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Abstract: Problems dealing with coordination of autonomous vehicles usually assume that
the agents share a universal orientation in their local reference frames. Although the sensing
requirements to satisfy this assumption can sometimes be low, they cannot always be guaranteed.
The basic problem of frame alingment is studied here, in the absence of orientation sensors, by
exploiting the notions of rigidity, visibility and communication graphs. First the relationship is
examined between geometric rigidity of a formation and the agents’ ability to agree on a shared
orientation to their local frames. Our main results are then formulated in terms of visibility and
communication graphs using cyclic graph coverage. Cases when only distances are measurable
are also investigated, in which case the motion capabilities of the agents need to be exploited

to resolve ambiguity caused by symmetry.
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1. INTRODUCTION

is still no set of sufficient and necessary conditions that
guarantee a particular arrangement is rigid based on the

Developments in distributed sensing have received widespread number of pair wise distances specified. Laman’s condi-

interest in recent years due, the appearance of inexpensive
sensors and the correspondent developments in distributed
control systems. These systems promise superior perfor-
mance and lower costs relative to their expensive high
performance single units of sensing with the added benefits
of robustness. Mounting these small sensing platforms
into movable platforms provides a network which, coupled
with some intelligence, can react to the conditions of the
environment.

Ideally we would like each of these mobile platforms to
take decisions by taking into account what is happening
around them (local decisions) and to react in a way that
improves the overall global performance of the system.
Even though the field of autonomous control for mobile
systems has been active during the last decade, funda-
mental problems remain open. One of those fundamental
problems is frame alignment: it is usually assumed that all
the agents understand their relative motions and positions
with respect to each other. If there is no attitude sensor
available then seeing each other and other non-agent en-
vironmental objects can help this alignment of frames. If
their visibility graph (see definitions later) contains rigid
structures, they can use those for frame alignment. Hence
rigidity of formations is relevant to the frame alignment
problem. For 2D deployments, rigidity theory (see for
instance Krick (2007) and references therein) provides a
satisfactory solution. However, in higher dimensions, there
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tion, as generalized to 3D, has proven insufficient (Mantler
and Snoeyink (2004)) for rigidity. More recent publications
Kim et al. (2010); Giordano et al. (2011) have not solved
this problem yet but addressed the mechanics and control
of rigid formations.

We have recently explored an alternative approach to
frame alignment in a recent paper (Caicedo-N and Veres
(2013)) when the particular task that the agents had to ad-
dress was formation control (Fax and Murray (2004),Jad-
babaie et al. (2003),Moreau (2004),01fati-Saber and Mur-
ray (2004)). We exploited consensus protocols to reach
agreement on local frame orientation of the reference frame
when the underlying communication graph was connected.
Our analysis has resulted that using a consensus control
law no agreement on the orientation would lead the agents
towards a stationary configuration. In this paper we exam-
ine how rigidity can help to address this issue. We present
a condition that ensures rigidity (and hence leads to frame
alignment under sufficient communications links between
agents), and discuss restrictions on the possible length of
a cycle that can be induced by the communication graph
induced by the robots.

The paper is organized as follows: §2 presents an overview
on the terminology and notation used throughout, as well
as a brief overview on rigidity; §3 discusses how can the
agents agree on a reference frame orientation by relying on
distances alone, and compares it to earlier results in the
field (in particular, that in Asimow and Roth (1978)); §4



discusses how the agents capabilities can be exploited to
extend the condition from §3; and §5 concludes.

2. PRELIMINARIES AND NOTATION

Consider N agents, labelled {1,2,..., N} deployed in R?.
Let Gc = (V,€) denote a communication graph with
vertices in 1-1 correspondence with the agents and (4, 5) €
& if and only if agents ¢ and j can communicate with
each other. We assume that communication is a symmetric
operation and, henceforth, (i,7) € £ <= (j,i) € €£.
Additionally, consider a directed bipartite visibility graph
Gy = (V,0,S) where V represents the agents and O is for
a set of environmental objects that are not agents. If there
is a directed edge from an agent vertex in V to an object
vertex in O then the agent can see the object. Similarly,
when agents can see each other, that is represented by
directed edges in S. In this paper we assume that such
graphs satisfy the following conditions.

