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When does a controller exist?

How do we design the controller?



Introduction

. .

Supervisory control

. . . . .

Coalgebraic formulation

. . . . . .

Solution to the problem Conclusion

Introduction

.

Control problem

.

.

.

. ..

.

.

Given a plant and a spec , design a controller such that

controller

control

��

plant

observe

OO
satisfies spec .

.

Our interest

.

.

.

. ..

.

.

When does a controller exist?

How do we design the controller?



Introduction

. .

Supervisory control

. . . . .

Coalgebraic formulation

. . . . . .

Solution to the problem Conclusion

Supervisory control

Control theory for discrete event systems [Ramadge and Wonham 1987]

communication networks, manufacturing systems, traffic systems

.

.

. ..

.

.

supervisor

disabled event set

��

plant

observe the trace of plant

OO
generates spec

plant deterministic partial automaton (X,A, δ, x0)

spec non-empty prefix closed language over A

supervisor function from a trace to a disabled event set

S : A∗ → P(A)
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Settings

Uncontrollable event [Ramadge and Wonham 1987]

event set A = Ac +Auc, supervisor S : A∗ → P(Ac)

Ac:controllable event set
Auc:uncontrollable event set (not disabled by a supervisor)

Partial observation [Ramadge and Wonham 1988, Cieslak et.al 1988]

event set A = Ao +Auo, supervisor S : (Ao)
∗ → P(Ac)

Ao:observable event set
Auo:unobservable event set (not observed by a supervisor)

Partially observed Mealy automata [Takai and Ushio 2009]

plant modeled by a Mealy automaton
supervisor S : (Bo)

∗ → P(Ac)

input event:A = Ac +Au

output event:B = Bo +Bu
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Our approach
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supervisor

disabled event set

��

plant

observe the trace of plant

OO
generates spec

plant M m−→ (1 +B ×M)A partial Mealy automaton

spec L l−→ (1 + L)A partial automaton

supervisor S ⟨o,t⟩−−→ P(Ac)× SBo Moore automaton
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Plant, Spec and Supervisor, coalgebraically

Plant : M m−→ (1 +B ×M)A

M =

{
M : A∗ ⇀ B∗

∣∣∣∣ M is prefix- and length-preserving.
dom(M) ̸= ∅.

}
m(M)(a) = if a ∈ dom(M) then ⟨M(a),Ma⟩ else ⊥.

where Ma(w) = tail ◦M(aw).

Spec : L l−→ (1 + L)A

L = {L ⊆ A∗ | L is prefix-closed and nonempty.}
l(L)(a) = if a ∈ L then La else ⊥.

where La := {w ∈ A∗ | aw ∈ L}.

Supervisor : S ⟨o,t⟩−−→ P(Ac)× SBo

S = {S : (Bo)
∗ → P(Ac).}

o(S) = S(ε), t(S)(b) = Sb, where Sb(w) = S(bw).
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Coinductive definition of supervisory composition

S ×M
∃! / //

spv
��

L

l final
��

(1 + S ×M)A
(id1 +/)A

// (1 + L)A

S = {S : (Bo)
∗ → P(Ac)}

M = {M : A∗ ⇀ B∗ | · · · }
L = {L ⊆ A∗ | · · · }

spv ⟨S,M⟩ (a) =
⟨Sb,Ma⟩ if M

a|b−−→ Ma ∧ a /∈ o(S) ∧ b ∈ Bo,

⟨S,Ma⟩ if M
a|b−−→ Ma ∧ a /∈ o(S) ∧ b ∈ Bu,

⊥ otherwise.

.

.

. ..

.

.

/ : S ×M → L is the supervisory composition.
S/M represents a language generated by the controlled plant.
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Formulation of supervisory control problem

.

Supervisory control problem

.

.

.

. ..

.

.

Given a plant M ∈ M and a specification K ∈ L, find a supervisor
S ∈ S satisfying

S/M = K.

/ : S ×M → L
S = {S : (Bo)

∗ → P(Ac).}

M =

{
M : A∗ ⇀ B∗

∣∣∣∣ M is prefix- and length-preserving
dom(M) ̸= ∅.

}
L = {L ⊆ A∗ | L is prefix-closed and non-empty.}
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Comparison

Supervised product [Komenda & van Schuppen 2005]

(M/N)a =

Ma/Na if M
a−→ ∧N

a−→,(∪
⟨M′,M⟩∈Aux M

′
a

)
/Na if M ̸ a−→ ∧∃M′ ∈ DK : M′ ≈ M s.t. M′ a−→ ∧N

a−→ ∧a ∈ Ac ∪ Ao,

0/Na if (∀M′ ∈ DK : M′ ≈ M)M′ ̸ a−→ ∧N
a−→ ∧a ∈ (Auc ∩ Ao),

M/Na if M ̸ a−→ ∧N
a−→ ∧a ∈ Auc ∩ Auo,

∅ otherwise.

Our work

spv ⟨S,M⟩ (a) =
⟨Sb,Ma⟩ if M

a|b−−→ Ma ∧ a /∈ o(S) ∧ b ∈ Bo,

⟨S,Ma⟩ if M
a|b−−→ Ma ∧ a /∈ o(S) ∧ b ∈ Bu,

⊥ otherwise.

