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Research Group

Come Again – Ecology??

What can bring a computer scientist (compiler construction,
functional programming) and an ecologist (forestry, soil
science) together?

Ecology has no theoretical background (or mathematicians) of
its own.

Theoretical concepts are supplied by the highest bidder.

Current monopolist: classical physics.
An ecosystem is physical, and accidentally alive.

Hopeful contender: computer science.

An ecosystem is an operating system on an earthly platform.
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Research Agenda

Hypothesis 1

Ecosystem modelling has complementary requirements:

State-based (physics) flows, laws, dynamics, prediction

Behaviour-based (CS) resources, actors, strategies, evaluation

Steps Taken
1 Map state & behaviour to initial algebra & final coalgebra,

resp., for pure cases with running example
(Hauhs and Trancón y Widemann 2010)

2 First instance of mixed case (here)
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Some Philosophy of Science

Another Distinction
In sceptical science, two kinds of state should be
distinguished:

Ontic how things are; cause of behaviour
Epistemic how things appear; reflection of behaviour

Analogies to algebra–coalgebra distinction.

Danger

Arguments that fail to distinguish are vulnerable to begging the
question:

A person is (called) forgetful because he forgets things;

being forgetful causes him to forget things.
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Agent-Based Models (ABMs)

A veritable industry in social and environmental sciences
Relationship to empirical approaches strained

– great tool for demonstration of ideas
– hardly any analytic/predictive value

No commonly accepted definition
pragmatic software done with agent

techniques/tools/frameworks
technical spatial OOP

stylistic first-person narrative of cellular automata

Program variables double as ontic and epistemic state!
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ABM Example

Breeding Synchrony (Jovani and Grimm 2008)

(Railsback and Grimm 2011)

Birds live in a toroidal colony
Individual behaviour is controlled by stress level

– stress decreases as summer draws near
– relaxed birds lay eggs

Collective behaviour arises from stress distribution
– stress is randomly distributed initially (noise)
– stressed birds stress their neighbours (Laplace filter)
– synchronous breeding emerges (smoothing)

Is stress level ontic or epistemic?
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The Issue

Observation
ABMs frequently confuse kinds of state,

but inconsistencies are hard to demonstrate!

Hypothesis 2

The underlying theoretical structure of ABMs ensures
consistency by construction.

Its axioms need to be measured against the standards of the
Scientific Method:

bad unlikely to hold in reality
worse impossible to test in reality
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Cellular Automata

Identical Moore automata distributed in discrete space
– dual views as local automata or global automaton

Every cell has finitely many neighbours
– many topologies studied (Tyler 2005)
– current state of neighbours is input

Spatial as well as temporal dynamics
– initial distribution of states
– mobile patterns

(Wikipedia 2011)
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Bialgebraic Semantics in a Nutshell

Ingredients
1 A syntax functor Σ
2 A behaviour functor B
3 A distributive law λ : ΣB⇒ BΣ

λ-Bialgebras

ΣX X BX

ΣBX BΣX
?

Σg

-f -g

-
λX

6Bf

Σ-algebra f and B-coalgebra g commute, mediated by λ.

g is a Σ-algebra morphism from f to Bλf = Bf ◦ λX.

f is a B-coalgebra morphism to g from Σλg = λX ◦ Σg.
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Bialgebraic Semantics in a Nutshell

Ingredients
1 A syntax functor Σ
2 A behaviour functor B
3 A distributive law λ : ΣB⇒ BΣ

λ-Bialgebras

ΣX X BX

ΣBX BΣX
?

Σg

-f -g

-
λX

6Bf

Initial Σ-algebras extend uniquely to initial λ-bialgebras.

Final B-coalgebras extend uniquely to final λ-bialgebras.

There is a unique end-to-end λ-bialgebra homomorphism.
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Research Agenda Revisited

Hypothesis 2.1

Distributive laws – the secret ingredient of ABMs?

Tasks
1 Give “natural” bialgebra semantics for CAs (here)
2 How does existence of λ perform as empirical axiom? (??)
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Local Research Agenda

Recipe for CA Semantics
1 Choose a functor Σ for the spatial arrangement of distributed

state, over a local state set
2 Choose a functor B for the temporal behaviour of automata
3 Give distributive-law rules for the spatial language
4 Give a distributive-law rule for local transitions
5 Put everything together and obtain a unique homomorphism
6 Feed with global state & sequence of global inputs to obtain

sequence of global states
(initial & boundary conditions→ trajectory)

Here proof-of-concept example for steps 1 , 2 , 3
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Syntax

2D regular grid with torsion
S ::= [L]