Assumption 1. (1) The visibility relation S is symmetric
over the agent set V in Gy .

(2) The visibility relation S has directed edges from V to
O and none over O , or from O into V in Gy .

(3) The communication graph in G¢ is symmetric and
connected.

The first condition implies mutual visibility between
agents based on similar sensing capabilities. The second
assumption states that only an agent possesses the abil-
ity of vision that means bearing measurements in local
frames. The third assumption is to support each agent’s
ability to store transmitted information about other agents
indirectly. We thus assume, without loss of generality,
that each agent has a complete list of all other agents
in the formation, each agent can know when an agent
enters/leaves the formation (as in Caicedo-N and Zefran
(2010) that allows them to know information about other
agents they do not communicate with), so the information
gathered by agent ¢ and shared to agent j, might be shared
from agent j to other agents that are not neighbours of 7.
Connectivity enables the distribution of all information
to all agents, using each agent to re-broadcast any in-
formation it receives to all those it communicates with.
The notion of connectivity in G¢o leads to the definition of
neighbours.

Definition 1. For an agent with index 4 its neighbouring
set N; is defined by

Ni={il (i,j) € &}

and we call the elements of this set, the neighbours of i.

The concept of visibility needs to be defined to give a more
precise meaning to the presence of an edge in Gy .

Definition 2. A directed edge e € S connecting agents i
and j means that ¢ has a body frame coordinate system in
which it can determine the position of j. In this case, we
say that agent i can see agent j. We also say that agent
1 vaguely sees agent j if it can determine its distance but
not its precise direction in its local coordinate system.

Inclusion of vague visibility extends Gy into a labelled
graph. The visibility relation is however not assumed to be
transitive. The practical reason for this is that beyond a
certain distance the viewing agent is not be able to identify

the position of the agent seen in its coordinate for that to
be useful in shaping a geometric formation.

Finally we define a sufficient condition between geometric
rigidity of a formation of agents and their ability to define
local coordinates frames with aligned orientations.

Lemma 1. | sufficient condition of align ability | If the
communication and visibility graphs of a group of agents
are such that they enable the maintenance of a geo-
metrically rigid shape of their formation then there is a
distributed algorithm and communication protocol that
enables all their local coordinate systems to take the same
orientation.

Proof. If the agents are able to maintain a rigid formation
based on visibility (i.e. that they are able to locate other
agents in their local coordinate frames) and communica-
tion links among themselves, that implies two facts: (1)
their communication graph must be connected and (2)
each agent can see at least two other agents (see Lemma 2
below). The latter however ensures that each agent is able
to unambiguously locate the rigid shape of the formation
in their own local coordinate system. This means that they
can align their coordinate systems with a frame fixed to
the rigid shape of the formation that is shared. |

Note however that the agents’ ability to align their local
coordinate systems (based on visibility and communica-
tions) does not imply rigidity of their formation. They may
be able to have a variable-geometry formation and still
maintain aligned local frames (this goes beyond our scope
of this paper and it is the subject of further research).

2.1 Owverview of graph rigidity

The concept of graph rigidity used in problems related to
formation control is not new to the literature. For instance,
the last edition of 2008 Control Systems Magazine was
dedicated to this subject. For this paper, however, we are
not interested in formation control, and hence rather than
holding them to or rearranging the robots to a particular
configuration, we want them to share the distances of
the neighbours they can see, and with that information
establish a common orientation.

It is widely accepted that the first contribution in graph
rigidity was due to Euler, with a conjecture about polyhe-
dra. After Euler, Cauchy proved that two convex polyhe-
dra with congruent faces are congruent in R3. Asimow and
Roth (Asimow and Roth (1978)) proved that if a rod and
pin-joint structure in R? defines a convex polygon that is
rigid, then all of its faces must be triangular.

Even though the problem was first proposed in R3, we
still don’t have sufficient and necessary conditions that
guarantee the rigidity for any particular graph based on
the number of pairwise distances fixed relative to the
number of vertices.

