
Planning Games

Ronen I. Brafman
Computer Science Dept.
Ben-Gurion Univ., Israel

brafman@cs.bgu.ac.il

Carmel Domshlak and Yagil Engel
Industrial Eng. and Management

Technion–Israel Inst. of Technology
dcarmel,yagile@ie.technion.ac.il

Moshe Tennenholtz
Microsoft Israel R&D Center

& Technion–IIT
moshet@microsoft.com

Abstract
We introduce planning games, a study of interac-
tions of self-motivated agents in automated plan-
ning settings. Planning games extend STRIPS-like
models of single-agent planning to systems of mul-
tiple self-interested agents, providing a rich class of
structured games that capture subtle forms of local
interactions. We consider two basic models of plan-
ning games and adapt game-theoretic solution con-
cepts to these models. In both models, agents may
need to cooperate in order to achieve their goals,
but are assumed to do so only in order to increase
their net benefit. For each model we study the com-
putational problem of finding a stable solution and
provide efficient algorithms for systems exhibiting
acyclic interaction structure.

1 Introduction
Work in domain-independent AI planning has made substan-
tial progress in recent years — today, we can efficiently solve
sophisticated problems of varying expressivity, and we bet-
ter understand the relationship between the problem struc-
ture and the worst-case time complexity of solving it. Much
progress has been made in the area of multi-agent (MA) sys-
tems as well: great performance improvements have been
achieved in various concrete domains, and computational
game theory became an important theoretical basis for MA
systems research. Still, multi-agent planning seems to lack
simple generic models that extend the basic single-agent
STRIPS planning model (and its various off-springs) with ap-
propriate game-theoretic constructs.

An obvious difference between single-agent planning and
multi-agent planning is that each agent brings into a MA
system its own abilities, and together the agents are able
to achieve more than they could achieve in isolation. Even
the basic setting of a fully cooperative MA system, where
the goal definition remains similar to that of single-agent
planning, raises interesting computational questions, some of
which have been explored within the scope of the multi-entity
model [Moses and Tennenholtz, 1995] and MA-STRIPS plan-
ning [Brafman and Domshlak, 2008]. More so, when agents
are self-interested, immediate and well known complications
arise, and additional structure is needed.

The first issue is modeling the personal costs and benefits
of each agent. The cost is naturally captured by the total cost
of the actions carried out by the agent. The benefit compo-
nent is less obvious: the agents may either attempt to achieve
a joint goal that has some (possibly different) value to each
agent, or they may pursue individual goals. The second issue
is that of the solution concept. In contrast to MA planning
for fully cooperative agents, the solution concept is no longer
obvious once the agents are self-interested. For instance, if
agent ϕ prefers plan π to plan π′, while agent ϕ′ prefers plan
π′ to plan π, which plan should be chosen for the system?
What should be criteria for selecting one solution among a
set of possible solutions is the basic question tackled in game-
theory; this suggests incorporating some game-theoretic ideas
in planning models.

Previous work have considered planning for self-interested
agents in fully adversarial settings (e.g., [Ben Larbi et al.,
2007; Bowling et al., 2003]). In contrast, we consider MA
planning for self-interested, yet ready to cooperate agents.
Another line of work [Ephrati et al., 1995; Ephrati and Rosen-
schein, 1997] addressed a similar problem space, however in
a more specific setting without attempting to exploit the au-
tomated planning structure for computational purposes. We
approach this problem both conceptually and computation-
ally. The challenge here is to define natural classes of strate-
gic games and respective solution concepts that properly cap-
ture the context of MA planning. We suggest two basic mod-
els corresponding to variants of what we call planning games.
The precise strategy space vary between the two models, but
in both, each strategy is a course of action of a single agent
(referred as local plan), and a joint strategy is a multi-agent
plan of the whole system.

In our first model, called coalition-planning games, each
agent has its own goal, as well as a set of actions it is able
to perform. To achieve its goal, an agent may either need,
or just find it cost-efficient, to be assisted by some other
agents. The question is, when would a coalition of agents
work jointly to achieve their individual goals without being
tempted to do something else. In other words, under what
conditions a plan for such a MA system will be stable? We
consider a coalition’s joint plan to be stable if no subset of
its agents would benefit by joining an alternative coalition.
Capturing the specifics of planning agents, this concept is in
the spirit both of the strong equilibrium in non-cooperative

games [Aumann, 1959], and of the core in Non-Transferable-
Utility (NTU) cooperative games [Aumann and Peleg, 1960].

Our second model, called auction-planning games, cap-
tures problems in which coalitions of agents compete for the
achievement of a single goal which yields a monetary reward.
For instance, consider an auction in which coalitions bid for
a construction contract. Such a coalition must not only be
able to achieve the goal, but also have a winning bid. More-
over, its members should have no reason to switch to another
coalition. Capturing all that, our concept of stable solutions
is in the spirit of the classical core [von Neumann and Mor-
genstern, 1944], yet adapted to the strategic setting of self-
interested planning agents.

Planning games address many realistic problems in which
the complexity of the domain stems from the interplay of
game-theoretic and planning issues. However, planning
games also contributes to computational game-theory; by in-
troducing new structures of agent interaction that go beyond
the previous work on local structure in games (e.g. [Kearns
and Littman, 2001; Leyton-Brown and Tennenholtz, 2003;
Ieong and Shoham, 2005]). In graphical games, for instance,
the payoff of each agent depends on a small number of neigh-
boring agents [Kearns and Littman, 2001]. In contrast, in
planning games each agent can depend indirectly on every
other agent, because the outcome of a joint plan depends on
all agents participating in it. Despite that, for both types of
planning games, we show that when a certain graphical struc-
ture induced by the system is acyclic, stable plans can be
found in time polynomial in the description size of the MA
system.

