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Very-very Abstract Picture

• Our work addresses the question of general existence of
tensor products of monads open since 1969:

Ernie Manes. A triple theoretic construction of compact algebras. In

Seminar on Triples and Categorical Homology Theory, volume 80 of Lect.

Notes Math., pages 91–118. Springer, 1969.

• This work is a complementary part of our paper

Sergey Goncharov and Lutz Schröder. Powermonads and tensors of

unranked effects. In LICS, pages 227–236, 2011.



3 / 16
Monads, Effects and Metalanguage

Strong monad T : Underlying category C, endofunctor
T : C→ C, unit: η : Id→ T , multiplication µ : T2 → T ,

(!) plus strength: τA,B : A× TB→ T(A× B).

Metalanguage of effects:

• TypeW ::=W | 1 | TypeW × TypeW | T(TypeW)

• Term construction ((co-)Cartesian operators omitted):

x : A ∈ Γ
Γ � x : A

Γ � t : A

Γ � f(t) : B
(f : A→ B ∈ Σ)

Γ � t : A

Γ � ret t : TA

Γ � p : TA Γ , x : A� q : TB

Γ � do x← p;q : TB
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Monads, Effects and Metalanguage: Usage

Rough idea:

• function spaces are morphisms: JA⇁ BK = JAK→ TJBK;
• sequencing is binding: Jx := p;qK = do x← JpK; JqK;
• values are pure computations: JcK = retJcK.

Examples:

• Exceptions: TA = A+ E.

• States: TA = S→ (S×A).
• Nondeterminism: TA = P(A), Pω(A), P?(A), . . .

• Input/Output: TA = µX.(A+ (I→ O× X)).
• Continuations: TA = (X→ R)→ R.

For instance, for TX = PX: JA⇁ BK = P(JAK× JBK).
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Algebraic effects

(Finitary) Lawvere theory: small Cartesian category L plus a
strict-product-preserving, identity-on-objects functor: I : Nop → L

(N = naturals and maps with summs as coproducts.)

• L(n, 1) — operations; L(0, 1) — constants;
• Mod(L,C) ⊆ Fun(L,C) — models of L in C;
• forgetful functor Mod(L,C)→ C leads to finitary monads.

Finite nondeterminism: one constant ⊥ : 0→ 1, one operation:
+ : 2→ 1. Then e.g. (λa,b, c.a+ b+ c) : 3→ 1,
(λa. 〈a,⊥〉) : 1→ 2, etc.

States: lookupl : V → 1, updatel,v1→ 1 (l ∈ L, v ∈ V).
E.g.: updatel,v

(
lookupl〈p1, . . . ,p|V |〉

)
= updatel,v(pv).

Large Lawvere theory: L has all small products;
I : Setop → L is strict-small-product-preserving, id-on-objects.

Theorem [Linton, 1966]: Large Lawvere theories = Monads on Set.
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Sum and Tensor

Sum of effects: blind union of signatures. For example
Σ? + T = µγ.T(Σγ+−) (Σ? = I/O, Resumptions, Exeptions.)

Tensor = Sum modulo commutativity of operations:

n1 × n2
n1�f2 //

f1�n2

��

n1 ×m2

f1�m2

��
m1 × n2

m1�f2 // m1 ×m2.

(n� f = f× . . .× f ‘n times’.)

For instance: lookupl〈p1 + q1,p2 + q2〉
= lookupl〈p1,p2〉+ lookupl〈q1,q2〉.

Examples: (−× S)S � T = T(−× S)S, (−)S � T = TS,
(M×−)� T = T(M×−) where M is a monoid (of messages).
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Tensors and Powermonads

Tensors can be used as monad transoformers. Example:

T ⊗ (S×−)S =
(
T(S×−)

)S
Another example: TP = T ⊗ P — a powermonad. Provided
existence of TP,

• T 7→ TP is the left adjoint to the forgetful functor from
completely additive monad (those enriched over complete
semilattices with the bottom) to vanilla monads.

• TP supports generalised Fischer-Ladner encoding:

if(b,p,q) := do b?;p+ do(¬b)?;q,

while(b,p) := do x← (init x← ret x in(do b?;p)?);

do(¬b)?; ret x

Existence of tensors has been open since [Manes, 1969]
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Existence of Tensors

Existence of a tensor with T ⇐⇒ Smallness of LT (n, 1).

From [Hyland, Plotkin, and Power, 2003], [Hyland, Levy,
Plotkin, and Power, 2007] we know:

• tensors of ranked (≈ algebraic) monads always exist;

• tensors of ranked monads with continuations exist;

• tensors with states always exist.

