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Preface

CALCO brings together researchers and practitioners to exchange new results
related to foundational aspects and both traditional and emerging uses of alge-
bras and coalgebras in computer science.

This is a high-level, bi-annual conference formed by joining the forces and
reputations of CMCS (the International Workshop on Coalgebraic Methods in
Computer Science), and WADT (the Workshop on Algebraic Development Tech-
niques). Previous very successful CALCO conferences were held 2005 in Swansea,
Wales, 2007 in Bergen, Norway, and 2009 in Udine, Italy. This fourth event takes
place in Winchester, UK.

The CALCO Young Researchers Workshop, CALCO-jnr, is a CALCO satel-
lite event dedicated to presentations by PhD students and by those who com-
pleted their doctoral studies within the past few years. The workshop is open
to all - many CALCO conference participants attend the CALCO-jnr workshop
(and vice versa).

CALCO-jnr presentations have been selected on the basis of submitted 2-
page abstracts, by the CALCO-jnr PC. This booklet contains the abstracts of the
accepted contributions. After the workshop, the author(s) of each presentation
will be invited to submit a full 10-15 page paper on the same topic. They will
also be asked to write (anonymous) reviews of papers submitted by other authors
on related topics. Additional reviewing and the final selection of papers will be
carried out by the programme committee. The volume of selected papers from
the workshop will be published as a technical report, available online. Authors
will retain copyright, and are also encouraged to disseminate the results reported
at CALCO-jnr by subsequent publication elsewhere.

We would like to thank the CALCO 2011 local organisers for their great
efforts to make this event successful. We are grateful to the London Mathemat-
ical Society, the British Logic Colloquium and the University of Southampton
for their financial support. Special thanks go to John Power and Magne Haver-
aaen for their splendid work on the programme committee and their continuous
support of CALCO-jnr.

August 2011 Corina Cirstea
Monika Seisenberger
Toby Wilkinson
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A Category Theoretic View of Nondeterministic
Recursive Program Schemes

Daniel Schwencke

Technische Universitdat Braunschweig,

Institut fiir Theoretische Informatik,
Miihlenpfordtstrale 22—23, D-38106 Braunschweig, Germany
schwencke@iti.cs.tu-bs.de
http://www.tu-braunschweig.de/iti

1 Introduction

Recursive program schemes serve as a tool for giving semantics e.g. to pro-
gramming languages. Originally investigated in the 1970’s, they gained renewed
interest in the 2000’s when a considerably generalizing category theoretic ap-
proach was found [2, 4].

However, this approach does not cover the nondeterministic version of re-
cursive program schemes which appears in classical work as well, see e.g. [1].
Our research aims to fill this gap: we give a category theoretic definition of a
nondeterministic recursive program scheme and obtain as our main result an
(uninterpreted) semantics for such schemes. Our definitions and results capture
and generalize those from loc. cit. and relate to the ones from [4].

2 A Category Theoretic Notion

Recursive program schemes define new function symbols by recursive equations
using given function symbols. The corresponding signatures give rise to polyno-
mial functors V' (new symbols) and H (given symbols) on the category Set of
sets and functions. The sets FH TV X of finite terms over variables from X built
from given and new symbols carry the free algebras ¢)}g+v C(HAV)FHEYV X —
FH+V X on X. Moreover, these free algebras form a natural transformation
#H+V and give rise to the free monad F#+V . Similarly, the sets T X of infinite
terms over variables from X built from given symbols carry the free completely
iterative algebras 7 : HT” X — TH X on X which give rise to the free com-
pletely iterative monad T with universal arrow x7 : H — TH see [3].

In the case of nondeterministic schemes (from now on abbreviated NDRPS)
nondeterministic choice is allowed on the right-hand sides of the recursive equa-
tions. We model this by the nonempty powerset monad (P+,n*, u™). Addition-
ally, there is a canonical construction making also PT7T# into a monad. This
is important in the following definition where a# denotes the unique monad
morphism extending « and where inl denotes the left coproduct injection.
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Definition 1. Let H and V be a polynomial Set-endofunctors. A nondetermin-
istic recursive program scheme is a natural transformation e : V. — PHFHTV,
It is called guarded if it factors

inlFH+Y
ZomE

¢ pt PtV
e=(V——sPtHFHTV PHH +V)FHIYY — — = ptpH+VY,

An uninterpreted solution of e is a natural transformation e¥ : V- — PYTH such
that

TTH G et

# utTH
PHp+tTH —— ~ptTH) .
Every classical NDRPS as defined in [1] can be translated into a NDRPS
in the sense of Definition 1; and Definition 1 collapses to a special case of the
existing category theoretic notion of a (deterministic) recursive program scheme
from [4] if (PT,nT, u™) is replaced by the identity monad (Id, id, id).

of = (V< prpusv 2D

3 A Semantics for NDRPS’s

An (uninterpreted) semantics for NDRPS’s is given by attaching (uninterpreted)
solutions to them. Thus our following main result provides an uninterpreted
semantics for guarded NDRPS’s.

Theorem 2. FEvery guarded NDRPS has a canonical greatest uninterpreted so-
lution.

The proof is rather long and technical; it is based on the fact that n* (HTH +
Id) - [rH, pH]71 : TH — PFTTH is a weakly final coalgebra for some functor on
some Kleisli category. But it is then not difficult to complete this proof in order
to see that uninterpreted solutions of a NDRPS can only differ in infinite terms
which are suprema of w-chains of terms. In other words: uninterpreted solutions
of guarded NDRPS’s even are nearly unique.