2 Background
The STRIPS formalism models domains using a set P of
boolean state variables (atoms). An agent has a set of avail-
able actions A. Each action a ∈ A is characterized by its
preconditions (pre(a) ⊆ P) and effects. The former are vari-
ables whose value must be positive for the action to be feasi-
ble, and the latter are variables whose values are modified by
the action. Variables whose new values are positive are the
add effects (add(a)), and those whose new values are nega-
tive are the delete effects (del(a)). For example, having a key
(atom Have-Key) is a precondition of the action Open-Door,
and atom Door-Open may be its add effect. Given an initial
state I, and a goal state G, a plan is a sequence of actions such
that each action in its turn is feasible (that is, its precondi-
tions hold due to previous actions in the sequence), and the
goal state is guaranteed to hold when the plan is completed.

Our formalism and algorithms build upon the work of Braf-
man and Domshlak [2008] (BD, for short) who investigated
the worst-case time complexity of planning for cooperative
MA systems. BD introduce a minimal extension of STRIPS
to the cooperative MA setting. A MA-STRIPS problem for
a system of agents Φ = {ϕi}ki=1 is given by a 4-tuple
Π = 〈P, {Ai}ki=1, I, G〉 where P is a finite set of atoms,
I ⊆ P and G ⊆ P encode the initial state and goal, respec-
tively, and, for 1 ≤ i ≤ k,Ai is the set of actions that agent ϕi
is capable of performing. Each action a ∈ A =

⋃
Ai has the

STRIPS syntax and semantics; a = 〈pre(a), add(a), del(a)〉 is

given by its preconditions, add effects, and delete effects.
BD make the simple agents assumption that the (suitably

formalized) local planning problem of each agent can be
solved in polynomial time. In this case, the sole cause of com-
plexity of MA planning stems from the interactions between
agents. Intuitively, if the agents are completely independent,
then MA planning reduces to multiple independent single-
agent planning problems, and consequently, the overall time
complexity is linear in the number of agents. However, if the
MA system is strongly coupled, the complexity might be ex-
ponential in the number of agents. BD identify a concrete,
quantifiable parameter of the MA system that captures its de-
gree of coupling, and show that any MA-STRIPS problem can
be compiled into a constraint satisfaction problem (CSP), ef-
ficiently solvable when that parameter’s value is not too high.

We adopt and, for ease of presentation further strengthen
the simple agents assumption, requiring each agent’s plan to
be bounded in length. This simplifies some technicalities, al-
lowing us to focus on the game-theoretic constructions; all
our results extend with no complications to simple agents
with unbounded local plans. Moreover, the key computa-
tional questions remain—the size of the joint plans grows lin-
early, and thus the size of the plan space grows exponentially
with the number of agents.

We highlight the following technical details of BD’s com-
pilation of a planning problem Π into a CSP.

(a) The CSP of Π is defined over variables bijectively corre-
sponding to the agents Φ, with the variable domainD(ϕ)
containing sequences of annotated actions, bounded in
length by a fixed δ.

(b) Each annotated action of agent ϕi is a tuple
(a, t, {(j1, t1), . . . , (jm, tm)}) where a ∈ Ai, t and
all ti are time points, and each ji is an identity of some
other agent. The semantics of such a tuple is “at time t,
ϕi will perform action a, and it requires agents ϕjl to
provide the jl-th precondition of a at time tjl .”

(c) There are unary and binary constraints. Each unary con-
straint ensures that a sequence of annotated actions is
self-consistent. That is, if one annotated action of ϕ re-
quires it to supply itself with some precondition, then an-
other annotated action in the sequence must produce this
precondition at the right time. Such self-consistent se-
quences of annotated actions are called the agent’s strate-
gies. Strategies may include less than δ actions; in par-
ticular, we use ⊥ (the null strategy) to denote an empty
sequence. The binary constraints capture inter-agent de-
pendencies. θ ∈ D(ϕ) and θ′ ∈ D(ϕ′) satisfy their con-
straint if whenever θ′ requires a precondition by ϕ at time
t, θ contains an action producing this precondition at t,
and vice versa. In that case, we say that θ and θ′ match.

(d) The constraint network induced by that CSP is isomor-
phic to the agent interaction graph (AIG) IGΠ in which
the nodes are the agents, and there is an edge between two
agents if an action of one of them either adds or deletes a
precondition of some action of the other agent.

Any set of pair-wise matching strategies θ1, . . . , θk of the
respective agents (that is, any solution to the CSP), constitutes

a valid plan for Π. BD show that such a CSP can be solved
in time exponential only in wδ, where w is the tree-width of
IGΠ. In particular, if IGΠ is acyclic, then w = 1, and thus Π
can be solved in time exponential only in δ, regardless of the
number of agents involved.

3 Coalition-Planning Games
BD exploit the structure of the MA system to achieve
tractability, within a model that assumes that agents are fully
cooperative, working together to achieve a mutual goal. In
many realistic settings, however, agents are self-interested,
have personal goals and costs, and are motivated to act to in-
crease their personal net benefit. Yet, because different agents
may have different capabilities, they may still find it benefi-
cial to cooperate with each other. This creates some interest-
ing tension between their private utility maximization and the
need to provide incentives to other agents whose help they
desire. To capture such settings, which introduce a game-
theoretic flavor into the planning problem, we consider a min-
imal extension of the MA-STRIPS formalism to self-interested
agents, which we call coalition-planning games (CoPG). MA-
STRIPS extended STRIPS by associating actions with agents,
and CoPG extends MA-STRIPS by associating a single sub-
goal with each agent and associating personal costs with ac-
tions. The subgoals are associated with personal values, or
reward, as well. Formally:

Definition 1 A coalition-planning game (CoPG) for a sys-
tem of agents Φ is a tuple Π = 〈P,A, I,G, c, r〉 where atoms
P , initial state I , and actions A are defined as in a MA-
STRIPS. G ⊂ P is a set of goal atoms, one per agent, with
gϕ ∈ G denoting the personal goal of agent ϕ, c is an ac-
tion cost function c : A → <+, and r : Φ → < is a function
capturing the reward each agent associates with its own goal.