2.2 Rigidity in 2D

In 2D, the set of conditions established by Laman (1970)
are both necessary and sufficient. A result on 2D rigidity
presented in Mantler and Snoeyink (2004):



Theorem 3. (Laman Conditions for 2D). A graph G =
(V, &) is rigid for dimension 2 if and only if there is a
subset £’ of £ such that:

(1) |€'|=21V]| -3, and
(2) for all &” C & where |V (£")] > 2, we have |£"] <
21V (&) —3.

Their condition emphasized rigidity as a consequence of
the connectivity on the graph in terms of distances known
between agents, rather than on the geometry that the
connections represent. In this paper, we discuss how for
3D connectivity does not tell the whole story, and how it
is possible to present some result instead by looking at
geometric properties of the resulting graph as dependent
on visibility and communications graphs.

2.8 Rigidity for shared orientation

We study rigidity in 3D only as tool, and use it as an inter-
mediate step in order to establish a uniform orientation for
reference frames. In the next section, we discuss some of
the current results for rigidity of general polyhedra in 3D.
In our main results we will focus on basic formations where
the agents are deployed on a circular path of length N,
which corresponds to their communication and visibility
graphs; and all the information they have available is
the location of their two neighbours in their own local
coordinate systems. We would thus derive a result that
is similar to that from Asimow and Roth, but without
the restriction of convexity. We are able to do so because,
in addition to relative distances (rod-joint formations), we
can exploit the fact that the agents would know the relative
location of its neighbours.

3. PROBLEM OF FRAME ALIGNMENT IN 3D

When dealing with structures in 3D, our natural approach
is to exploit a potential rigidity on the underlying forma-
tion to define a universal reference frame. However, the
problem of finding sufficient conditions for rigidity in 3D
is still open in terms of the graph of distances known
between agents. To provide some background, we present
an extension to Laman’s conditions, as first presented in
Graver et al. (1993).

Definition 4. (Extension of the Laman condition). A graph
G = (V,€&) is called a Laman graph in 3D if there is a subset
&' C £ such that:

(1) |€'|=21V| -6, and
(2) ¥&" C & where |V (E”)] > 3, then |E"| < 3|V (£")|—
6.

The relevance of this condition is that a similar condition
implied rigidity in 2D. Condition (2) (that no subgraph can
have too many edges) ensures that each edge contributes
to reducing the overall number of degrees of freedom, and
is not wasted within a subgraph that is already itself
rigid due to its other edges. It was proven in Mantler
and Snoeyink (2004) that there are limitations in the
number of edges that can be added to subgraphs under
Laman’s condition. First we introduce the concept of k-
vertex connectivity.

Definition 5. (k-vertex connected). A graph G is said to
be k-vertex connected if it is connected and there is a

set of k vertices so that by removing them G becomes
disconnected, and there is no set of k — 1 vertices so that,
by removing them, G becomes disconnected ((West, 2001,
p. 149)).

Theorem 6. (Theorem 1 in Mantler and Snoeyink (2004)).
A minimal graph G = (V, &) that satisfies Laman’s con-
dition is at most 5-connected. Furthermore, there are k-
connected flexible graphs for k = 3,4,5 that satisfy the
Laman condition for 3D.

This means that vertex connectivity alone cannot be used
to construct a rigidity test.

3.1 Some basic results

For our purposes this means that the distance-specific
degree of connectivity cannot be the only information used
by the agents in order to make decision on the possibility
of a universal orientation for their local reference frames.
Here we show that exploiting triangular structures, it is
possible to reach such an agreement on the orientation of
the reference frame.

Lemma 2. It V = {i,7},0 = 0 and Gy = Go =
{V,{(i,7),(j,7)}} then agents i and j are unable to align
their coordinate systems.