4 Future Work

Due to the category theoretic approach we see several possibilities for future
work: a generalization from polynomial functors to the wider class of analytic
functors and from finite to infinite terms, the treatment of composite recur-
sive program schemes (replacing the monad P+ by the monad (—)¥) and the
investigation of interpreted solutions of NDRPS’s.
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Coalgebraic Semantics of Recursive
Computation on Circular Data Structures

Baltasar Trancon y Widemann
University of Bayreuth, Germany

This is a summary of the theoretical content of the author’s PhD thesis,
completed in 2007 at the Technical University of Berlin, Germany. Preliminary
results [1-3] have been published in the functional programming community,
meeting with scepticism regarding the use of coalgebra. The complete thesis [4]
is available in German only. The purpose of this article is to bring the work to
the attention of the (co)algebra community.

Nested data structures, such as the algebraic datatypes of functional pro-
gramming (FP), are usually implemented as directed graphs of cells and pointers
in memory. On one hand, the FP principle of referential transparency dictates
that the actual numerical values of pointers and identities of cells be hidden
from the user, revealing only the content of the cells pointed to. This allows, for
instance, to share a common subgraph rather than have multiple copies. On the
other hand, it is natural for pointer graphs to contain cycles. In a transparent
setting, these are indistinguishable from infinite periodic data. Here, an evalu-
ation strategy for FP in the presence of cycles is developed. By replacing the
traditional algebraic semantics of data structures with a finitary coalgebraic one,
the issue of actually infinite data is evaded. Consequently, some important deci-
sion problems remain tractable, as opposed to settings with non-strict semantics,
for instance in the lazy FP language Haskell.

The key idea is to specify cell layout by a signature functor, and to regard
each state of memory as a coalgebra of that functor, with address space as the
carrier and pointer dereferencing as the operation. Referential transparency is
established by presenting only the final coalgebra semantics of a memory state to
the user. Nevertheless, the actual addresses are available to the runtime system,
allowing for a variety of implicit techniques for cycle detection and handling.
The main theoretical contribution of this work is to relate those techniques to
rigorous semantic concepts.

The proposed cycle detection technique is based on a traditional eager evalu-
ation model, where pending function incarnations are accumulated as frames on
a call stack. It is assumed that functional computations traverse the data graph
by recursion, creating a function incarnation for each reached cell. A circular
computation is then indicated by the presence of two nested frames of identical
content on the call stack, detectable at runtime by stack inspection. Of course,
once a cycle is detected, it needs to be handled in an alternative, non-circular way
to obtain the correct function result; otherwise an infinite regression, or rather
inevitable stack overflow, occurs. By maintaining a cheap marking invariant, the
cost of stack inspection can be reduced greatly, at the price of recognizing cycles
only up to bisimilarity.
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One way to handle cycles is to ensure that each function incarnation produces
the root cell of its result first, and delegates the initialization of nested pointers
to subsequent recursive incarnations; cf. the optimization technique of tail calls
“modulo constructor”. In this case, it suffices to share the root cell between the
two endpoint incarnations of the cycle by duplicating a pointer. This handling
technique can be proven to coincide with primitive corecursion or unfolding of
suitably defined step coalgebras, restricted to finite input and output. Unlike
in non-strict implementations of corecursion, the cycle structure of the input is
retained.

The finiteness of input can be exploited to give an effective implementation
of recursive search problems, which cannot be handled in non-strict environ-
ments where cycles are unfolded lazily ad infinitum. A detected cycle in a search
problem indicates a redundant search that need not be performed, due to the
idempotency of logical operations. It can immediately abort with the default
value true/false for universal/existential search, resp., without affecting the re-
sult. The default values of subproblems can be chosen independently under mild
consistency conditions. This technique can be proven to coincide with the choice
of an instance from the lattice of fixpoints, due to Tarski’s theorem, of a mono-
tonic deduction operator.

The above techniques have been applied to a variety of areas, yielding non-
trivial and outright surprising extensions of well-known algorithms from cycle-
free to circular data: The first application concerns positional number systems,
where all elementary arithmetic and relational operations can be lifted from fi-
nite precision to exact rationals. The second application concerns list structures,
where many basic operations such as insertion, deletion, comparison, mapping,
filtering and even sorting can be lifted to circular lists. Last but not least, the
third application concerns dynamic structural subtyping on mutually recursive
coalgebraic datatypes, realized in analogy to the “vtable” approach to object-
oriented method dispatch, where dynamic cast between recursive types is an
inherently and nontrivially circular computation.
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Internal Models for Coalgebraic Modal Logics

Toby Wilkinson *

University of Southampton, UK
stwO8r@ecs.soton.ac.uk

We present ongoing work into the systematic study of the use of dual adjunc-
tions in coalgebraic modal logic. We introduce a category of so called internal
models for a modal logic. These are constructed from syntax, and yield a gener-
alised notion of canonical model. Further, expressiveness of a modal logic is seen
to relate to coproducts in this category of internal models.

Dual Adjunction Framework

We work in a dual-adjunction framework for coalgebraic modal logic [6, 4, 3].

(Ca_ D

Briefly this consists of two categories A and X, and two contravariant functors
P and S that form a dual adjunction i.e. there exists a natural isomorphism

P A(—1, P(—2)) = X(—2,5(-1))

The category X represents a collection of state spaces, and a collection of
generalised transition systems is defined on these state spaces as coalgebras for an
endofunctor T'. Similarly, the category A represents a collection of base logics to
which modal operators are to be added. These are introduced via an endofunctor
L, and the corresponding modal logics are the L-algebras. The semantics of these
modal logics is given in two stages. First the dual adjunction gives a semantics
for the base logics in terms of the state spaces, and then secondly, a natural
transformation

0: LP = PT

gives the semantics of the modal operators in terms of the transition structures
introduced by T' [5, 7].