Tensors with uniform monads exist [Goncharov and
Schröder, 2011] (e.g. P and the continuations are uniform).

Example: P⊗ T exists for LP⊗T (n, 1) is a quotient of
P(LT (n, 1)). For instance if TX = µγ. (γ× γ+ X) then

f({a,b}, c)→ f({a} ∪ {b}, {c} ∪∅)→ {f(a, c), f(b,∅)}
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Non-existence of Tensors: Plan of the Proof

1. Define an unranked non-uniform monad W.
Let W+ 2 = W(− + 2).

2. For every S and T introduce (S⊗ T)-algebras, which are
simultaneously S- and T -algebras satisfying commutation
of S-operations with T -operations.

3. Ensure that whenever (S⊗ T)∅ exists it must be the
initial (S⊗ T)-algebra.

4. Find such T for which there are
(
(W+ 2)⊗ T

)
-algebras

of arbitrary large cardinality with ‘no junk’.

5. ?????

6. PROFIT!!!
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Tensor Algebras

Definition: Given two monads T and S, (T � S)-algebras are
triples of the form (X,α,β) where (X,α) is a T -algebra,
(X,β) is an S-algebra, and moreover for all sets Y,Z and all
p ∈ SY, q ∈ TZ, f : Y × Z→ X,

β(T(λz.α(Sf−,z p))q) = α(S(λy.β(Tfy,− q))p)

where f−,z(y) = fy,−(z) = f(y, z) for (y, z) ∈ Y × Z.

Theorem: The tensor T � S of monads T ,S exists iff the
forgetful functor from (T � S)-algebras to Set is monadic,
equivalently has a left adjoint.

Corolary: If the tensor T � S of monads T and S exists, then
there exists an initial (T � S)-algebra.
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The Well-order Monad

Definition: A W-algebra is a set X equipped with an
ordinal-indexed family of operations ικ : Xκ → X satisfying
the conditions:

1. strictness: ικ(w) = ι0 if w(α) = ι0 for some α < κ.

2. non-repetitiveness: ικ(w) = ι0 whenever w(α1) = w(α2)
for some α1 < α2 < κ.

3. associativity: for every ordinal-indexed family (κµ)µ<ν of
ordinals κµ > 0, ικ(w) = ιν(λµ < ν. ικµ(wµ)).

Theorem: W-algebras give rise to a monad W. Specifically,

WX = {(Y, ρ) | Y ⊆ X, ρ a well-order on Y}.

Equivalently, WX can be considered as the set of all
non-repetitive ordinal-indexed lists.
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The Counterexample

Let Σ2,2 = λX. 2× X× X. Then (W(− + 2)� Σ?
2,2) does not exist

since for every κ there is a reachable (W(− + 2)� Σ?
2,2)-algebra Wκ.

The domain of Wκ consists of terms involving

• constants 0, 1, ⊥,
• binary operations u0, u1,
• ordinal-indexed of κ-bounded lists.

formed by the rules

t ∈Wκ − {0}

u0(0, t) ∈ U0
κ

t ∈Wκ − {0}

u1(0, t) ∈ U1
κ

1 < |ν| 6 κ t : ν ↪→ U0
κ ∪U1

κ

∀µ. µ+ 1 < ν =⇒
(
t(µ) ∈ U0

κ ⇐⇒ t(µ+ 1) ∈ U1
κ

)
t ∈ Lκ

where Wκ = {⊥, 0, 1} ∪U0
κ ∪U1

κ ∪ Lκ.
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Tensoring with Finite Lists

• Let L be the large Lawvere theory for non-empty lists.

• Observe that L is generated by one binary operation u
and the associativity axiom:

u(u(a,b), c) = u(a,u(b, c)).

• Now the tensor L� L is obtained from Σ?
2,2 = Σ?

2,1 + Σ
?
2,1

by quotiening under the associativity and the tensor laws
(u ′ is a duplicate of u):

u ′(u(a1,b1),u(a2,b2)) = u(u
′(a1,a2),u

′(b1,b2)).

• Observe that Wκ is a (L� L)� (W+ 2)-algebra. Hence
L⊗ (L⊗ (W+ 2)) = (L� L)� (W+ 2) does not exist.

Theorem: The non-empty list monad is not tensorable.
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Conclusions

• Unranked monads are often tensorable.
I Including continuations.

• We have provided a counterexample for tensorability of
effects

I We have introduced the well-order monad.
I We have shown that the tensor with a simple ranked

monad need not exist.
I We have shown that the tensor with the list monad need

not exist.
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Future Work

• Find more applications of the tensor product.
I Give a monad-based account of separation logic.

• Extends the existence result to capture more partial cases
uniformly.



The End
Thanks for your attention!
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