Proof. Suppose that agents ¢ and j are capable of aligning
their coordinate frame. Without loss of generality, assume
that j, as seen by 4, is on position (0,0,1). Note that,
regardless of the position on which j observes i, any
rotation by ¢, around its z axis, continues to lead to the
same information for both agents (this is, their relative
positions would not change) as in Figure 1. The same
is true for the orientation of the frame of agent j, after
rotating it around the line that joins ¢ and j. This
ambiguity on their relative orientations leads to the desired
result. a

J®(0,0.1)

Fig. 1. Two agents alone cannot agree on the orientation
of their reference frame by using only their relative
positions.

Lemma 3. If V = {i,j},0 = {k} and G, = {V,&} =
A6, (G0}, Ge = {V,EU{(4,k),(j,k)}} so that
1,7,k are not collinear; then agents ¢ and j are able to
align their coordinate systems.

Proof. Each agent can define a coordinate system that
has its z axis aligned with the line joining ¢ and j; and
its y axis to lie on the plane spanned by 4, j, k so that the
positive z axis direction is from i to j (i < j), the x axis
is perpendicular to the plane containing the three points,
and © — y — z form a right-handed coordinate system, as



in Figure 2. The meaning of this definition can be shared
by the two agents to form coordinate systems of identical
orientation in 3D. O
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Fig. 2. Two agents alone can agree on the orientation for
their reference frames with the aid of a third object.

Lemma 4. If each agent of an agent group V can see the
same object O € O and each other and they also have
a connected communication graph, then they have the
possibility to agree in a shared coordinate system of the
same orientation.

Proof. Based on Lemma 3 any two agents 4,57 € V
that communicate can have a shared orientation for their
coordinate system. Furthermore, agent ¢ can compute the
required transformation from its shared frame orientation
with agent j to its shared frame orientation with another
neighbouring agent k; i.e. agent ¢ can compute ;.
Similarly for agent j. As any two agents [ and m in
V are connected by a communication path, their own
coordinate systems transformation can be shared along
their communication path. This means that a common
orientation for the coordinate system can be agreed; for
instance, they can all set the orientation of their local
frames to that agreed by the agent with the lowest id, and
the agent of lowest id in its neighbouring set. The result
follows. a

Remark 1. Note that the previous algorithm is not very
scalable. In fact, if new agents are added to the system,
or fail due to battery constraints, the previous approach
would not converge, unless there is a higher level supervi-
sory stage which would continuously update the number of
agents (and their ids). For instance, a distributed counting
algorithm like the one in Caicedo-N and Zefran (2010) can
allow the agents to keep track of how many agents are
active in the formation, and to react when the number
changes.

The following corollary provides an initial condition on the
ability of a set of agents to agree on a shared orientation
for their coordinate systems.

Corollary 1. Let O =) and £ C S. Suppose that if j and
k are both neighbours of 4, then ¢ knows whether j, k are
also neighbours between themselves. If the communication
graph is connected and can be partitioned into triangles,
then the agents can agree on a shared orientation of their
coordinate systems.

Proof. For each agent i, and each pair of neighbours
j,k so that j and k are neighbours between themselves,
1,7,k can agree on a local reference frame following the
procedure in Lemma 3. For each agent ¢ with more than

Fig. 3. When the agents are in a circular path, they can
obtain the information of all the successive triangles.

one pair of neighbours, it would choose the transformation
that transforms each of its coordinate frames, into that
agreed on the triangle for which its agents have the
minimum sum. If there is more than one such a triangle,
it will choose which one to transform to at random. Since
the graph is connected the information regarding the
reference frame and the related transformation is shared
as in Lemma 4, the result follows. O

Remark 2. Note that this result is consistent with what
was established by Asimow and Roth (1978). However,
although we don’t use the convexity of the formation to
derive it, we relied on the property of the agents that they
belong to more than one triangle to establish the necessary
transformation. This can be done since each agent can
place all of its neighbours inside its own reference frame.
We discuss this in more detail at the end of the next
section.

8.2 Using triangularization

Up to this moment, we have been able to establish that a
formation is rigid in 3D when it can be triangularized by a
combination of both visibility and communication graphs.
A question that naturally arises at this moment is whether
an equivalent result can be derived with a less fine tiling of
the formation. In the following results, we will first show
that if the communication graph defines a cycle of length
7 or higher, then no rigid formation can be defined while
in §4 we will examine circular paths of lengths 4,5, 6.