Models and Internal Models

Let (A, «) denote an L-algebra. Now, not all T-coalgebras are models for the
modal logic that (A, «) represents. We can therefore define a category Mod (A, )
with objects given by pairs

(X,7), f+ X — S(A))
* Research supported by an EPSRC Doctoral Training Account.
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where (X,7v) is a T-coalgebra, and f is a theory map, such that ((X,7), f) is
a model for (A,«). The morphisms are then the T-coalgebra morphisms such
that if g: (X1,71), f1) = ((X2,72), f2) then f; = fa 0 g. Note: f is a theory
map if its adjunct under the base dual adjunction is an L-algebra homomorphism
(A,a) = (P(X), P(v)odx). These are the valuations in the models of [2]. Theory
maps are also related to the twisted coalgebra homomorphisms of [8].

Now given a class M of monomorphisms in X, we define IntMod (A4, o) to be
the full subcategory of Mod(A4, «) where the theory maps are in M, and write

R: IntMod (A, o) — Mod(4, o)

for the corresponding inclusion functor.

The intuition is that S(A) is to be thought of as the collection of all possible
theories of (A,«), and the objects of IntMod (A, a), the internal models,
are those models constructed from subsets of the set of all theories i.e. from
the syntax. We parameterise by the class M, as for some categories X, only a
subclass of all monomorphisms represents what we would consider ”inclusions”
or embeddings” . For example in Top, M is the class of regular monomorphisms.

IntMod(A, o) and Properties of Coalgebraic Modal Logic

The category IntMod(A4, ) is closely related to many interesting properties of
coalgebraic modal logic. For example, sufficient conditions for a dual adjunction
to exist between Alg(L) and CoAlg(T), are that for all L-algebras (A, «) the
following hold:

1. for all X in Mod(A4, «) there exists a g: X — R(I) for some object I in
IntMod (A4, o),
2. IntMod(A4, «) has a final object.

The final internal model of condition 2 can be thought of as analogous to the
canonical models of Kripke semantics [1].

By selecting X so that the objects are sets with some additional structure,
and the morphisms have underlying functions, we can talk about the individual
states of a model. Then given two models X7, Xo in Mod(4, o), and z; € Xq,
xo € Xo, we say x1 and zo are behaviourally equivalent if there exists in
Mod(A, ) a cospan

X, f1 X4 f2 X,
such that fi(x1) = fa(z2).

The forgetful functor from Mod (A4, «) to CoAlg(T) yields the usual defi-
nition of behavioural equivalence as a cospan in CoAlg(T), and the forgetful
functor to X yields a condition that the theory maps are compatible c.f. the
definition of bisimulation in [1]. Note: [2] has a similar definition, but requires
f1, f2 to be surjective.

We say (A, «) is expressive, if for all models in Mod(A4, «), states have
the same theories if and only if they are behaviourally equivalent [4,3]. Now
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if we choose M to be some subclass of the class of monos in X with injective
underlying functions, then sufficient conditions for expressiveness are:

1. same as condition 1 above,
2. for every pair I, I in IntMod(A, «) there is a cospan Iy — I3 < I in
IntMod (A4, ).

Suppose now that a class F of morphisms in X exists such that X has an
(E, M)-factorisation system. We also know that for every choice of 6: LP = PT
the base dual adjunction gives a natural transformation 6*: T'S = SL. So if

meM=dy0T(m)eM
then the following hold

1. condition 1 above,
2. the forgetful functor U: IntMod(A, ) — X detects small colimits.

Thus if in addition X has binary coproducts, then (A, «) is expressive. Alter-
natively, if X is M-wellpowered and has small coproducts, then IntMod (A, «)
has a final object, and if this is true for all (A, «), there is a dual adjunction
between Alg(L) and CoAlg(T).

Future Work

The category IntMod (A, «) is not yet fully understood, and indeed, an obvi-
ous question is when the sufficient conditions for the above results are actually
necessary. It is also anticipated, that like canonical models in Kripke semantics,
internal models may have something to say about completeness.

Acknowledgements
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A nondeterministic probabilistic monad with
nondeterminism for coalgebraic trace semantics

Tetsuya Sato

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502,
Japan E-mail : satoutet@kurims.kyoto-u.ac. jp

Introduction. In the study of coalgebraic trace semantics of Hasuo et al. [1, 2],
finite trace semantics for the powerset monad P as well as the (sub)distribution
monad D can be derived from an initial algebra; the initial F-algebra o: FA — A
in Set gives rise to the final F-coalgebra in the Kleisli category of each monad. In
this work we construct a probabilistic monad with nondeterminism 7. ID based
on indexed valuations of Varacca and Winskel [5]. We show that weakly final
coalgebras in the Kleisli category of this monad captures a finite trace semantics
for a Segala automaton [4].

Indexed valuations. We recall the notion of indexed valuations following [5].
Let X be a set. A discrete indexed valuation on X is a pair (Ind,v) of two
functions Ind: T — X and v: I — [0, 0], for some set I. The equivalence relation
~ on two indexed valuations is defined as follows: given two indexed valuations
on X, (Ind,v) and (Ind’,v"), (Ind, v) ~ (Ind’,v") if and only if there is a bijection
h: Supp(v) — Supp(v’) such that Ind(i) = Ind’(h(i)) and v(i) = v'(h(i)) for all
i € Supp(v). Here, Supp(v) = {i € I|v(i) # 0}.

For a set X, the set of all indexed valuations on X is denoted by IV X. The
mapping X — IV X is functorial, and can be extended to a monad on Set. Let
P- be a nonempty powerset monad. The composition 2.1V also forms a monad
on Set, via a distributive law between . and IV.

Our Results. Similarly, for any set X, we write IDX for the set of all indexed
valuations (Ind,v) on X such that ) v(i) < 1. ID extends to a monad ID
on Set, and the composition B.ID also forms a monad on Set, again via a
distributive law.

Proposition 1. For any set X, IDX has an w-complete partial order with the
least element 0, which is the equivalence class of (Ind, v) such that v = 0.

Proposition 2. Monad B.ID s a commutative strong monad on Set.

Proposition 3. The Kleisli category Setp 1p is enriched with the trivial inclu-
ston order.

