Refinement trees: Calculi, Tools and Applications

Mihai Codescu and Till Mossakowski

DFKI GmbH Bremen

31.08.2011, CALCO 2011

Esichere Kognitive Systeme

Stepwise Refinement ﬁ ' .-:I

M sichere Kognitive Systeme

Start with a requirement specification SPy which only fixes the expected
properties of the software system.

At each refinement step, add more details of the design, until the
specification reached can be easily implemented by a program.

5P1 s> Pl

SPo o SPp1 r~e> { SPm1 ~> Pp
SP, ~o»> .
SPom ~> Pom

Objectives & -

M sichere Kognitive Systeme

> explicit representation of
CasL refinement language
as refinement trees

» prove that refinements are
correct

> prove that refinements are
consistent

» applications: consistency
of large theories - DOLCE

» implement all of the above
in Hets

Related Work ﬁ .-:I

M sichere Kognitive Systeme

This work extends:
» T. Mossakowski, D. Sannella, A. Tarlecki - “A Simple Refinement
Language for CasL”, WADT 2004 [CAsL-Ref]

» P. Hoffman - “Architectural Specification Calculus”, Chapter IV.5 of
CasL Reference Manual [CasL-RM]

Cast,
the Common Algebraic Specification Language E ..

Sichere Kognitive Systeme

| specification libraries |

| architectural refinements |

| structured specifications |

subsorted first-order logic
+ partiality 4 induction

Cast,
the Common Algebraic Specification Language E ..

Sichere Kognitive Systeme

| specification libraries |

| architectural refinements |

| structured specifications |

put your favorite
logical system here!

Institutions & ' .-:

M sichere Kogni

me

Syster

Institutions formalize logical systems (Goguen/Burstall 1984)
An institution consists of:

> a category Sign of signatures;

v

a functor Sen: Sign — Set, giving a set Sen(X) of YX-sentences for
each signature ¥ € |Sign|. Notation: Sen(c)(¢) is written o(@);

a functor Mod: Sign°? — Cat, giving a category Mod(X) of X-models
for each X € |Sign|. Notation: Mod(c)(M’) is written M'|;

for each X € |Sign|, a satisfaction relation =y C |Mod(X)| x Sen(X)
such that for any 6: ¥ — ¥/, ¢ € Sen(X) and M’ € Mod(X'):

v

v

M Es o(9) <= M|s s o [Satisfaction condition]

Specification frames ﬁ -

M sichere Kognitive Systeme

Specification frames formalize the notion of logical theory
(Ehrig/Pepper/Orejas 1989).
A specification frame is an indexed category Mod: Th°’ — Cat.

Tl MOd(T]_)
lo- TMOd(G):o‘
T2 MOd(Tz)

We assume that Th is (finitely) cocomplete.

Moreover, we assume that Th comes with an inclusion system (=
unions).

Sometimes we also need that Mod takes colimits to limits
(amalgamation property).

In this work, we work over an arbitrary specification frame.
Examples use first-order logic, with CAsL notation.

Structured specifications ﬁ ' -‘:I

M sichere Kognitive Systeme

SP::= Th|SP; and SP,|SP with o |SP hide &

Mod
Mod
Mod
Mod

Th) is given above

SP1 and SP;) = Mod(11) *(Mod(SP1)) N Mod(12) ! (Mod(SP2))
SP with ¢) = Mod(c) !(Mod(SP))

SP hide ¢) = Mod(c)(Mod(SP))

A~ N N~

Architectural specifications ﬁ ' -‘:I

M sichere Kognitive Systeme

Branching points are represented in CASL as architectural specifications.

arch spec ADDITION_FIRST =

units

N : NaT;

F :Nar — {op suc(n: Nat): Nat =n+ 1};
result F [N]

An architectural specification is correct if the models of its units can be
combined as prescribed by the result unit expression.