∣∣ S | S ∣∣ S / S ∣∣ S↔ ∣∣ Sl
– chosen as minimal non-trivial example
– every term has well-defined width, height, and array-like

element selection
– avoid mismatched composition by padding with default ∗ ∈ L
– other types of torsion possible: Möbius, solenoid

Fully compositional (unlike traditional frameworks)
A↔ /

(
B↔ | C↔)

Family of syntax functors ΣL gives rise to world functor W
WL = µΣL
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Semantics

Cellular automata are Moore-type (delayed I/O)
B

C
S

X = O× XI

They consume observable neighbourhood state and produce
observable own state

Unified perspectives:
local S = L; neighbourhood = cells nearby

global S =WL; neighbourhood = world boundaries
Open questions:

1 What is the neighbourhood functor C?
2 How to wire in the topology?
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Neighbourhood

Neighbourhood functor C specifies size of neighbourhood

Moore von Neumann
CX = X4 CX = X8

Elegant high-level specification of topology by a distributive
law

γ : C]W ⇒WC] where C]X = CX× X
– satisfying some shapeliness conditions
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Illustration

a b
c d

e f
g h

I J
K L

m n
o p

q r
s t

c
f I J

K

d
I J m

L

I
h K L

q

J
K L o

r
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Neighbourhood & Transition

Automata Poetry
1 State transitions are algebraic

u : C]L→ L

2 Observability is coalgebraic
u. : L→ BCL L u.(x) =

(
x, u(_, x)

)
3 Globalization is (γ-)bialgebraic

Wγu : C]WL→WL

Example: Conway’s Game of Life

L = {0, 1} u
(
(a1, . . . , a8), b

)
=


1

∑
ai = 3

b
∑
a1 = 2

0 otherwise
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Relative Addresses

Relative Addressing Theorem

Given the following:

a chart χ : CZ2 of relative coordinates,

an extended selection sl+ : C]WL→ Z2 → L,

one can define

a natural transformation χ̂L :WL→WC]Z2, inductively in Σ,

a distributive law γ : C]W ⇒WC], namely
γL(c, x) =WC

]
(
sl+(c, x)

)(
χ̂L(x)

)
that satisfy the shapeliness conditions.

(0,−1)

(−1,0) (+1,0)

(0,+1)
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Compositionality

For the desired spatio-temporal distributive law we need to lift
syntax over globalized updates (co-syntax).

Find a collection of natural transformations
cosingleton : CW ⇒ C

cohwrap, covwrap : W × CW ⇒ CW

cobeside, coabove : W ×W × CW ⇒ CW

such that, for globalized transitions g =Wγu,[
u(cosingletonL(c), a)

]
= g

(
c, [a]

)
g
(
cohwrapL(x, c), x

)↔
= g(c, x↔)

g(c1, x1) | g(c2, x2) = g(c, x1 | x2)

where cobesideL(x1, x2, c) = (c1, c2)

This is easier than it looks!
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Illustration

cohwrap

a b
c d

e f
g h

I J
K L

m n
o p

q r
s t

a b
c d

I J
K L

I J
K L

I J
K L

q r
s t

cobeside

a b
c d

e f
g h

I
K

J
L

m n
o p

q r
s t

a
c

e f
g h

I
K

J
L

q
s

b
d

I
K

J
L

m n
o p

r
t
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Distributive Law

λu : ΣLB
C
WL ⇒ BCWLΣL

[a]
[a]−−−−→

cosingleton
[u(_, a)]

x1
s1−→ y1 x2

s2−→ y2

x1 | x2
s1|s2−−−→

cobeside
y1 | y2

x
s−→ y

x↔
s↔−−−→

cohwrap
y↔

x1
s1−→ y1 x2

s2−→ y2

x1 / x2
s1/s2−−−→

coabove
y1 / y2

x
s−→ y

xl
sl−−−→

cohwrap
yl

Comments
Formal definition of rule format

Local transition relevant to singleton case only

World shape is observed and preserved

Post-states are mediated by co-syntax
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Proof of Equivalence

Classical Specification

u : C]L→ L

Distributive Specification

hu : µΣL → νBCWL

Equivalence Theorem

ju = hu

Proof Idea: (Wγu). is the coalgebra part of the initial
λ-bialgebra =⇒ induction =⇒ coinduction.

Amounts to showing that rules for λu and co-syntax cancel
out.

Trancón y Widemann, Hauhs Distributive-Law Semantics for CAs and ABMs 20 / 23



Introduction Semantics Conclusion Functors Topology Distributive Law

Proof of Equivalence

Classical Specification

Wγu : C]WL→WL

Distributive Specification

hu : µΣL → νBCWL

Equivalence Theorem

ju = hu

Proof Idea: (Wγu). is the coalgebra part of the initial
λ-bialgebra =⇒ induction =⇒ coinduction.