Let F' be an endofunctor 1 + (A x id) on Set (A is an arbitrary set). A poly-
nomial endofunctor on Set E has a lifting E' on the Kleisli category Setr of a
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commutative strong monad T. See also [2]. Thus, by proposition 2 the functor
F has a lifting I’ in Setp ;p. By simple translation a Segala automaton can be
captured by an F-coalgebra in Setp p.

Theorem 1. 1. Leta: FA* — A* be an initial F-algebra. Then the F-coalgebra
noat: A* — FA* is weakly final, where n is the unit of the monad.

2. Consider a Segala automata (F-coalgebra) c: X — FX. The finite trace
semantics of ¢ is captured by the mazimum coalgebra morphism ¢ — no o™t
with respect to the inclusion order of proposition 3.

The key of the proof of this theorem is proposition 1. Thus we can construct the
trace semantics as the pointwise limit of functions.

Example. Consider the functor 14(Axid). The initial F-algebra [nil; cons]: FA*
— A* consists of the finite lists over A. The following is an example of a coalgebra
c: X - BIDFX.

1 (a,3)

@y CTIN O

034>\/

By Theorem 1 we obtain a coalgebra morphism Trace: ¢ — 7 o o via weak
finality and taking the maximum. The trace semantics of the state z is

Trace(®) = {((), 1), (0,3) © (@ 5), (0 5) & (4, ) & (aa, 1), .}

Note that we express indexed valuations as (xo, po)® (21, p1)®- - D (ag, pr) D - -,
where Y77 pr < 1. For instance ({),%) & (a, 1) is equivalent to the indexed
valuation Ind: 2 — A*w: 2 — [0,00] defined by Ind(0) = (), Ind(1) = a,

v(0) = 1 and v(1) = 1.

Related work The comparison between Jacob’s work using convex subsets of
distributions [3] and ours is an important future work.
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A final Vietoris coalgebra beyond compact
spaces and a generalized Jénsson-Tarski duality

Liang-Ting Chen* and Achim Jung

School of Computer Science, University of Birmingham
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In a coalgebraic perspective, Kripke frames and models can be viewed as
P-coalgebras and (P x Pd)-coalgebras respectively where @ is the set of atoms.
Furthermore, descriptive Kripke frames are Vietoris coalgebras over Stone spaces
as shown in [3], and the classical Jonsson-Tarski duality is a duality between
the category Alg(Mp) of Mp-algebras and the category Coalg(Vyg) of Vietoris
coalgebras, i.e.

_—
Coalg(Vy) - Alg(Mp)

U U
Clop

Stone_ " BA

Spec

where Vg is the Vietoris construction over Stone spaces and Mg is the modal
algebra construction over Boolean algebras. The duality also holds for positive
normal modal logic, i.e. the duality between modal algebras over distributive lat-
tice denoted by Mp and the Vietoris topology over Priestley spaces (isomorphic
to coherent spaces [1]) as shown in [4].

Following these dualities, we generalise it to the duality between Coalg(V)
and Alg(Mp) over stably locally compact spaces (see [1]) where V is the Vietoris
topology construction taking compact lens (intersections of closed sets and open
sets) and M is the modal algebra construction over frames. These constructions
can be found in [2].

As for the final V-coalgebra, we start from the algebraic view instead of
the coalgebraic view and obtain an initial M p-algebra concretely via the initial
sequence. The calculation relies on the coherence preservation of Mg, i.e.

DLat —2- DLat

Idli \lel

Frm —— Frm
Mg
commutes.

By Stone duality and the natural isomorphism between V Pt and Pt Mg for
stably locally compact spaces, we find the final V-coalgebra from the initial Mpg-
algebra. Routinely we further generalise results to coherent Vietoris polynomial
functors.

* Supported by a Doctoral Training Grant funded by EPSRC and the School.
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Michal R. Przybylek
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Language is the most fundamental tool of speech. Logic is the most fun-
damental tool of reasoning. Therefore, to speak on reasoning, we need a logic
over a language. If we mean by “logic” a model-theoretic logic — that is — two
sets: a set of formulae and a set of models, together with a relation saying what
formulae are true in what models, then perhaps the most successful description
for the concept of “logic (varying) over a language” was given by Goguen and

Burstall [5-7]. They called such entities institutions':

Definition 1 (Institution). An institution I is a quadruple
(Sign, Sen, Mod, =), where:

— Sign is a category, whose objects are called signatures

— Sen is a functor Sign — Cat sending signatures to formulae (sentences),

— Mod is a functor Sign°® — Cat sending signatures to models,

— | is a family of “satisfaction” relations =>S181C || Mod(X)|| x ||Sen(X)],
where || — || indicates the class of objects of a given category

such that for every morphism o: X — X' the following condition holds: M ):2’
Sen(o)(9) < Mod(o)(M) =~ ¢.

The definition roughly says that formulae change covariantly with changes of
the language, models change contravariantly with changes of the language and
logical values are compatible with these changes. Institution theory has proven
its usefulness in a variety of contexts, including: software specification and formal
software development [11], semantics of databases and ontologies [9], cognitive
linguistics and cognitive semantics [8], universal algebra [3,4,14].

One may summarize institutions in the picture 1, where BRel is the class
of all binary relations on sets, and = has to be compatible with morphisms in
Sign. In this paper we shall try to replace picture 1 with picture 2, where p is
a module fibration; obtaining, what we shall call, realizable institution. Let us
elaborate more on this concept.

Definition 2 (Module). A module [1,2] ¥ from a category X to a category Y,
denoted by U: X - Y, is a functor YP x X — Set. We will write * for X and
Y forY.

Definition 3 (Module Morphism). A morphism H from a module ¥ to a
module @ consists of the following data:

! Actually what we describe is the strongest variant of institutions, sometimes called
“Cat/Cat institutions” — instead of sets of formulae and sets of models there are
categories of formulae and categories of models.
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Fig. 1. Fig. 2.