S(w) = Ac \ {a ∈ Ac | ∃u ∈ A∗ : (K0
ua−→) ∧ (P ◦M0(u) = w)}
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Partial bisimulation relation

.

Definition

.

.

.
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.

.

Let (X, ξ) and (Y, η) be (1 +−)A-coalgebras.
A partial bisimulation relation is a binary relation R ⊆ X × Y
satisfying (1), (2), and (3).

(1)similarity ∀a ∈ A, ∀x, x′ ∈ X, y ∈ Y , ∃y′ ∈ Y ,

x R y ∧ x
a−→ x′ =⇒ y

a−→ y′ ∧ x′ R y′.

(2)controllability ∀a ∈ Au, ∀x ∈ X, ∀y, y′ ∈ Y , ∃x′ ∈ X,

x R y ∧ y
a−→ y′ =⇒ x

a−→ x′ ∧ x′ R y′.

(3)observability ∀a ∈ Ac, ∀x ∈ X, ∀y, y′ ∈ Y , ∃x′ ∈ X,

x R y ∧ y
a−→ y′ ∧ (∃q ∈ X, (x ≈ q) ∧ (q

a−→))

=⇒ x
a−→ x′ ∧ x′ R y′.

≈=
{
⟨x, x′⟩

∣∣∣ ∃w,w′∈A∗, x0
w−→ x, x0

w′
−→ x′, P ◦M(w) = P ◦M(w′).

}
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When does a supervisor exist?

.

Theorem

.

.

.
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.

.

Given a plant M0 ∈ M and a specification K0 ∈ L, the following
two conditions are equivalent.
(1) ∃S ∈ S, S/M0 = K0

(2) There exists a partial bisimuration relation R ⊆ L× L such
that K0 R dom(M0).

(2) =⇒ (1)

S(w) = Ac \ {a ∈ Ac | ∃u ∈ A∗ : (K0
ua−→) ∧ (P ◦M0(u) = w)}

is a desired supervisor.
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Modified normality

.

Problem

.
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.

When no supervisor satisfies the specification, find the largest
sublanguage of the specification.

In general, there doesn’t exist the largest controllable and
observable sublanguage. (not closed under the arbitrary union)

Therefore, we introduce a notion of modified normality.
(closed under the arbitrary union)

.

.

. ..

.

.

Compute the largest controllable and modified normal sublanguage
of the specification.
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Controllable and modified normal relation

.

Definition

.

.

.
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.

.

Let (X, ξ) and (Y, η) be (1 +−)A-coalgebras.
A controllable and modified normal relation is a binary relation
R ⊆ X × Y satisfying (1), (2), and (3).

(1)similarity ∀a ∈ A, ∀x, x′ ∈ X, ∀y ∈ Y , ∃y′ ∈ Y ,

x R y ∧ x
a−→ x′ =⇒ y

a−→ y′ ∧ x′ R y′

(2)controllability ∀a ∈ Au, ∀x ∈ X, ∀y, y′ ∈ Y , ∃x′ ∈ X,

x R y ∧ y
a−→ y′ =⇒ x

a−→ x′ ∧ x′ R y′

(3)modified normality ∀a ∈ Ac, ∀x ∈ X, ∀y, y′ ∈ Y , ∃x′ ∈ X,

x R y ∧ y
a−→ y′ ∧ (∃q ∈ X, ∃a′ ∈ A, (x ≈ q) ∧ (q

a′−→))

=⇒ x
a−→ x′ ∧ x′ R y′

.
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Properties of modified normality

controllable and modified normal relation
=⇒ partial bisimulation relation

Let {Ki}i∈I be a family of prefix-closed languages.
∀i ∈ I, ∃controllable and modified normal relation Ri

such that Ki Ri L
=⇒ ∃controllable and modified normal relation R
such that (

∪
i∈I Ki) R L.
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Supremal controllable and modified normal

.

Theorem

.

.

.

. ..

.

.

Let K and L be two prefix closed languages and
R̃0 be the greatest fixpoint of ΦR0 .
∃K ′ ∈ L such that K ′ ⊆ K and ∃ controllable and modified
normal relation R such that K ′ R L.
=⇒ K R̃0 L and beh ⟨K,L⟩ is the supremal controllable and
modified normal sublanguage.

ΦR0 : P(R0) → P(R0), R0 = {⟨Kw, Lw⟩ | w ∈ K ∩ L}

ΦR0(H) =⟨x, y⟩∈H

∣∣∣∣∣∣∣
∀a ∈ Au : y

a−→ y′ =⇒ x
a−→ x′ ∧ x′ H y′ and

∀a ∈ Ac : y
a−→ y′ ∧ (∃q ∈ X, (q −→) ∧ x ≈x0

M q)

=⇒ x
a−→ x′ ∧ x′ H y′.


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Conclusion

Summary

Coalgebraic formulation of the supervisory control problem

Necessary and sufficient condition for the existence of a
supervisor

Algorithm to compute the largest controllable modified normal
sublanguage

Future work includes:

Categorical characterisation of partial bisimulations

(Non)linear system and hybrid system
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