Cast Architectural Specifications & '
m

ASP ::=S | units UDD; ... UDD,, result UE

UDD ::= UDEFN | UDECL

UDECL ::= UN : USP < given UTy,...,UT, >

USP ::= SP |SPy x --- x SP, — SP | ASP

UDEFN ::= UN = UE

UE:=UT | A A1:5P1,..., Ay:SP,e UT

UT = UN | F [FITy]...[FIT,] | UT and UT | UT with 6:% — ¥/
UT hide 6 : X — Y’ | local UDEFN; ... UDEFN, within UT

FIT:=UT | UT fito: =Y’

Deductive Calculus for Architectural Specs & .‘:I

M sichere Kognitive Systeme

Checks whether an architectural specification ASP has a denotation and
that the units produced by ASP satisfy a given unit specification USP -
denoted - ASP :: USP.

» based on a diagram Dyt for unit terms UT (of dependencies between
units), where nodes are labeled with sets of specifications.

» verification conditions are discharged in a quite complicated manner.
» in [CAsL-RMY], the architectural language is restricted.

> unit imports left out due to increased complexity.

Constructive Calculus for Architectural Specs E ' o

Sichere Kognitive Systeme

> extract the specification of each unit expression and uses it to compute
the specification of the result unit - denoted - ASP ::. USP.

Specification of a unit term (first try) &) -
m t

Let ASP be an architectural specification and UT a unit term. Then the
specification of UT, denoted .#4sp(UT) is defined as follows:

>

if UT is a unit name, then .Z4sp(UT) = SP where UT : SP is the
declaration of UT in ASP;

if yASP(A,') = SP; then yAsp(Al and ... and An) =

SP; and ... and SP,;

if Zasp(A) = SP, then .#asp(A with o) = SP with o;

if Zasp(A) = SP, then Zasp(A hide o) = SP hide o;

if UT = F[UT; fit o1]...[UT, fit c,], where

Fasp(F)=SP; x -+ x SP, — SP and for any i =1,...,n,
yAsp(UTi)M@SP,' with o;, then yASP(UT) = {SP with G} and
yASP(UTl) with 11;1 and...and <5”,45,13(UT,,) with 1,;1;

A problem ﬁ ' .‘:l

M sichere Kognitive Systeme

The specification of unit terms is sound, but too weak (i.e. incomplete).

arch spec ASP =
units U : sort s;
UT = (U with s — t) and (U with s — u)

result UT
S—t
s——1t
HL l
t,u—s
u—-—st,uy>5
nur

Specification of a unit term (enhanced) &
m

Let ASP be an architectural specification and UT a unit term. Then the
specification of UT, denoted .#4sp(UT) is defined as follows:

» if UT is a unit name, then #4sp(UT) = SP where UT : SP is the
declaration of UT in ASP;
» if UT = F[UT; fit o1]...[UT, fit o,], where
Fasp(F)=SPy x---xSP,— SP and for any i =1,...,n,
Sasp(UT;) |E SP; with o}, then S4sp(UT) = {SP with ¢} and
rfﬂ,a\sp(UTl) with 17; t"and...and yASP(UTn) with 1,; 1" and Scolim(UT);
» if UT =A; and ... and A, and Zasp(A;) = SP; then Zasp(UT) =
5P1 and ... and SP,, and SCO/,'m(UT);

> (rest remains)
where Scoim(UT) = Colim(Dyt) hide nyr,

Nur : Sig(UT) — Colim(Dyr) is the colimit injection of UT and Dyt
is the diagram of UT.

Specification of a unit expression — Results & ' .':I

M sichere Kognitive Systeme

Theorem

If there are no imports and no generic unit is applied more than once,
Mod(#asp(UE)) = ProjRes(Mod(ASP)), where UE is the result unit
expression of ASP.

Conjecture

With a generative semantics for architectural specifications,
Mod(.#asp(UE)) = ProjRes(Mod(ASP)).

Constructive Calculus for Architectural Specs & ' .‘:l

M sichere Kognitive Systeme

Mg UDD; ::c T

o1 b UDDy e T
- units UDD; ... UDD,, result UE ::c .% (UE)

= UDECL ::. T’ I+ UDEFN ::. T’
'+ UDECL qua UDD ::. T UT’ '+ UDEFN qua UDD :. T’

- SPR ::c (USP, BSP)
FUN:SPR::c {UN+— USP} TF UN=UE . TU{UN— % (UE)}

Constructive Calculus for Arch Specs — Results ﬁ ' .‘:I

M sichere Kognitive Systeme

Assume: ASP has no unit imports, is syntactically correct, and each
parametric unit is consistent and applied only once.