— a functor H*: ¥* — ¢*
— a functor Hy: ¥, — @, R
— a natural transformation H: ¥ — ® o (H\°? x H*)

Definition 4 (Module Transformation). A module transformation T from
a module morphism H: ¥ — @ to a module morphism K: V¥ — & is a pair of
natural transformations 7™*: H* — K*, 7: K\ — H, satisfying for all objects
A eV B e W the following smoothness condition: IA(B,A = @(TIB7T*A)OIA{B’A.

It is easy to verify that modules, module morphisms and module transformations
constitute a 2-category, and that this category has weighted limits (so, comma
objects). Since it has comma objects, we can speak of fibrations [12,13] over
modules, which we shall call profibrations. If a profibration comes equipped with
a cleavage (i.e. with a choice of a cartesian morphism for every morphism from a
base module) than we shall call it a cloven profibration. Just like ordinary cloven
fibrations have external forms in the shape of Cat-valued pseudofunctors (i.e.
indexed categories), cloven profibrations have their external forms in the shape
of Dist-valued module pseudomorphisms?, which we shall call indexzed modules.

Definition 5 (Indexed module). A module indexed over a module ¢ is a
module pseudomorphism ©@: ® — Dist consisting of the following data:

— a pseudofunctor @*: ¢* — Cat?
— a pseudofunctor ©,: &, — Cat R
— a pseudonatural transformation ©: & — Dist o (0,°F x OF)

Definition 6 (Realizable institution). A realizable institution I over a cat-
egory B is a profibration I: ¥ — Homp. An element r € U(Y, X) over a mor-
phism o: B — A in B will be denoted by Y |l X. We shall write Y =" X for
Yl X

Realizable institutions emerged from two observations. Firstly, one may argue
that the theory of institutions is about linking the logic of models with the logic

2 Dist stays here for a canonical module over the bicategory of distributors.
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of theories — since existence of homomorphisms between particular models has
exactly nothing to do with either of the logics, the theory of institution should
not be willing to embrace such entities. Instead, it should be willing to embrace
the notions of “logic of models” (which says how rich a model is; think for
example of sets of the standard models as of models — if M C N then M
is richer than N) and “logic of proofs” (which says what formulae entail what
formulae). In addition, both of the logics should smoothly compose with the
satisfaction relation (i.e. if M C N,N E ¢,¢ — ¢ then M | ). Secondly,
just like standard logicians bother with particular proofs between formulae and
not merely with their existence, the institution theoreticians should bother with
particular witnesses of the fact that some models force some formulae.

Nonetheless, the primary reason for introducing realizable institutions is to
make an intermediate step toward development of a uniform framework suitable
for analyzing versatile of model-theoretic logics. The next step is then in enrich-
ing the presented results with a cosmos (i.e. complete and cocomplete symmetric
monoidal closed category) [10]. We show how this general setting incorporates
external (i.e. model-theoretic) with internal (i.e. proof-theoretic) logic.
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Embedded systems are increasingly being deployed in a wide variety of ap-
plications. Most, if not all, of these applications involve an electronic controller
with discrete behaviour controlling a continuously evolving plant. Because of
their hybrid behaviour (discrete and continuous) and reactive behaviour, the
formal verification[29] of embedded systems pose new challenges.

Research efforts undertaken to improve confidence in the correctness of em-
bedded systems have resulted in various modelling and programming languages,
verification techniques, frameworks, etc. as surveyed in [23] [15] [27] [20] [8] [28]
[24]. Linear Hybrid Automata (LHA)[1] is a language for specifying systems with
linear hybrid behaviour. Abstract interpretation[9] [10] is a formal theory for ap-
proximating the semantics of programming languages. Model checking|[7] [25] is
a technique to verify the reactive behaviour of concurrent systems. Computa-
tion Tree Logic (CTL)[12] is a temporal property specification language. Logic
programming[22] is a general purpose programming language based on predicate
logic.

1 Proposed framework

In this recently concluded doctoral work, which is reported in five publications
[5] [4] [3] [17] [13] and my doctoral dissertation, the LHA models are verified
by encoding them as constraint logic programs. We model the reachable state
semantics of an LHA. Such constraint logic program (CLP) encoding an LHA
model is first specialised and then a concrete minimal model (or possibly an
abstract minimal model) is computed by subjecting the residual program to
static analysis. The abstract minimal model is computed by applying the theory
of abstract interpretation. This concrete (or abstract) minimal model being a
finite representation of infinite reachable state space, forms the basis for verifying
the LHA model. We consider two techniques to verify the reactive properties
specified as CTL formulas: (i) reachability analysis and (ii) model checking.
Figure 1 shows the proposed formal verification framework.

* Work undertaken while the author was a doctoral fellow supervised by Professor
John Gallagher at Department of Computer Science, Roskilde University. This work
was supported by: (i) a phd-fellowship jointly sponsored by the Roskilde University
and the EU-IST project ASAP: Advanced Specialisation and Analysis for Pervasive
Systems and (ii) the Danish Natural Science Research Council project SAFT: Static
Analysis Using Finite Tree Automata.
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Fig. 1. A framework for verifying embedded systems

A systematic translation of LHA models into constraint logic programs is
defined. This is mechanised by a compiler. To facilitate forward and backward
reasoning, two different ways to model an LHA are defined[3]. A framework
consisting of general purpose constraint logic program tools is presented to ac-
complish the reachability analysis to verify a class of safety and liveness proper-
ties. A tool to compute the concrete minimal model is implemented. The model
checking of CTL is defined as a concrete CTL-semantic function. Since model
checking of infinite state systems, which LHAs are, does not terminate, we apply
the theory of abstract interpretation to model checking that ensures termination
at the cost of loss in precision. An abstract CTL-semantic function is constructed
as an abstract interpretation of the CTL-semantic function. This abstract CTL-
semantic function is implemented using a SMT solver resulting in an abstract
model checker (AMC). We consider two abstract domains: (i) the domain of
constraints and (ii) the domain of convex polyhedra, for both abstract model
checking and abstract minimal model computation. The abstract model check-
ing is presented in [5].