Before we proceed with this, we describe the information
that each agent can have available. If agent ¢ is neighbour
with agent j and k, then agent ¢ not only can estimate
the length of the segments ij and ik, but also that of jk.
Henceforth, if agent ¢ is going to exchange information
with agent 7, it can provide the three lengths of the triangle
Ai,j, k. This information can be propagated throughout
the network. So, we assume that each agent knows the
following:

(1) The length of the distance between any two neigh-
bours, and
(2) The distance to any neighbour of a neighbour.

We can henceforth think of a semi-triangularization of the
circular path, as shown in Figure 3 where the dotted lines
show the distances known around agent ¢ on the cycle.

It is clear that, without previous agreements on the orien-
tation of the reference frames, this is the most complete
set of information they can obtain. One can easily verify



Fig. 4. Information available to agent ¢ via its immediate
neighbours.

that unless N < 6, the formation would have more degrees
of freedom than the agents’ constraints and hence rigidity
would not be attained. As a consequence of this, the agents
would not reach an agreement on the orientation of their
local reference frames by using only the known distance
on their geometric configuration.

Lemma 5. Assume that O = Q and € ¢ S. If N > 7
agents define a cycle in the communication graph, then
they would not posses enough information to agree on the
orientation of the coordinate frame.

Proof. Suppose, without loss of generality, that the
agents on the cycle are labelled 1,2,--- , N, in a clockwise
manner. The following discussion is taken modulo N. Each
agent i has 3 degrees of freedom (DOF) for its position
in R3. The total number of their DOF in R? is 3N. By
agent 7 observing its neighbours ¢ — 1,7 + 1, the location
of the remaining N — 3 reduces the numbers of DOF to
characterise the formation to 3(N — 3). Agents i — 1 and
i 4+ 1 share with ¢ the location of agents ¢ — 2 and 7 + 2
respectively. The information that now agent ¢ possess is
illustrated in Figure 4.

This alone is not sufficient for agent i to place those two
additional robots correctly on its own coordinate frame,
so agents ¢ — 1 and ¢ + 1 also share the distance between
i and ¢ — 2, and ¢ and ¢ 4 2 respectively. This reduces the
numbers of degrees of freedom from 3(N—3) to 3(N—3)—4.
Proceeding with this sharing, each time agents ¢+ — j and
1 + j provide agent ¢ with the distance information from
agent i — (j+ 1) toi—jand i — (j — 1), and from agent
i+ (j+1)toi+jand i+ (j — 1) respectively, the degrees
of freedom at the formation (for agent i) reduces in 4.
Henceforth, if there would be a chance for agent i to
completely characterize the formation in a unique way by
having access only to the information prescribed, it would
be needed that it possesses more constrains than degrees
of freedom. This is, 2(N — 1) > 3(N — 3) or, equivalently,
7 > N as we claimed.

Alternatively, on could argue that the the number of
constraints in the cycle is 2N and the total number of
DOF of the agenst together needs to be maximum 6, i.e.
3N —2N <6

that results N < 6 for the possibility of rigidity. a
Remark 3. The knowledge of the geometry of each of
the triangles ¢ — 1,4,7 + 1 define multiple possible cycles
1,2,---N when 4 < N < 6. This can be verified by

direct inspection. What this means, however, is not that
the formation is not rigid, but rather than the resulting

4!

Fig. 5. There are two possible configurations for the 4
agents if only the distances are known.

solids cannot be derived from each other via a rigid body
transformation.