Theorem
F ASP ::c USP implies = ASP :: USP.

Theorem
If = ASP :: USP for some USP, then - ASP ::. USP' where USP’ is the
specification of the result unit of ASP and moreover USP' ~~»> USP.

Corollary
F ASP ::c USP implies ProjRes(Mod(ASP)) C Mod(USP).

Corollary

If ProjRes(Mod(ASP)) C Mod(USP) then + ASP ::. USP’ and
USP’ ~~> USP.

Simple Refinement ﬁ - ¢

M sichere Kognitive Systeme

The simplest form: model class inclusion. [CASL-Ref] introduces the
following syntax:

refinement R1 = MoONOID refined via Elem — Nat to NAT
Correctness of this refinement means that
M|s € [MonNoID] for each M € [NAT]

where o maps Elem to Nat.

Composing Refinements ﬁ .-:|

M sichere Kognitive Systeme

Refinements can be composed in chains of refinements:

refinement R1 = MoONOID refined via Elem — Nat to NAT
refinement R2 = NAT refined via Nat — Bin to NATBIN
refinement R3 = R1 then R2

Composition is defined only if the corresponding signatures match in the
sense of [CAsL-Ref].

Branching Refinement ﬁ -

M sichere Kognitive Systeme

Architectural specifications express branching points in refinements.

arch spec ADDITION_FIRST =

units

N : NaT;

F :NAT — {op suc(n: Nat): Nat = n + 1};
result F [N]

refinement R4 =
NATWITHSUC refined to arch spec ADDITION_FIRST

An architectural specification is correct if the models of its units can be
combined as prescribed by the result unit expression.

Unit imports gy

M sichere Kognitive Systeme

Unit imports (written given N) are shorthand for parametric units that
are applied once.
arch spec ADDITION_FIRST =

units

N : NAT;

M : NaATWITHSUC given N;

result M
arch spec ADDITION_FIRST =
units
N : NaT;

means M : arch spec {units
F : NAT — NATWITHSUC ;
result F [N]}
result M

Component Refinement ﬁ - ¢

M sichere Kognitive Systeme

arch spec ADDITION_FIRST =

units

N : NaT;

M : NATWITHSUC given N;
result M

Components of architectural specifications can be further refined:

refinement R =
arch spec ADDITION_FIRST then {N to R2}

It is possible to refine more than one component at once (for example M
could also be refined).

. my”
Refinement Trees ﬁ ' =<

M sichere Kognitive Systeme

v

nodes are labeled with unit specifications

> two types of links: refinement links and component links

v

"grow" both at the root and at the leaves

\4

come with an auxiliary structure for managing compositions

. : -y
Composition of Refinement Trees ﬁ ' = LI

M sichere Kognitive Systeme

refinement R1 =
MoNoID refined via Elem — Nat to NAT

refinement R2 =
NAT refined via Nat — Bin to NATBIN

refinement R3 =
R1 then R2

CORCPERCY

Composition of Refinement Trees ﬁ - &

M sichere Kognitive Systeme

arch spec ADDITION_FIRST = ;

units

N : NAT;

M : NATWITHSUC given N;
result M

refinement R4 =
NaTWITHSUC then
arch spec ADDITION_FIRST

Composition of Refinement Trees ﬁ - &

M sichere Kognitive Systeme

arch spec ADDITION_FIRST =

units .

N : NaT;
M : NATWITHSUC given N;

refinement R2 =
NAT refined via Nat — Bin to NATBIN

refinement R =
arch spec ADDITION_FIRST then
{N to R2}

Proof Calculus for Refinement Language & ' .‘:l

M sichere Kognitive Systeme

Checks whether a refinement specification has a denotation and also
constructs its refinement tree.

» based on - ASP ::. USP for architectural specifications.