1.1 Framework demonstration

The applicability of the proposed theory (with the implemented tool frame-
work) to verify real time systems has been demonstrated by considering several
examples taken from literature. The list of systems verified include: Train-gate-
controller(2], Task scheduler[2], Gas burner controller[26] [19], Fischer proto-
col[21], Temperature controller[19] and Water-level controller[16]. The results
are presented in [5], [4], [3].
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2 Novelties

First, a systematic translation scheme from LHA to CLP is defined capturing the
reachable and reaching state semantics. We apply general purpose program anal-
yses tools meant for CLP programs to analyse LHA models. Furthermore, AMC,
unlike other existing model checking tools (such as Uppaal[6], HyTech[18], etc.)
that cannot handle nested temporal formulas, can model check any well formed
CTL-formula. As we report in [5], our approach makes it possible to verify tem-
poral properties expressed in the modal-u logic, which is the most expressive
temporal logic. On the other hand, unlike other abstract model checking tech-
niques (such as [11] [14]) that mandate constructing an abstract kripke structure
or modal transition system, thanks to both our CTL-semantics function defini-
tion and the framework of abstract interpretation, with AMC it is not necessary
to explicitly construct such abstract systems.
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This paper is part of a research project aiming at a semantical foundation
for program extraction from proofs [1]. It contributes to a soundness proof for
a Language of Realiser (LoR) of proofs involving inductive and coinductive def-
initions. The natural LoR for inductive and coinductive definitions is a typed
lambda calculus with types modelling initial algebras and final coalgebras, and
terms modelling structural recursion and corecursion. In this paper we study
the relation between Curry-style and Church-style type assignments for such a
system. The difference between the two styles is that in Church-style type as-
signment each bound variable is assigned a unique type, as in Az : p.M, while
in Curry-style the binding is untyped, as in Azx.M.

We give a domain-theoretic semantics for the Curry- and the Church-style
system, and prove that they coincide under certain conditions. The proof uses
hybrid logical relations, which are related to Tait’s computability method and
Girard’s method of reducibility candidates. The reason for studying this domain-
theoretic semantics is that it allows for very simply and elegant proofs of com-
putational adequacy, and hence the correctness of program extraction.

We consider a prototypical functional programming language LoR that is
interpreted in a domain which satisfies the following recursive domain equation
D ~ (14+D+D+DxD+[D — D]) ., where 1 denotes the sole-element domain {x},
and +, x,[- — _] represent the usual continuous domain operations: separated
sum, Cartesian product, and continuous function space. Thus, an element in D
is in one of the following forms: L, x, Left(a) or Right(a), Pair(a, b) and Fun(f),
where a and b range over D, and f is a continuous function mapping from D to
D.

We denote the powerset of D by p(D), and if X is an entity in LoR, its
interpretation by [X].

Let = range over a set of variables and C' a set of constructors. The syntax
of Curry-style LoR terms is given by the following grammar

M,N,R; == | \e.M | MN | C(M,, ..., M,) |
case M of {C;(x;) = Ritieq1,... n} (1)

.....

where in the term case M of {Cj(x;) — Ri}icq1,..n) all constructors C; are
distinct and each x; is a vector of distinct variables. We consider the constructors
Nil (nullary), Left, Right (unary), Pair(binary) and In (unary).
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In the following we take the function space and abstraction as examples for
illustration. For every environment 7 : Var — D, we define

- {1 2y
[Ax.M]n := Fun(f) where f € [D — D] s.t. f(a) := [M]n]x := a](a € D).

For Curry-style LoR terms, LoR’s set of types, Type, is defined as follows:
Type s pori=alp—o|llpxalp+olpaplvap (2

where in pa.p and va.p, p is positive in a.

We define [p — o]¢ € D for every environment £ : TVar — p(D) as
{Fun(f) | f € [D = D] s.t. f([p¢) < [o]¢}-

For a type context I' = 21 : p1,...,Zn : pn, we set dom(I") = {z1,..., 2, }.
Let n € [I']€ mean I'(x;) = p; An(x;) € [p;]€ for all i =1,...,n.

Theorem 1 (Soundness For Curry-style Terms).
IfI'=M:pandn e [IE, then [M]n € [pl.

For Church-style LoR terms, the term syntax differs from (1) in the case:
Az : p.M. For every environment ¢ : [D — D]TV2" and 5 : Var — D, we define

[[MN]]CU — {i(HN]]Cn) gﬂﬂlﬁ/ﬁ]\fg; Fun(f),

[\z : p.M]%n := Fun(f) where f € [D — D] s.t. f(a) := [M]*n[z := (p){(a)].

In the definition of Type (2) we replace the constructs pc.p and va.p by
fixed-point type fix a.p. We call the resulting type system recursive types.
We define the semantics for recursive types by means of finitary projections [2]
({p)¢), and then set [p]¢ := ({(p)¢)(D) for all p € Type. For example, for every
environment (p) : [[D — D]TV& — [D — D]| and for all a € D, we define

((p = 0)C)(a) :=

Fun(g) where g : [D — D] s.t. g = ()¢ o f o (p)( if @ = Fun(f),
1 otherwise.

Theorem 2 (Soundness For Church-style Terms).
IfI'=M:p andn €[], then [M]°n € [p]¢.

We define a hybrid logical relation to indicate two elements are equivalent
elements of a certain type, e.g. N}jﬁa:: (L, )} U {(Fun(f),Fun(g)) | Va,b €
D(a ~B< b= f(a) ~E< g(b)) A (9)Co fo ()¢ = (o) 090 (p)C).