A joint strategy of the agents induces a (possibly parallel)
plan π that contains the actions each agent performs at each
time step according to its own strategy. We use π|ϕ to denote
the actions of agent ϕ within π. The reward agent ϕ obtains
from plan π, denoted by rϕ(π), is r(ϕ) if π achieves gϕ , and
zero otherwise. The personal cost of each agent in a plan π,
denoted cϕ(π), is the sum of costs of its actions in π, i.e.,∑
a∈π|ϕ c(a). As π|ϕ corresponds to a strategy θ ∈ D(ϕ),

we also use cϕ(·) for strategies, as in cϕ(θ). The net value of
a plan π to agent ϕ (or its utility) is uϕ(π) = rϕ(π)− cϕ(π).

As common in situations where cooperation of selfish
agents is required, we look for solutions which have some
notion of stability. Intuitively, a solution is stable if there ex-
ists no set of agents, all of which can increase their utility by
jointly adopting a different plan.

Definition 2 A solution π for a coalition-planning game Π
of agents Φ is called stable iff there is no alternative plan
π′ involving a subset of agents Φ′ ⊆ Φ such that uϕ(π′) >
uϕ(π) for all ϕ ∈ Φ′.

Roughly speaking, our definition of stability is in the spirit
of strong equilibrium in non-cooperative games. A strong

algorithm CoPG-Acyclic(Π,Φ)
input: an acyclic CoPG Π over k agents Φ
output: a stable plan for Π

fix a topological ordering ϕ1, . . . , ϕk over Φ
for i = k down to 1:

for each θ ∈ D(ϕi):
if for some child ϕj of ϕi, θ has no matches in D(ϕj) then

remove θ from D(ϕi)
D∗(ϕi) = {θ ∈ D(ϕi)|

θ does not require preconditions from ϕ′is parent}
ûϕ = maxθ∈D∗(ϕ) ūϕ(θ)
for each θ ∈ D(ϕi):

if ūϕi(θ) < ûϕi then remove θ from D(ϕi)
for i = 1 to k:

select θϕi ∈ D(ϕi) matching θϕj selected for the parent ϕj of ϕi
merge {θϕ1 , . . . , θϕk} into a joint plan π
return π

Figure 1: Algorithm for stable planning in acyclic coalition-
planning games.

equilibrium [Aumann, 1959] is a strategy profile, one strat-
egy for each agent, such that a deviation by any subset of
the agents will not be beneficial to at least one of them, as-
suming that the other agents stick to their strategies. In a
planning domain the idea of “sticking” to strategies may be
problematic, since these may require pre-conditions that the
deviating agents no longer supply. In our definition of stabil-
ity we therefore assume that the other agents take the “null
action”, i.e., do not interfere with the deviation. This is con-
sistent with the idea that a stable plan is one in which no sub-
set of agents can “complain” that they can all do better. In the
full version of this paper we also consider the case where the
other agents are adversarial, i.e., they may perform arbitrary
actions that could interfere with the deviating plan. The latter
is similar to the notion of c-acceptable strategies defined by
Aumann [1959]. These definitions are also in the spirit of the
NTU-core [Aumann and Peleg, 1960], but this concept refers
to coalition outcomes rather than to strategic agent behavior.

We now show that under the “simple agent” assump-
tion discussed earlier, planning for coalition-planning games
forming acyclic agent interaction graph is tractable. Our algo-
rithm is based on the common message-passing approach for
solving graphical reasoning problems such as CSPs. How-
ever, as stability does not seem to have a direct CSP inter-
pretation, we provide a special purpose algorithm which we
describe below. To simplify the presentation, we pose the
(easy to drop) assumption that the goals of all the agents are
different, and ϕ will be the only agent that can achieve gϕ .

The overall flow of the algorithm is similar to the two-pass
algorithm for solving CSP with an acyclic constraint graph,
which is conveniently viewed as a tree. At the first, bottom-
up phase, each node ϕ in its turn, gets a message with D(ϕ′)
from each of its children ϕ′, all of whom were previously
processed. Given these children’s domains, ϕ removes from
D(ϕ) any strategy that does not match at least one strategy
in the domain of each child. At the second, top-down phase,
we select an arbitrary strategy θϕ of the root variable ϕ, and
pass it to ϕ’s children. Given θϕ , each child ϕ′ of ϕ selects a

! !'

! !' !'!

! !' ! !'

ϕ1

ϕ2 ϕ3

ϕ4 ϕ5

Figure 2: Agent interaction graph for the example problem.
Each node is annotated with the strategy set of the respective
agent. An arrow from strategy θϕ to strategy θϕ′ indicates
that θϕ provides precondition required by θϕ′ from ϕ.

strategy θϕ′ ∈ D(ϕ′) that matches θϕ , and passes it to its own
children. Such a matching strategy θϕ′ is guaranteed to exist,
or otherwise θϕ would have been discarded at the bottom-up
phase. The process proceeds this way down the tree until it
reaches the leaves, and a valid plan is then straightforwardly
constructed from the selected strategies {θϕi}ki=1.

By itself, the above scheme finds a plan, but not necessarily
a stable one. In order to limit the algorithm’s output to stable
plans, we add a stability check to the bottom-up phase, as
follows. First, we define the potential utility ūϕ(θϕ) of agent
ϕ from its strategy θϕ as ūϕ(θϕ) = r(ϕ) − cϕ(θϕ). It is
“potential” because it is realized only if θϕ is completed to a
valid plan π, in which case uϕ(π) = ūϕ(θϕ).