Amounts to showing that rules for λu and co-syntax cancel
out.

Trancón y Widemann, Hauhs Distributive-Law Semantics for CAs and ABMs 20 / 23



Introduction Semantics Conclusion Functors Topology Distributive Law

Proof of Equivalence

Classical Specification

(Wγu). :WL→ BCWLWL

Distributive Specification

hu : µΣL → νBCWL

Equivalence Theorem

ju = hu

Proof Idea: (Wγu). is the coalgebra part of the initial
λ-bialgebra =⇒ induction =⇒ coinduction.

Amounts to showing that rules for λu and co-syntax cancel
out.

Trancón y Widemann, Hauhs Distributive-Law Semantics for CAs and ABMs 20 / 23



Introduction Semantics Conclusion Functors Topology Distributive Law

Proof of Equivalence

Classical Specification

(Wγu).! :WL→ νBCWL

Distributive Specification

hu : µΣL → νBCWL

Equivalence Theorem

ju = hu

Proof Idea: (Wγu). is the coalgebra part of the initial
λ-bialgebra =⇒ induction =⇒ coinduction.

Amounts to showing that rules for λu and co-syntax cancel
out.

Trancón y Widemann, Hauhs Distributive-Law Semantics for CAs and ABMs 20 / 23



Introduction Semantics Conclusion Functors Topology Distributive Law

Proof of Equivalence

Classical Specification

ju : µΣL → νBCWL

Distributive Specification

hu : µΣL → νBCWL

Equivalence Theorem

ju = hu

Proof Idea: (Wγu). is the coalgebra part of the initial
λ-bialgebra =⇒ induction =⇒ coinduction.

Amounts to showing that rules for λu and co-syntax cancel
out.

Trancón y Widemann, Hauhs Distributive-Law Semantics for CAs and ABMs 20 / 23



Introduction Semantics Conclusion Functors Topology Distributive Law

Proof of Equivalence

Classical Specification

ju : µΣL → νBCWL

Distributive Specification

hu : µΣL → νBCWL

Equivalence Theorem

ju = hu

Proof Idea: (Wγu). is the coalgebra part of the initial
λ-bialgebra =⇒ induction =⇒ coinduction.

Amounts to showing that rules for λu and co-syntax cancel
out.

Trancón y Widemann, Hauhs Distributive-Law Semantics for CAs and ABMs 20 / 23



Introduction Semantics Conclusion Functors Topology Distributive Law

Proof of Equivalence

Classical Specification

ju : µΣL → νBCWL

Distributive Specification

hu : µΣL → νBCWL

Equivalence Theorem

ju = hu

Proof Idea: (Wγu). is the coalgebra part of the initial
λ-bialgebra =⇒ induction =⇒ coinduction.

Amounts to showing that rules for λu and co-syntax cancel
out.

Trancón y Widemann, Hauhs Distributive-Law Semantics for CAs and ABMs 20 / 23



Introduction Semantics Conclusion Functors Topology Distributive Law

Proof of Equivalence

Classical Specification

ju : µΣL → νBCWL

Distributive Specification

hu : µΣL → νBCWL

Equivalence Theorem

ju = hu

Proof Idea: (Wγu). is the coalgebra part of the initial
λ-bialgebra =⇒ induction =⇒ coinduction.

Amounts to showing that rules for λu and co-syntax cancel
out.

Trancón y Widemann, Hauhs Distributive-Law Semantics for CAs and ABMs 20 / 23



Introduction Semantics Conclusion

1 Introduction
Motivation
Formal Preliminaries

2 Semantics
Functors
Topology
Distributive Law

3 Conclusion

Trancón y Widemann, Hauhs Distributive-Law Semantics for CAs and ABMs 20 / 23



Introduction Semantics Conclusion

Summary

High-level specification of CA semantics in terms of
distributive-laws
topological (γ) neighbourhood over world
dynamical (λ) space over time

Correspond to basic evaluation algorithms
– array loops with index manipulation
– divide & conquer

Equivalence
– proof strictly follows bialgebraic structure

Basic categorical bialgebra
– can be implemented directly in Haskell
– first real instance of bialgebraic EDSL?

(Jaskelioff, Ghani, and Hutton 2011)
– watch out for forthcoming paper!
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Conclusion

Suggested Extensions to CA Theory

Weird topological operators
– add clauses to Σ

Unobservable state
– insert projection into output of _.

Dynamic shape & topology
– drop shape-preservation of λ

Open Philosophical Question

ABMs do in fact have a consistent mapping between ontic and
epistemic states, but

when axiomatically assuming the existence of a
spatio-temporal distributive law, what are we saying about the
world?
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Beware of foul models!
Questions?
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