Let M be a Church-style term, M~ the corresponding Curry-style term and
p a recursive type.

Lemma 1. Assume FV(M) C dom(I"). Let n N?’C 1’ denote the following: for
all z € dom(I'), if I'(x) = o, then n(x) ~%< n/(z).

R, , _
Fl—M:p,nNFCn/:[[M}]gnrvpp‘< M~y
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Theorem 3 (Coincidence).
IFT ¢ M p and n € [TIC, then [MIon = (p)C(IM=Tn).

Theorem 3 continues to hold where limited form of recursion are added
(guarded (co)recursion, structural recursion). This is the subject of ongoing
work.
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Recent results have shown a relationship between higher dimensional category
theory, type theory, and homotopy theory. The fundamental idea is that identity
types in Martin-Lof type theory exhibit the structure of a weak groupoid [hofog]
and if one considers their higher iterations, they in fact yield a weak w-groupoid
[lumog] [gar10]. This shows similarities to the notion of the fundamental groupoid
of paths and higher homotopies of a topological space [awoo9].

To explore these implications, we require a precise definition of weak w-groupoids.
To date, all definitions are quite complex, making reasoning difficult without sacrific-
ing subtle but important detail. In the spirit of Voevodsky’s Univalent Foundations
programme [vovio] we aim to formalize these definitions in a proof assistant, easing
the mathematician’s burden of bookkeeping when reasoning.

We have begun by programming category theory in the Coq proof assistant.
However, Coq is based on an intensional type theory and does not provide native
support for extensional reasoning. We remedy this by building a theory around se-
toids (Bishop sets) and setoid morphisms (respectful functions), working directly with
setoids where we would otherwise refer to the type of sets. We use this extensional
core to create a library for reasoning about categories weakly enriched in setoids.

Category theory in type theory is an interesting problem and various parts of
its story have already been told [huegg]. Our formalisation is new but inspired by
previous efforts. It differs from past efforts in that we aim to build a library easy
to understand, practical to use, and modular enough to admit future extension. We
intend to use it for a wide variety of categorical studies.

To give a flavour of our library, we show our definition of category and use it
to define and prove correct the product category. We use ssreflect [gonog] and
Russell [sozog] extensively to shorten our code and improve readability.

Record Cat : Type :=

{ obj :> Type

; hom : obj -> obj -> ESet

; one : forall A, EFun One (hom A A)

; cmp : forall A B C, EFun (hom B C X hom A B) (hom A C)
5 unit_id_1 : Unit_Id_L one cmp

; unit_id_r : Unit_Id_R one cmp

; assoc_cmp : Assoc_Cmp cmp }.

Program Definition Prod (C; C; : Cat) : Cat :=
{l obj := C1 *x C;

; hom := fun 711 71 => hom (fst 71) (fst 712) X hom (snd 711) (snd 712)
; one := fun 7T => const _ (one (fst 71) tt , one (snd 71) tt)
; cmp := fun 71; 7 713 => {| map := fun 7f => ( cmp (fst (fst 7tf) , fst (snd 7tf))

, cmp (snd (fst 7tf) , snd (snd 7tf£))) |} [}.
Next Obligation.
rewrite /Stable /= =>a b ¢.
elim @ => @1 @3; elim @1 => @11 @125 elim @y => Q21 P2; clear @ @1 @3.
by [ split; apply stb 1. Qed.
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Next Obligation.
rewrite /Unit_Id_L /= => A B f. by [ split; apply unit_id_1 ]. Qed.
Next Obligation.
rewrite /Unit_Id_R /= => A B f. by [ split; apply unit_id_r 1. Qed.
Next Obligation.
rewrite /Assoc_Cmp /= => AB CDh g f. by [ split; apply assoc_cmp ]. Qed.

As a first step toward using our library for reasoning about weak w-groupoids
and eventually homotopy type theory, we focus on implementing globular setoids.
Globular sets are used to define weak w-groupoids in the style of Leinster [leio4]. In
our type theoretic setting, we have two versions of globular setoids: one based on
the idea of setoid-valued presheafs on the globe category G and the other on a direct
coinductive definition of a kind of setoid-carrying w-quiver.

For the type theorist, the second version is much simpler when working in a
foundation that allows for coinductive definitions. Coq, based on the coinductive
calculus of constructions, allows for such definitions:

CoInductive wQuiver : Type :=
{ obj :> ESet
; hom : obj -> obj -> wQuiver }.

We would prefer to use this version in building up to the full definition of weak
w-groupoids. Our task is to show that the category of w-quiver style globular setoids
is equivalent to the category of presheaf style globular setoids, since it is the presheaf
version that most closely follows the existing literature. We intend to do so by show-
ing they are isomorphic objects in the appropriate notion of the bicategory of weakly
enriched setoid categories [wilos].
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Initial algebra semantics provides a concise and uniform way to model inductive
data types. The data type is regarded as the carrier of the initial algebra (uF,in),
ie.in: F(uF) — pF, of an endofunctor F' : C — C for some suitable category
C. Initiality gives an iteration operation fold(h) : uF' — A for any other algebra
(A, h). However, working in dependent type theory [8]' , we would prefer to have
dependent recursion —i.e. an “induction principle” under the propositions-as-types
interpretation:

x:pFF P(x): Set x: F(uF),z:0Op(P,x) - step(x, Z) : P(in(z))
elim(P, step) : (z : uF) — P(x)

(1)

Here, Op (P, x) is the set of proofs that P holds for the elements of pF' that x
is built up from, i.e. the induction hypothesis. It is defined in such a way that
there is an isomorphism ¢p : F((Xz:uF)P(x)) — (Xx: F(uF))Op (P, z) with
o O PR = F(’/To).