> extends to the refinement language in a natural way - specifications of
units are now arbitrary refinements.

> unit imports can be replaced by an equivalent construction using the
specification of the imported unit and raise no increase in complexity.

Proof Calculus for Refinements ﬁ '-II

M sichere Kognitive Systeme

(n, BT) =RT y|USP]
= USP ::. (USP,USP), 27 ,(n,n)

= USP lc (USP, USP),%?l,pl
- SPR ::c (USP', BSP), 27 2, p2
(BT ,p)=RT 10p,.py BT 2
USP ~~s> 5 USP'
 USP refined via 6 to SPR ::c (USP' hide c,BSP),%Z.7 ,p

Proof Calculus for Refinements

2=

M sichere Kognitive Systeme

F ASP ::. USP
= SPR,‘ c (USP,', BSP;),%yi,p;
for any UN; : SPR; in ASP
SPM(UN;) = BSP;
(n,Z#T'") = BT o[USP]
RT =RT'[n—RT1,.... BT]
p=(n,{UN; = pi}i=1,. «)

= ASP ::c (USP,SPM), 27 ,p

Proof Calculus for Refinements

2=

M sichere Kognitive Systeme

|—5PR,'::C Si,ﬁg;,p;
RT =URT ;
p={UN; — p;}
F {UN,’ to SPR,'},'.E/ e {UN,’ — Si},'e/,%y,p

I—SPRl lc Sl,ﬁgl,pl
|—5PR2 e 52,%?2,p2
5=5;%

(P RT) = RT 1 0py py BT 5
F SPR; then SPRy ::c S, 27 ,p

Proof Calculus for Refinements
Results ﬁ ' .-:

M sichere Kognitive Systeme

Theorem (Soundness)

Let SPR be a refinement specification such that - SPR>[1 and all
generic units in the architectural specifications appearing in SPR are
consistent. If = SPR ::. S, then there is % such that - SPR = % and

Ak=S.

Consistency Calculus ﬁ .-:|

M sichere Kognitive Systeme

+ cons(USP) - cons(SPR)
+ cons(USP qua SPEC-REF) t cons(USP refined via o to SPR)

+ cons(SPR) for all UN : SPR in ASP - cons(SPR;)
 cons(ASP) = cons({U; to SPR}jc)

 cons(SPR1)
F cons(SPR>)

t cons(SPR; then SPR3)

Consistency Calculus
Results ﬁ -

M sichere Kognitive Systeme

Theorem (Soundness)

If = SPR ::. O, the calculi for checking consistency of structured
specifications and conservativity of extensions are sound and
F cons(SPR), then SPR has a model.

Theorem (Completeness)

If unit imports are omitted, the calculi for checking consistency of
structured specifications and conservativity of extensions are complete,
F SPR ::c O and SPR has a model, then \ cons(SPR).

Application: DOLCE consistency ﬁ ' .-'I

M sichere Kognitive Systeme

DOLCE: Descriptive Ontology for Linguistic and Cognitive Engineering
contains several hundreds of axioms = model finders fail

» first attempt: architectural spec structure follows that of structured
spec = failed (due to DEPENDENCE)

» second attempt followed structure of taxonomy = successful

» by using a strengthening of DEPENDENCE, we could rely on stronger
assumptions for the interpretation of DEPENDENCE for various
subconcepts when extending it to a superconcept.

» architectural spec has 38 units

» well-formedness check using HETS not feasible

» after split into four architectural specs, well-formedness check using HETS
took 35h on i7

> the split leads to a refinement tree with 4 branchings

» DOLCE models can now be built in a modular way

Dolce: Refinement tree for model construction E ' -

DolceModel

Sichere Kognitive Systeme

DependenceAQNPED ConstitutionPD

ParthoodM
@ Mereology_and_TemporalPartPD

Conclusions v -
M sichere Kognitive Systeme
> logic-independent framework for refinements
» based on institutions resp. specification frames
> tool support through Heterogeneous Tool Set www.dfki.de/sks/hets
> specialized notion of refinements via institution comorphisms

> open question: completeness of refinement calculus

www.dfki.de/sks/hets