Let D∗(ϕ) ⊆ D(ϕ) denote the set of strategies in the
pruned domain of ϕ that do not require the support of ϕ’s
parent. That is, all the requests (if any) to support precondi-
tions in a strategy θϕ ∈ D∗(ϕ) are only from the children of
ϕ. Let ûϕ = maxθ∈D∗(ϕ) ūϕ(θ). That is, ûϕ is the highest
utility ϕ can get from a plan that does not involve any of its
ancestors. We discard from D(ϕ) all strategies θ such that
ūϕ(θ) < ûϕ . Note that in particular any strategy θ whose
induced cost cϕ(θ) is greater than r(ϕ) is discarded, and if
D∗(ϕ) includes any strategy with induced cost lower than
r(ϕ), then ⊥ is also discarded from D(ϕ).

Figure 1 summarizes the algorithm, and we now provide a
small example illustrating it. Consider a coalition-planning
game over five agents Φ = {ϕ1, . . . , ϕ5}, with the agent
interaction graph being as depicted in Figure 2. Assume
that each agent ϕ has two possible goal-achieving strate-
gies, θϕ and θ′ϕ , with induced costs cϕ(θϕ) < cϕ(θ′ϕ), and
that the personal utilities r(ϕ) exceed these costs, providing
ūϕ(θϕ) > ūϕ(θ′ϕ) > 0. The inter-agent relationship be-
tween the personal agent strategies is depicted in Figure 2;
for instance, θϕ1 requires some preconditions from ϕ2, and
ϕ2 can provide the required support by adopting θ′ϕ2

.
In the bottom-up phase, D∗(ϕ4) = {θϕ4 , θ

′
ϕ4
,⊥}, there-

fore ûϕ4 = ūϕ4(θϕ4). θ′ϕ4
and ⊥ provide lower utility to

ϕ4, and thus are discarded, and the refined domain D(ϕ4) =
{θϕ4} is sent to ϕ2. ϕ5 has D∗(ϕ5) = {θ′ϕ5

,⊥}, hence
ûϕ5 = ūϕ5(θ′ϕ5

), and only ⊥ is discarded from D(ϕ5). Next,
ϕ2 finds that θϕ4 (the only strategy received fromϕ4) matches
its strategies θ′ϕ2

and ⊥, but not θϕ2 (because θϕ4 does not

ϕ D∗(ϕ) ûϕ D(ϕ)
ϕ4 {θϕ4 , θ

′
ϕ4 ,⊥} ūϕ4(θϕ4) {θϕ4}

ϕ5 {θ′ϕ5 ,⊥} ūϕ3(θ′ϕ3) {θϕ5 , θ
′
ϕ5}

ϕ2 {θ′ϕ2 ,⊥} ūϕ2(θ′ϕ2) {θ′ϕ2}
ϕ3 {⊥} 0 {θϕ3 , θ

′
ϕ3 ,⊥}

ϕ1 {θϕ1 , θ
′
ϕ1 ,⊥} ūϕ1(θϕ1) {θϕ1}

Table 1: The result of the bottom-up processing for the exam-
ple; the domains D(ϕ) are shown after processing.

provide the requirements of θϕ2 from ϕ4). Therefore, the
strategy θϕ2 is discarded from D(ϕ2), and the modified do-
main {θ′ϕ2

,⊥} is now evaluated against D(ϕ5), with θ′ϕ5

matching both θ′ϕ2
and ⊥. Here, too, ⊥ is discarded as ϕ2

has proved to have a better alternative θ′ϕ2
. Proceeding now

with agent ϕ3, both its non-null strategies require ϕ1’s sup-
port, and thus D∗(ϕ3) = {⊥}, ûϕ3 = 0, and no strategy
is discarded from the domain. When ϕ1 is processed, θϕ1

matches only ⊥ in D(ϕ3), whereas θ′ϕ1
matches all strate-

gies of D(ϕ3). Both strategies also match θ′ϕ2
, and θ′ϕ1

also
matches ⊥ of ϕ2. As both stategies of ϕ1 have a match with
each child, ûϕ1 = ūϕ1(θϕ1) and θ′ϕ1

and ⊥ are discarded.
Table 1 shows the domains of the nodes after processing.
For the top-down phase, the only possible joint strategy is
(θϕ1 , θ

′
ϕ2
, θϕ4 , θ

′
ϕ5

) and ⊥ for ϕ3. There are other feasible
joint strategies in which all agents achieve their goals, for
example (θ′ϕ1

, θ′ϕ2
, θ′ϕ4

, θ′ϕ5
, θϕ3). However, the latter joint

strategy has several deviations. For example, ϕ1 deviates to
θϕ1 , and {ϕ2, ϕ5} jointly deviate to their θ strategies.

Theorem 1 For any coalition-planning game Π over simple
agents, if IGΠ is acyclic, then a stable plan exists, and algo-
rithm CoPG-Acyclic returns such a plan.1

Note that the algorithm does not return all stable plans, but
it is guaranteed to return at least one. Also, if the null plan (⊥
strategy for all agents) is stable, then it is the only stable plan.

4 Auction-Planning Games
In coalition-planning games agents are motivated by their
selfish goals but do not compete with each other. We now
consider scenarios in which each agent aims at joining a
coalition that jointly satisfies a goal, and does so in cost lower
than competing coalitions. Satisfying a goal yields a cer-
tain monetary gain on whose distribution the related coali-
tion must decide. Perhaps most immediate application of this
model is procurement auctions. While classical auction the-
ory considers the bidding agents and their values to be fixed,
in practice bidding may require cooperation of multiple self-
ish parties, each with its own capabilities (e.g., products it can
supply under different preconditions with different costs and
constraints). Our model captures this process of preparation
for bidding where agents must combine their capabilities in a
non-trivial manner.