Ghani, Johann and Fumex [4] recently extended work by Hermida and Ja-
cobs [6], showing that such an eliminator can be defined for every initial F-algebra
(under some mild assumptions on C). There are, however, other meaningful forms
of data types which are not covered by these results [9]. In order to accommodate
these more exotic definitions, we move to the setting of dialgebras, as introduced
by Hagino [5] in his thesis:

Definition 1 (Dialgebras). Let F,G : C — D be functors. The category
Dialg(F,G) has as objects pairs (A, f) where A € C and f : F(A) — G(A).
A morphism from (A, f) to (A', f') is a morphism h : A — A’ in C such that
G(h)o f = f' o F(h).

We will mostly be interested in the case when G is some kind of forgetful
functor, for example G : Dialg(F,G’') — C, G(A, f) = A. Note also that with G
the identity functor on C, we regain ordinary algebras as a special case.

Our goal is to show that one can define an eliminator for every initial dialgebra.
This requires us to generalise the concept of an eliminator to the new setting. In
order to state what an eliminator for a (F,G)-dialgebra is, where F, G : C — D,

* Supported by EPSRC grant EP/G033374/1, Theory and applications of induction-
recursion.

! We will write (x : A) — B(z) for the dependent function space (consisting of functions
f such that f(a) : B(a) for every a: A) and (Xz:A)B(x) for the type of dependent
pairs with elements (a,b), where a: A and b: B(a).
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we require that both C and D have some extra structure, namely that they are
categories with families [3, 7], i.e. categorical models of dependent type theory.
First, let us introduce the category of families of sets:

Definition 2 (Families of sets). The category Fam(Set) has as objects pairs
(I, X) where I is a set (the index set) and X : I — Set is a functor (the set I is
here regarded as a discrete category), i.e. a family of I-indexed sets. A morphism
from (I, X) to (J,Y) is a pair (f,g) where f : I — J andg: X - Yo fisa
natural transformation, i.e. a family of I-indexed functions g; : X (1) — Y (f(3)).

Equivalently (in the technical sense), one could work with the arrow category
Set™. From a type theoretic perspective, however, Fam(Set) seems more natural.

Consider a functor F': C — Fam(Set). Unfolding the definitions, we see that
its object part is given by a mapping sending X in C to a set Fy(X) and a family
Fi(X): Fo(X) — Set of Fy(X)-indexed sets. Similarly, the morphism part splits
up into two components and we write F' = (Fy, F}) for such a functor.

Dybjer [3] used this structure for categorical models of dependent type theory.
Roughly, a base category C is treated as a category of contexts, and a functor
F = (Ty, Tm) : C — Fam(Set) gives, for each context I, a set Ty(I") of types in
context I', together with a family Tm(I") : Ty(I") — Set with Tm([, o) the set
of terms of type ¢ in context I'. The morphism part of F' gives substitution of
both types and terms. We also need a comprehension operation I"- o to extend a
context I" with a new variable of some well-formed type o in context I". More
precisely, we have:

Definition 3 (Categories with families). A category with families is given
by

— A category C (the category of contexts) with a terminal object (the empty
context );

— A functor F = (Ty, Tm) : C°? — Fam(Set) (the types and terms functor).
For the morphism part, we introduce the notation _{-} for both types and
terms, i.e. if f: A — I then {f}: Ty(I') = Ty(A) and for every o € Ty(A)
we have {f}: Tm(A,o0) = Tm([,o{f});

— For each object I' in C and o € Ty(I") an object I" - o in C (the context
comprehension ) together with a morphism p: I'-o — I (the first projection )
and a term v € Tm(I"-o,0{p}) (the second projection) satisfying a universal
property (omitted here).

Ezample 4 (Set as a category with families). The category Set can be extended
to a category with families by defining

Ty(I')={A | A:I' — Set is a I'-indexed family of (small) sets} ,
A{f} = Ao feTy(4) (f:A4=1),
Tm(IA)=(z: ') — A(x)
alf} —aof €Tm(AALfY)  (FiA—T),
I' A= (XYz:D)A(x) .
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In light of Example 4, we are however interested in a slightly different inter-
pretation of the family structure of a category with families. We see A € Ty(I)
as a property of I, g € Tm([, o) as a kind of dependent function and I" - o as a
kind of dependent pair, with projections p and v.

Guided by this, we can now define what the type of the induction hypothesis
and the elimination principle for an (F, G)-dialgebra (uF'G,in) should be: in the
simple situation in (1), Op lifted properties of pF' to properties of F(uF') such
that there was an isomorphism ¢ : F((Xz:pF)P(x)) — (XY F(pF))Opr (P, )
with mg o pp = F(mp). In fact, this uniquely determines Op up to isomorphism.

Abstracting to an arbitrary category with families, we get: If P € Ty (uF'G),
then Op(P) € Typ(F(uFG)) is the unique-up-to-isomorphism type such that
there is an isomorphism ¢p : F(uFG - P) — F(uFG) - Op(P) with po pp =
F(p). In particular, this means that Oiq(P) = P. More concretely, (g can be
constructed explicitly from sigma types and extensional identity types, and every
category with finite limits can be extended to a category with families supporting
these [2].

We can now translate the elimination rule (1) to our more abstract setting.
The generic elimination rule becomes

P e Ty(uFG) step € Tm(F(uFG) - Op(P),0c(P){ino p}) @)
elim(P, step) € Tm(G(uF'G),0c(P))

For G =id : C — C, this reduces to the ordinary elimination rules for ordinary
algebras (interpreted in C). For C = Set, we get exactly the usual elimination
rule. However, we can also treat other forms of inductive data types, such as
induction-induction (see our CALCO paper [1] for details).

The proof of the equivalence between initiality and the elimination principle
can still be carried out in this more general setting. Thus, we get a uniform proof
for different sorts of induction such as ordinary induction, induction-induction,
induction-recursion, ...
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