4. CONDITIONS OF ALIGNMENT

The problem of having multiple polyhedra of the forma-
tion, not equivalent to each other by rigid-body trans-
formations despite the completeness of the distance con-
straints, is an interesting one (there are for instance 2
incongruent tetrahedra for any set of 6 edge lengths, if any)
that can be resolved not by looking at rigidity per se, but
by trying to solve the reference frame orientation problem.
In fact, as discussed earlier, these multiple polyhedra,
which are constructed with the information of the triangles
Ai—1,4,i+1 (mudulo N) for 1 <4 < N are equivalent via
reflexion to a plane. The example for N = 4 is shown in
figure 5. The induced pyramid 1,2, 3,4 is equivalent, upon
reflexion on the triangle A1, 2, 3 of the agent 4 (to become
agent 4’ in the figure). It is clear that the knowledge of
the linear segments is not enough to guarantee a unique
formation and, henceforth, the orientation of the reference
frame cannot be derived directly from the distances alone.
However, one might ask at this point whether it is possible
to break the ambiguities for the circular paths of length
4 < N < 6 by either exploiting the motion capabilities of
the agents. We expand on this point next

4.1 Circular paths of length 4,5,6

We will explain how could this work by relying on the
case N = 4. The extension to N = 5, N = 6 follows an
equivalent approach.

Note that for the agents not to be able to discern between
which of the two polyhedra is the one on which they
are actually deployed, it is necessary that the following
equalities between the lengths hold: 1,4 = 1,4/,3,4 =
3,4" and 2,4 = 2,4’ (equivalent ambiguities would arise
by considering reflections on the triangles A2,3,4 and
Al1,3,4). If agent 1 is going to make a small— change
of its position, the ambiguities would be preserved if and
only if it were to move on the plane that contains the
perpendicular bisector of the segment 4,4’. Any other
motion would break the symmetry: the agents would
remember where the previous position of agent 1 was, and
then compare, after its displacement has placed it into
a new location, whether this new location is consistent
with the polyhedron 1,2,3,4 or with 1,2,3,4’. Once this
is known, agent 1 chooses a reference frame for which the
axes  — y lie on the triangle A1,2,3, the fourth vertex
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Fig. 6. The motion of the agent with the lowest id breaks
the ambiguities.

lies on the positive z axis; and one between the x or y axis
lies on the segment 1,2 in such a way that the reference
frame is a right-handed frame (Fig.6).

4.2 Main results

We can summarize the previous discussion in the following
result. The cases for N =5 and N = 6 are equivalent.

Lemma 7. Let 4 < N < 6 agents be arranged on a circular
path. If each of the agents have access to the informa-
tion on the shape of each of the triangles A — 1,7, + 1
(modulo N), then at least two possible circular paths
in R3 can be constructed. Ambiguity in these paths can
be resolved by allowing the agent with the lowest id to
perform a random motion in a direction other than that
of the symmetry planes.

Combining the previous results, we are now in the position
to state the main result of this paper: a condition for
rigidity, and hence orientation of the reference frame, in
a formation of autonomous agents.

Theorem 8. Consider a formation of N agents deployed
in R3, with G¢ being their communication graph, and Gy
their visibility graph. Given that the agents are capable of
identifying the position of their neighbours in their coor-
dinate systems, the following are sufficient and necessary
conditions for the possibility of them agreeing on the same
orientation of a global frame they would share:

(1) G¢ is connected, and Gy is 2-connected.
(2) Go can be partitioned into circular paths of length
less than or equal to 6.

Remark 4. Observe that unlike Laman’s conditions (re-
produced here in Theorem 3), which rely only on the
connectivity of the graph, we also exploit the geometry
of the formation to derive the result.

5. CONCLUSIONS

We have presented conditions under which N agents can
agree on the orientation of their own local reference frames
in a distributed robotic network upon deployment. Under
the assumption that a set of N agents is characterized by
a circular visibility path, they can agree unambiguously
on the orientation of the coordinate frame if and only if
the original path was of length less than or equal to 6 by
sharing their relative distances. By exploiting connectivity
of the communication graph, we have been able to prove
that if the visibility graph induced by the agents induce
a triangularization, then they can agree on a reference

frame. This last result is obtained similarly to that proved
by Asimow and Roth in 1978, with the fundamental

difference that, by exploiting the ability of the agents to
identify the location of its neighbours (and not only their
relative distances) we do not rely on the convexity of the
polyhedron. Using the motion ability allows to extend the
result even further: the agents will be able to agree on
the orientation of their local reference frame when the
communication graph defines a polyhedron that can be
partitioned into cycles of length less than or equal to 6.
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