First, we consider a setting in which the winning coalition
gets a fixed bonus plus its plan’s cost. We then consider a

1All proofs are provided in an appendix.

setting in the spirit of 2nd price (reverse) auction; here the
winning coalition is paid the cost associated with the cheap-
est plan of the complementary coalition. In both cases (i)
the gains are to be distributed among the coalition members,
and (ii) a coalition is stable if no subset of its members can
join some non-winning agents and form a joint plan with a
distribution of payments that is more beneficial to all. This
setting induces a game with side payments, and the solution
concept is in the spirit of the core solution. However, in our
setting, the value of a coalition is determined by its possi-
ble joint plans and strategic distribution of gain, rather than
being given exogenously. In addition, our solution concept
considers deviations by coalitions involving both winning and
non-winning members. Hence, planning games suggest new,
natural ways of combining elements of cooperative and non-
cooperative game theory.

Definition 3 An auction-planning game (AuPG) for a sys-
tem of agents Φ is a tuple Π = 〈P,A, I,G, c, r〉, where P , A,
I , and G are as in MA-STRIPS, c is an action cost function
c : A → <+, and r : A∗ → <+ is a specification of the
reward of the coalition selected to achieve the goal.

A solution σ for a AuPG is a triplet 〈πσ,Γσ, r̂σ〉 where πσ
is a MA-STRIPS plan for Π, Γσ ⊆ Φ is a coalition performing
πσ , and r̂σ : Γσ → <+ is a division of the reward r(πσ)
among the coalition members such that

∑
ϕ∈Γσ

r̂σ(ϕ) =
r(πσ). We make a natural assumption that r(·) is monoton-
ically increasing in the cost of the chosen coalition. Hence,
given a partition of Φ into coalitions, the coalition having the
lowest-cost plan is selected and granted the reward.

4.1 Fixed-Bonus Reward Model
In our first setting, the winning coalition is granted the cost of
its plan c(πσ) =

∑
a∈πσ c(a) plus some fixed bonus B > 0,

that is, r(πσ) = c(πσ) + B. A rational agent will not partic-
ipate in a plan for a personal reward lower than its personal
costs in that plan, and thus each member ϕ ∈ Γσ is paid
cϕ(π) + bσ(ϕ), such that

∑
ϕ∈Γσ

bσ(ϕ) = B, and hence ϕ’s
utility is uϕ(σ) = bσ(ϕ). Because the reward is distributed
within the winning coalition, the utility of the agents outside
it is trivially zero. With divisible utilities, coalitions will al-
ways (weakly) prefer to use their lowest-cost plan. We use
c∗(Γ) to denote the lowest cost with which Γ can attain the
goal; c∗(Γ) =∞ denotes inability of Γ to attain the goal.

Definition 4 A solution σ is a winning bid if for any Γ ⊆
Φ \ Γσ , and for any Γ ⊂ Γσ , holds c(πσ) < c∗(Γ). That is,
neither agents outside Γσ , nor any strict subset of Γσ , have a
plan with a lower cost.

This definition is based on an implicit model of the auction
issuer, or auctioneer, who chooses the coalition for which the
reward is the lowest. Furthermore, the auctioneer prevents
manipulation of the reward by not selecting coalitions which
include redundant members, because such coalitions poten-
tially inflate their bonus as those redundant members could
otherwise be part of a competing coalition.

Definition 5 A winning-bid σ is stable if there is no winning-
bid σ′ 6= σ with uϕ(σ′) > uϕ(σ) for all ϕ ∈ Γσ′ .

We say that a coalition is stable if it has a stable winning-
bid solution. It turns out that stable coalitions in fixed-bonus
AuPGs have a verifiable topological characterization.

Lemma 2 A coalition Γσ with a winning-bid solution σ is
stable unless there exist coalitions Γ and Γ′, both having goal
achieving plans, such that (i) the three coalitions are pair-
wise non-disjoint, and (ii) neither Γσ∩Γ′ is included in Γσ∩Γ
nor the other way round. Furthermore, if such Γ and Γ′ do
exist, and both have winning-bids, then Γσ is not stable.

Lemma 2 implies that refuting the stability of a winning-
bid requires a cycle of coalitions. Because a winning-bid
coalition is required to be minimal, and thus connected in the
agent interaction graph, a cycle of coalitions implies a cycle
in the AIG. Thus, if the AIG is acyclic, any winning-bid is
stable. We can therefore construct a stable solution σ as fol-
lows: (i) find a cost-optimal plan π for Φ, (ii) define Γσ to
be the set of agents that participate in π, and (iii) allocate the
reward to prevent deviations by intersecting subsets. The last
step can be done efficiently similar to the method used by the
algorithm we present below.

4.2 Second-Cost Reward Model
We now take the auction analogy one step further, and de-
fine the reward to be the cost of the second-best solution.
This model strengthens the attractiveness of lower-cost coali-
tions because they have higher utility to distribute among
their agents. The reward specification includes a reserve price
ρ, denoting the maximal possible reward, that is, r(πσ) =
min{ρ,minΓ⊆Φ\Γσ c

∗(Γ)}.
As with a fixed bonus, acyclic agent-interaction graphs are

easier to handle because for a given coalition there exists a
single threat on its stability. Therefore, a coalition that ob-
tains the best possible bonus (the bonus-optimal coalition),
must be stable. Note that the bonus-optimal plan may not be
the cost-optimal one; a higher cost coalition may have weaker
competition by its complement and hence achieve a higher
bonus. In order to find a bonus-optimal coalition, we iterate
over the cuts of AIG. Each edge (ϕ′, ϕ′′) defines a pair of “di-
rectional” cuts ϕ′—ϕ′′ and ϕ′′—ϕ′. By Γϕ′—ϕ′′ we denote
the nodes on the ϕ′ side of the edge. In addition, π∗(Γ) refers
to a cost-optimal plan for each Γ ⊆ Φ. A plan may actively
involve only a subset of Γ, denoted henceforce by Γ̄(π∗(Γ)).

