(n, 1))$. For instance if $\mathsf{LX} = \mu_{Y}, (\gamma \times \gamma + X)$ then
 - $f(\{a,b\},c) \rightarrow f(\{a\} \cup \{b\},\{c\} \cup \emptyset) \rightarrow \{f(a,c\},f(b,\emptyset)\}$

Existence of a tensor with T \iff Smallness of $L_T(n, 1)$.

From [Hyland, Plotkin, and Power, 2003], [Hyland, Levy, Plotkin, and Power, 2007] we know:

- tensors of ranked (≈ algebraic) monads always exist;
- tensors of ranked monads with continuations exist;
- tensors with states always exist.

Tensors with uniform monads exist [Goncharov and Schröder, 2011] (e.g. ${\mathbb P}$ and the continuations are uniform).

Example: $\mathcal{P} \otimes \mathsf{T}$ exists for $\mathsf{L}_{\mathcal{P} \otimes \mathsf{T}}(\mathfrak{n},1)$ is a quotient of $\mathcal{P}(\mathsf{L}_\mathsf{T}(\mathfrak{n},1))$. For instance if $\mathsf{TX} = \mu \gamma. (\gamma \times \gamma + X)$ then

 $f(\{a,b\},c) \rightarrow f(\{a\} \cup \{b\},\{c\} \cup \varnothing) \rightarrow \{f(a,c),f(b,\varnothing)\}$

Existence of a tensor with $T \iff \mathsf{Smallness}$ of $\mathsf{L}_\mathsf{T}(\mathsf{n},1)$.

From [Hyland, Plotkin, and Power, 2003], [Hyland, Levy, Plotkin, and Power, 2007] we know:

- tensors of ranked (≈ algebraic) monads always exist;
- tensors of ranked monads with continuations exist;
- tensors with states always exist.

Tensors with uniform monads exist [Goncharov and Schröder, 2011] (e.g. \mathcal{P} and the continuations are uniform).

Example: $\mathcal{P} \otimes \mathsf{T}$ exists for $\mathsf{L}_{\mathcal{P} \otimes \mathsf{T}}(n,1)$ is a quotient of $\mathcal{P}(\mathsf{L}_\mathsf{T}(n,1))$. For instance if $\mathsf{TX} = \mu\gamma. (\gamma \times \gamma + \mathsf{X})$ then

Existence of a tensor with $T \iff Smallness of L_T(n, 1)$.

From [Hyland, Plotkin, and Power, 2003], [Hyland, Levy, Plotkin, and Power, 2007] we know:

- tensors of ranked (≈ algebraic) monads always exist;
- tensors of ranked monads with continuations exist;
- tensors with states always exist.

Tensors with uniform monads exist [Goncharov and Schröder, 2011] (e.g. $\mathcal P$ and the continuations are uniform).

Example: $\mathcal{P} \otimes T$ exists for $L_{\mathcal{P} \otimes T}(n,1)$ is a quotient of $\mathcal{P}(L_T(n,1))$. For instance if $TX = \mu \gamma. (\gamma \times \gamma + X)$ then

$$f(\{a,b\},c) \rightarrow f(\{a\} \cup \{b\},\{c\} \cup \varnothing) \rightarrow \{f(a,c),f(b,\varnothing)\}$$

- 1. Define an unranked non-uniform monad \mathcal{W} . Let $\mathcal{W} + 2 = \mathcal{W}(-+2)$.
- For every S and T introduce $(S \otimes T)$ -algebras, which are simultaneously S- and T-algebras satisfying commutation of S-operations with T-operations.
- Ensure that whenever (S ⊗ T)Ø exists it must be the initial (S ⊗ T)-algebra.
- 4. Find such 1 for which there are $(W+2)\otimes 1$ -algebras of arbitrary large cardinality with 'no junk'.
- -5-------
- 6 PROH HI

- 1. Define an unranked non-uniform monad \mathcal{W} . Let $\mathcal{W}+2=\mathcal{W}(-+2)$.
- 2. For every S and T introduce $(S \otimes T)$ -algebras, which are simultaneously S- and T-algebras satisfying commutation of S-operations with T-operations.
- Ensure that whenever (S ⊗ T)Ø exists it must be the initial (S ⊗ T)-algebra.
- Find such T for which there are $(W + 2) \otimes T$ -algebras of arbitrary large cardinality with 'no junk'.
- 5. 22222
- 6 PROFILI