The cut-bonus-optimal coalition of ϕ′—ϕ′′ is defined as
a bonus-optimal coalition among all coalitions Γ in Γϕ′—ϕ′′
that fulfill two conditions: (1) they include ϕ′, (2) their
second-best coalition is on the other side of the edge (that is,
Γ̄(π∗(Φ \ Γ)) ⊆ Γϕ′′—ϕ′). The cut value V (ϕ′—ϕ′′) is the
bonus obtained by the respective cut-bonus-optimal coalition.

For example, consider the AIG in Figure 3(a), for which
the possible goal-achieving coalitions are listed in Figure 3(b)
along with their respective costs. The cut-bonus-optimal
coalition of the cut ϕ5—ϕ7 is {ϕ1, ϕ4, ϕ5}, whose second-
best coalition is {ϕ6, ϕ7} and hence it achieves a bonus of
7−4 = 3. The cut-bonus-optimal coalition of the cut ϕ7—ϕ5

ϕ1 ϕ2

ϕ3 ϕ4

ϕ5 ϕ6

ϕ7 S c∗(S)
ϕ3, ϕ5 3

ϕ1, ϕ4, ϕ5 4
ϕ2, ϕ4 5
ϕ6, ϕ7 7

ϕ2, ϕ4, ϕ5 3.5
ϕ1 5.9

(a) (b)

Figure 3: (a) AIG and (b) goal-achieving coalitions and their
respective costs of plans, for illustration of AuPG-Acyclic.

is {ϕ6, ϕ7}, a coalition which in fact does not have a winning-
bid (or, in other words, obtains negative bonus).

Lemma 3 Let B∗ be the highest bonus possible for Π. Then
there exists a cut ϕ′—ϕ′′ such that V (ϕ′—ϕ′′) = B∗.

An immediate corollary is that a coalition that obtains a
bonus which is the maximum cut value in IGΠ, is a bonus-
optimal coalition for Π. It is therefore sufficient to find all
the cut values, while recording which coalition achieves each
one. Our algorithm, depicted in Figure 4, computes a cut-
bonus-optimal coalition, for a cut ϕ′—ϕ′′, as follows. It first
computes a cost-optimal plan, constrained to include ϕ′.2 If
its second-best is in the other side of the cut, we are done.
Otherwise, as shown in the proof of Theorem 4, the path
between ϕ′ and that second-best (denoted path(·, ·)), must
be part of the cut-bonus-optimal plan. Hence in each iter-
ation, the set which constrains the cut-bonus-optimal plan-
ning problem grows, until the cost-optimal plan converges to
the cut-bonus-optimal one. The algorithm executes a num-
ber of cost-optimal planning problems which is in the worst-
case quadratic in |Φ|, hence it is polynomial under the simple
agents assumption and given the results of BD.

Theorem 4 For any acyclic AuPG Π with the second-cost
reward model, there exists a stable winning-bid solution, and
algorithm AuPG-Acyclic returns such a solution.

We demonstrate the algorithm using the AIG in Figure 3(a).
Assume that the sets S of agents, listed in the first four
rows of Figure 3(b), are the only coalition with goal achiev-
ing plans, and their respective costs are c∗(S). The bonus-
optimal plan is {ϕ1, ϕ4, ϕ5}, with a bonus of 3, given that
its second-best coalition is {ϕ6, ϕ7}. We show that the com-
putation of V (ϕ5—ϕ7) identifies the right coalition and its
value. First, we find a cost-optimal plan on Γϕ5—ϕ7 , under
the constraint that ϕ5 participates, and get Γ∗ϕ5

= {ϕ3, ϕ5}.
Next, we find cost-optimal plan on Φ \ {ϕ3, ϕ5}, returning
Γ̂ϕ5 = {ϕ2, ϕ4}. Because this second-best is within the same
side of the cut, the loop does not terminate. Now comes the
key idea of the algorithm: {ϕ2, ϕ4} must intersect with the

2Participation constraint is added by removing ⊥ from the do-
main of the agents that must participate.

algorithm AuPG-Acyclic(Π,Φ)
input: an acyclic, second-cost AuPG Π over agents Φ
output: a stable winning-bid plan for Π

for each cut ϕ′—ϕ′′:
loop

Ω = {ϕ′}
find Γ∗ϕ′ = Γ̄(π∗(Γϕ′—ϕ′′)) under constraint Ω ⊆ Γ∗ϕ′

find Γ̂ϕ′ = Γ̄(π∗(Φ \ Γ∗ϕ′))

if Γ̂ϕ′ ⊆ Γϕ′′—ϕ′ then endloop
else Ω = Ω ∪ path(Ω, Γ̂ϕ′)

V (ϕ′—ϕ′′) := c∗(Γ̂ϕ′)− c∗(Γ∗ϕ′)
select ϕ = arg maxϕ′ maxϕ′′ V (ϕ′—ϕ′′)
σ = 〈π∗(Γ∗ϕ),Γ∗ϕ ,Comp-Div(Γ∗ϕ)〉
return σ
procedure Comp-Div(Γ)

perform bottom-up scan of Γ, allocate all the reward to the
first node whose subtree in IGΠ includes a winning bid.

Figure 4: Algorithm for stable winning-bid planning in
acyclic AuPGs with the second-cost reward model.

real bonus-optimal plan. Hence we add the path from ϕ5 to
{ϕ2, ϕ4}, which consists just of the node ϕ4, to Ω. Next we
find cost-optimal plan under the constraint that ϕ5 and ϕ4

must participate. We get {ϕ1, ϕ4, ϕ5}, and its second best
plan is by {ϕ6, ϕ7}, which is on the other side of the cut,
and hence the loop terminates. If we take the additional two
sets in Figure 3(b) into account, that second iteration outputs
{ϕ2, ϕ4, ϕ5} with cost 3.5, which is not yet the cut-bonus-
optimal because its second best is by {ϕ1} with cost 5.9. We
add ϕ1 to Ω, and the next iteration finds {ϕ1, ϕ4, ϕ5}.

To compute reward division, we find cost-optimal plan
of each subtree Γϕ1 , Γϕ4 , and Γϕ5 , and compare to the
cost-optimal plan of its complement to find out whether it
is a winning-bid. We find that Γϕ1 and Γϕ4 do not have
a winning-bid (because {ϕ3, ϕ5} has a cheaper plan), but
{ϕ3, ϕ5} ∈ Γϕ5 does have one. Hence ϕ5’s reward is its
cost plus B∗ = 3, while ϕ4 and ϕ1 get just their cost back.

Finally, assume that c∗(ϕ1) = c∗({ϕ2, ϕ4}) = 6.1. The
cut-bonus-optimal coalition of ϕ5—ϕ7 is still {ϕ1, ϕ4, ϕ5},
with the same value 3. However, V (ϕ5—ϕ4) = 3.1, obtained
by {ϕ3, ϕ5}, hence it is now the bonus-optimal plan.

Acknowledgements
Ronen Brafman and Carmel Domshlak are partially supported by
ISF grant 8254320. Ronen Brafman is also supported in part by
the Paul Ivanier Center for Robotics Research and Production Man-
agement, and the Lynn and William Frankel Center for Computer
Science. Yagil Engel is supported in part by an Aly Kaufman fel-
lowship at the Technion.

References
[Aumann and Peleg, 1960] R. J. Aumann and B. Peleg.

von Neumann-Morgenstern solutions to cooperative games
without side payments. Bulletin of the American Mathematical
Society, 66:173–179, 1960.

[Aumann, 1959] R. J. Aumann. Acceptable points in general co-
operative n-person games. Annals of Mathematical Studies,
40:287–324, 1959.

[Ben Larbi et al., 2007] R. Ben Larbi, S. Konieczny, and P. Mar-
quis. Extending classical planning to the multi-agent case: A
game-theoretic approach. In ECSQARU, pages 731–742, 2007.

[Bowling et al., 2003] M. H. Bowling, R. M. Jensen, and M. M.
Veloso. A formalization of equilibria for multiagent planning. In
IJCAI, pages 1460–1462, 2003.

[Brafman and Domshlak, 2008] R. Brafman and C. Domshlak.
From one to many: Planning for loosely coupled multi-agent sys-
tems. In ICAPS, pages 28–35, 2008.

[Ephrati and Rosenschein, 1997] Eithan Ephrati and Jeffrey S.
Rosenschein. A heuristic technique for multiagent planning. An-
nals of Mathematics and Artificial Intelligence, 20:13–67, 1997.

[Ephrati et al., 1995] Eithan Ephrati, Martha E. Pollack, and Jef-
frey S. Rosenschein. A tractable heuristic that maximizes global
utility through local plan combination. In First International
Conference on Multiagent Systems, 1995.

[Ieong and Shoham, 2005] S. Ieong and Y. Shoham. Marginal con-
tribution nets: A compact representation scheme for coalitional
games. In ACM-EC, pages 193–202, 2005.

[Kearns and Littman, 2001] M. Kearns and M. L. Littman. Graphi-
cal models for game theory. In UAI, pages 253–260, 2001.

[Leyton-Brown and Tennenholtz, 2003] K. Leyton-Brown and
M. Tennenholtz. Local-effect games. In UAI, pages 772–780,
2003.

[Moses and Tennenholtz, 1995] Y. Moses and M. Tennenholtz.
Multi-entity models. Machine Intelligence, 14:63–88, 1995.

[von Neumann and Morgenstern, 1944] J. von Neumann and
O. Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1944.

A Proofs
Theorem 1 For any coalition-planning game Π over simple
agents, if IGΠ is acyclic, then a stable plan exists, and algo-
rithm CoPG-Acyclic returns such a plan.

Proof: We assume w.l.o.g. that IGΠ is connected. First, we
show that the algorithm always returns a plan. The top-down
phase cannot fail: if a parent ϕ has some strategy θ in its
domain, then each of its children must have a matching strat-
egy, or otherwise θ would have been pruned. Hence a failure
could occur only if the domain of a node becomes empty in
the bottom-up phase. A strategy θ ∈ D(ϕ) is discarded if
either (1) θ does not match any strategy in the domain of a
child, or (2) ūϕ(θ) < ûϕ . Note that, for any node ϕ′, D(ϕ′)
must include an action that does not require the support of its
parent ϕ: either ⊥, or a strategy in D∗(ϕ′) that caused it to
discard⊥. Therefore,⊥ always has a match in any child’s do-
main and it cannot be pruned by condition (1). Furthermore,
if condition (2) prunes ⊥, then there must be some strategy
in D∗(ψ). Therefore, the bottom-up phase never prunes the
domain of a node completely, and thus the algorithm always
returns a joint plan. It is left to show that the joint plan π re-
turned by the algorithm is stable. Assume to the contrary that
there is a deviation π′ from π for some subset Φ′ ⊆ Φ. Let ϕ
denote the agent that is the highest, within Φ′, in the topologi-
cal order used by the algorithm. This ensures that θ′ϕ does not
require the support of the parent of ϕ, therefore θ′ϕ ∈ D∗(ϕ),
and thus ūϕ(θ′ϕ) ≤ ûϕ . Likewise, π′ must be beneficial to ϕ,

hence ūϕ(θϕ) = uϕ(π) < uϕ(π′) = ūϕ(θ′ϕ) ≤ ûϕ . How-
ever, in that case θϕ is pruned from D(ϕ), contradicting the
selection of π in the top-down phase. �

Lemma 2 A coalition Γσ with a winning-bid solution σ is
stable unless there exist coalitions Γ and Γ′, both having goal
achieving plans, such that (i) the three coalitions are pair-
wise non-disjoint, and (ii) neither Γσ∩Γ′ is included in Γσ∩Γ
nor the other way round. Furthermore, if such Γ and Γ′ do
exist, and both have winning-bids, then Γσ is not stable.