- 1. Define an unranked non-uniform monad \mathcal{W} . Let $\mathcal{W}+2=\mathcal{W}(-+2)$.
- 2. For every S and T introduce $(S \otimes T)$ -algebras, which are simultaneously S- and T-algebras satisfying commutation of S-operations with T-operations.
- 3. Ensure that whenever $(S \otimes T)\varnothing$ exists it must be the initial $(S \otimes T)$ -algebra.
 - Find such T for which there are $((W + 2) \otimes T)$ -algebras of arbitrary large cardinality with 'no junk'.
- 5. ?????
- 6 128011111

- 1. Define an unranked non-uniform monad \mathcal{W} . Let $\mathcal{W}+2=\mathcal{W}(-+2)$.
- 2. For every S and T introduce $(S \otimes T)$ -algebras, which are simultaneously S- and T-algebras satisfying commutation of S-operations with T-operations.
- 3. Ensure that whenever $(S \otimes T)\varnothing$ exists it must be the initial $(S \otimes T)$ -algebra.
- 4. Find such T for which there are $((W+2) \otimes T)$ -algebras of arbitrary large cardinality with 'no junk'.
 - ??????
- PROFIT!!!

- 1. Define an unranked non-uniform monad \mathcal{W} . Let $\mathcal{W}+2=\mathcal{W}(-+2)$.
- 2. For every S and T introduce $(S \otimes T)$ -algebras, which are simultaneously S- and T-algebras satisfying commutation of S-operations with T-operations.
- 3. Ensure that whenever $(S \otimes T)\varnothing$ exists it must be the initial $(S \otimes T)$ -algebra.
- 4. Find such T for which there are $((W+2) \otimes T)$ -algebras of arbitrary large cardinality with 'no junk'.
- 5. ?????
- PROFITIII

- 1. Define an unranked non-uniform monad \mathcal{W} . Let $\mathcal{W}+2=\mathcal{W}(-+2)$.
- 2. For every S and T introduce $(S \otimes T)$ -algebras, which are simultaneously S- and T-algebras satisfying commutation of S-operations with T-operations.
- 3. Ensure that whenever $(S \otimes T)\varnothing$ exists it must be the initial $(S \otimes T)$ -algebra.
- 4. Find such T for which there are $((W+2) \otimes T)$ -algebras of arbitrary large cardinality with 'no junk'.
- 5. ?????
- 6. PROFIT!!!

Tensor Algebras

Definition: Given two monads T and S, $(T \otimes S)$ -algebras are triples of the form (X, α, β) where (X, α) is a T-algebra, (X, β) is an S-algebra, and moreover for all sets Y, Z and all $p \in SY$, $q \in TZ$, $f : Y \times Z \to X$,

$$\beta(\mathsf{T}(\lambda z.\,\alpha(\mathsf{Sf}_{-,z}\,\mathsf{p}))\mathsf{q}) = \alpha(\mathsf{S}(\lambda y.\,\beta(\mathsf{Tf}_{y,-}\,\mathsf{q}))\mathsf{p})$$

where
$$f_{-,z}(y) = f_{y,-}(z) = f(y,z)$$
 for $(y,z) \in Y \times Z$.

Theorem: The tensor $T \otimes S$ of monads T, S exists iff the forgetful functor from $(T \otimes S)$ -algebras to \mathbf{Set} is monadic, equivalently has a left adjoint.

Corolary: If the tensor $T \otimes S$ of monads T and S exists, then there exists an initial $(T \otimes S)$ -algebra.

The Well-order Monad

Definition: A \mathcal{W} -algebra is a set X equipped with an ordinal-indexed family of operations $\iota_{\kappa}: X^{\kappa} \to X$ satisfying the conditions:

- 1. strictness: $\iota_{\kappa}(w) = \iota_0$ if $w(\alpha) = \iota_0$ for some $\alpha < \kappa$.
- 2. non-repetitiveness: $\iota_{\kappa}(w) = \iota_0$ whenever $w(\alpha_1) = w(\alpha_2)$ for some $\alpha_1 < \alpha_2 < \kappa$.
- 3. associativity: for every ordinal-indexed family $(\kappa_{\mu})_{\mu<\nu}$ of ordinals $\kappa_{\mu}>0$, $\iota_{\kappa}(w)=\iota_{\nu}(\lambda\mu<\nu.\,\iota_{\kappa_{\mu}}(w_{\mu}))$.

Theorem: W-algebras give rise to a monad W. Specifically,

$$\mathcal{W}X = \{(Y,\rho) \mid Y \subseteq X, \rho \text{ a well-order on } Y\}.$$

Equivalently, $\mathcal{W}X$ can be considered as the set of all non-repetitive ordinal-indexed lists.

The Counterexample

Let $\Sigma_{2,2}=\lambda X$. $2\times X\times X$. Then $(\mathcal{W}(-+2)\otimes \Sigma_{2,2}^{\star})$ does not exist since for every κ there is a reachable $(\mathcal{W}(-+2)\otimes \Sigma_{2,2}^{\star})$ -algebra W_{κ} .

The domain of W_{κ} consists of terms involving

- constants 0, 1, ⊥,
- binary operations u₀, u₁,
- ordinal-indexed of κ-bounded lists.

formed by the rules

$$\frac{t \in W_\kappa - \{0\}}{u_0(0,t) \in U_\kappa^0} \qquad \qquad \frac{t \in W_\kappa - \{0\}}{u_1(0,t) \in U_\kappa^1}$$

$$\begin{split} 1 < |\nu| \leqslant \kappa & \quad t : \nu \hookrightarrow U_{\kappa}^0 \cup U_{\kappa}^1 \\ \forall \mu. \ \mu + 1 < \nu \implies \left(t(\mu) \in U_{\kappa}^0 \iff t(\mu + 1) \in U_{\kappa}^1 \right) \\ \hline & \quad t \in L_{\kappa} \end{split}$$

where
$$W_{\kappa} = \{\bot, 0, 1\} \cup U_{\kappa}^{0} \cup U_{\kappa}^{1} \cup L_{\kappa}$$
.

Tensoring with Finite Lists

- Let L be the large Lawvere theory for non-empty lists.
- Observe that L is generated by one binary operation u and the associativity axiom:

$$\mathfrak{u}(\mathfrak{u}(\mathfrak{a},\mathfrak{b}),\mathfrak{c})=\mathfrak{u}(\mathfrak{a},\mathfrak{u}(\mathfrak{b},\mathfrak{c})).$$

• Now the tensor $L \otimes L$ is obtained from $\Sigma_{2,2}^{\star} = \Sigma_{2,1}^{\star} + \Sigma_{2,1}^{\star}$ by quotiening under the associativity and the tensor laws (\mathfrak{u}') is a duplicate of \mathfrak{u} :

$$u'(u(a_1, b_1), u(a_2, b_2)) = u(u'(a_1, a_2), u'(b_1, b_2)).$$

• Observe that W_{κ} is a $(L \otimes L) \otimes (\mathcal{W} + 2)$ -algebra. Hence $L \otimes (L \otimes (\mathcal{W} + 2)) = (L \otimes L) \otimes (\mathcal{W} + 2)$ does not exist.

Theorem: The non-empty list monad is not tensorable.

Conclusions

- Unranked monads are often tensorable.
 - Including continuations.
- We have provided a counterexample for tensorability of effects
 - We have introduced the well-order monad.
 - We have shown that the tensor with a simple ranked monad need not exist.
 - We have shown that the tensor with the list monad need not exist.

Future Work

- Find more applications of the tensor product.
 - ▶ Give a monad-based account of separation logic.
- Extends the existence result to capture more partial cases uniformly.

The End

Thanks for your attention!

- F. Linton. Some aspects of equational categories. In *Proc. Conf. Categor. Algebra, La Jolla*, pages 84–94, 1966.
- Ernest Manes. A triple theoretic construction of compact algebras. In *Seminar on Triples and Categorical Homology Theory*, volume 80 of *Lect. Notes Math.*, pages 91–118. Springer, 1969.
- Martin Hyland, Gordon Plotkin, and John Power. Combining effects: Sum and tensor. *Theoretical Computer Science*, 2003.
- Martin Hyland, Paul Blain Levy, Gordon Plotkin, and John Power. Combining algebraic effects with continuations. Theoretical Computer Science, 375(1-3):20 – 40, 2007. Festschrift for John C. Reynolds's 70th birthday.
- Sergey Goncharov and Lutz Schröder. Powermonads and tensors of unranked effects. In *LICS*, pages 227–236, 2011.