Proof: Assume Γσ is not stable. Then there exists an in-
tersecting coalition Γ with a winning-bid solution. (All the
coalitions considered in the proof are goal-achieving.) If Γ
is the only coalition intersecting Γσ , then Γσ can allocate the
whole bonus B to one agent ϕ ∈ Γσ ∩ Γ. Because Γ cannot
suggest more to ϕ, Γσ is stable. Hence, there has to be yet
another coalition Γ′ intersecting Γσ . If Γ ∩ Γσ ⊆ Γ′ ∩ Γσ ,
then Γσ can again allocateB to an agent in Γ∩Γσ , preventing
deviations to both Γ and Γ′. Now assume Γ ∩ Γ′ = ∅. Ei-
ther c∗(Γ) ≤ c∗(Γ′) or c∗(Γ) > c∗(Γ′), hence at most one of
these coalitions has a winning-bid solution. Assume w.l.o.g.
that it is Γ. Γσ again allocates B to an agent in Γ ∩ Γσ and
prevents deviation. We omit the other direction. �

Lemma 3 Let B∗ be the highest bonus possible for Π. Then
there exists a cut ϕ′—ϕ′′ such that V (ϕ′—ϕ′′) = B∗.

Proof: Let Γ∗ denote a coalition which obtains the optimal
bonus B∗, and let Γ̂ denote its second-best coalition. Let
ϕ denote the topologically highest element in Γ∗ (note that
Γ∗ ⊆ Γϕ), and let ϕ′ denote the highest element in Γ̂. If ϕ′ is
not a descendant of ϕ, then no node in Γ̂ can be a descendant
of any node in Γϕ , meaning that the cut ϕ—ϕ′′, where ϕ′′ is
the parent of ϕ, separates Γ∗ and Γ̂. Therefore, V (ϕ—ϕ′′)
is at least the bonus B∗ obtained by Γ∗. Due to optimality of
B∗, it must be exactly B∗. If ϕ′ is a descendant of ϕ, then
let ϕ1 denote lowest node in Γ∗ on the path between ϕ and
ϕ′. Now the cut ϕ′′—ϕ1, where ϕ′′ is the child of ϕ1 on that
path, separates Γ∗ and Γ̂, hence V (ϕ′′—ϕ1) = B∗. �

Theorem 4 For any acyclic AuPG Π with the second-cost
reward model, there exists a stable winning-bid solution, and
algorithm AuPG-Acyclic returns such a solution.

Proof: Let ϕ′′ denote the parent of ϕ′, Let Γ denote the
real cut-bonus-optimal coalition of ϕ′—ϕ′′, and Γ′ denote
its second-best (hence Γ′ ⊆ Γϕ′′). We first must show that
V (ϕ′—ϕ′′) is computed correctly, that is Γ = Γ∗ϕ′ when the
algorithm exits the loop. The algorithm first finds the cost-
optimal plan of Γϕ′ , under the constraint that ϕ′ must partic-
ipate. It then finds the second-best plan Γ̂ϕ′ , that is the best
plan of the remaining agents. The loop terminates if that plan
is within Γϕ′′ , in which case indeed Γ = Γ∗ϕ′ . Otherwise,

Γ̂ϕ′ ⊂ Γϕ′ (because it cannot contain ϕ′). Now, assume for a
moment that Γ∩Γ̂ϕ′ = ∅. Because Γ′, and not Γ̂ϕ′ , is the sec-
ond best of Γ, it must be the case that c∗(Γ̂ϕ′) ≥ c∗(Γ′). But
then Γ′ is the second best of Γ∗ϕ′ , meaning Γ′ = Γ̂ϕ′ , and then

Γ̂ϕ′ ⊆ Γϕ′′ . Therefore, Γ ∩ Γ̂ϕ′ 6= ∅. Hence the path from ϕ′

to the highest node in Γ̂ϕ′ must be in Γ. We can now add this
as a constraint and find cost optimal plan again. In each iter-
ation at least one node is added to this set of nodes Ω, which
must be in the cut-bonus-optimal plan (note that Ω ⊆ Γ∗ϕ′ , so

Γ̂ϕ′ must be disjoint from Ω), hence at some point we find a
plan Γ∗ϕ′ = Γ. The value V (ϕ′′—ϕ′) is correct by a sym-
metric argument. This proves that edge values are computed
correctly. From Lemma 3, the coalition selected Γ∗ϕ is indeed
bonus-optimal. The node ϕ′ picked to get the full bonus, is
the lowest node in Γ∗ϕ whose subtree includes a winning bid
Γ′. If there is another winning bid Γ′′ that intersects with Γ∗ϕ ,
it must also intersect Γ′. Γ′′ is not within the subtree of ϕ′,
and Γ′ is within the subtree of ϕ′, therefore Γ′′ must include
ϕ′. As the bonus obtained by Γ′′ is not higher than the current
bonus of ϕ′, ϕ′ will not deviate. �

