A formal market specification language for general trading agents

Michael Thielscher
Department of Computer Science
Technische Universitit Dresden, Germany
mit@inf.tu-dresden.de

Abstract

A contemporary grand Al challenge, General
Game Playing is concerned with systems that can
understand the rules of arbitrary games and learn to
play these games well without human intervention.
This principle has the great potential to bring to a
new level artificially intelligent systems in other ap-
plication areas as well. In this paper, our specific
interest lies in General Trading Agents, which are
able to understand the rules of unknown markets
and then to actively participate in them without hu-
man intervention. To this end, we develop the ex-
isting Game Description Language (GDL) into a
language that allows to formally describe arbitrary
markets such that these specifications can be au-
tomatically processed by a computer. We present
both syntax and a transition-based semantics for
this Market Specification Language and illustrate
its expressive power by presenting axiomatizations
of several well-known auction types.

1 Introduction

A novel and challenging research problem for Artificial In-
telligence, General Game Playing is concerned with the de-
velopment of systems that learn to play previously unknown
games solely on the basis of the rules of that game [Gene-
sereth et al., 2006]. The Game Description Language
(GDL) [Love et al., 2006] has been developed to formal-
ize any finite, information-symmetric n-player game. As a
declarative language, GDL supports specifications that are
modular and easy to develop, understand, and maintain. At
the same time, these specifications can be fully automatically
processed, thus allowing to develop systems that are able to
play the games with hitherto unknown rules without human
intervention.

The idea behind General Game Playing—to build systems
that are intelligent and flexible enough to negotiate an un-
known environment solely on the basis of the rules which
govern it—has the great potential to bring to a new level arti-
ficially intelligent systems in other application areas as well.
Our specific interest lies in General Trading Agents. These
should be able to understand the rules of unknown markets

Dongmo Zhang
Intelligent Systems Laboratory
University of Western Sydney, Australia
dongmo@scm.uws.edu.au

and then to actively participate in them without human inter-
vention. As a first step towards the design and implementa-
tion of this new generation of trading agents, in this paper
we suggest a modification and extension of GDL into a Mar-
ket Specification Language (MSL) that allows to formally de-
scribe arbitrary markets such that these specification can be
automatically processed by a computer.

While extending GDL, MSL inherits the crucial property
of being a decidable subset of logic programming. This im-
plies that General Trading Agents require just a simple, stan-
dard reasoning module to be able to understand and effec-
tively process a given set of rules. Moreover, due to the
close relation between the two languages, we expect that ex-
isting techniques for successful General Game Playing sys-
tems, such as [Kuhlmann et al., 2006; Clune, 2007; Schiffel
and Thielscher, 2007; Finnsson and Bjornsson, 2008], can
be readily used to design and implement General Trading
Agents, too.

The rest of the paper is organized as follows. In the next
section, we define a general market model in form of a fi-
nite state machine, where state transitions are triggered by
messages coming from traders and actions executed by the
market maker. In Section 3, we define the syntax of MSL as
a modification and extension of GDL. We illustrate the use
of the language by giving a fully formal specification of the
well-known English auction type. In Section 4, we turn to
the semantics of MSL and show how any set of rules can be
understood as an axiomatic description of a market model.
In Section 5 we give a precise definition of the execution of
a market, and in Section 6 we provide two further descrip-
tions of typical markets to illustrate the use and expressivity
of MSL as a general market specification language. We con-
clude in Section 7.

2 Market model

Markets are a central topic in economics and finance. A mar-
ket is an institution or mechanism that allows buyers (deman-
ders) and sellers (suppliers) to exchange commodities such
as goods, services, securities, and information. Generally,
there are two distinct roles in every market: the market maker
and traders. The market maker facilitates trade and enables
the exchange of rights (ownership) of commodities at certain
prices. Traders are market participants who utilize facilitates
of the market to sell or buy goods and services.



As an example, consider a simple market in which only one
commodity is traded. There is a set of traders (agents) who
have registered in the market, and the market is manipulated
by a market maker m . Each trader can be a buyer, a seller,
or even both. A buyer can send the market maker bids and a
seller can send in asks. A bid may be denoted as b(a, q,p),
representing that buyer a requests to buy ¢ units of the good
at a maximum price of p. Similarly, s(a,q,p) may repre-
sent trader a wanting to sell ¢ units of the commodity at a
price no less than p . Bids and asks are often called offers (or
orders).

Suppose that 0 = s(ai,q1,p1) is an ask and 0, =
b(az,qa,p2) is a bid. We say that (o01,09) is a match if
p1 < p2, that is, the ask price is no higher than the bid price.
In such a case, ¢ = min{qi, g2} units of goods can be sold
at some price p such that p; < p < py. We call an offer
o cleared at price py if o = b(a,q,p) and p > po, orif
0= S(aaQ7p) and p < Po -

There is a remarkable diversity in trading mechanisms that
have been used in real-world markets. However, the most
common trading mechanism is that of an auction or varia-
tions thereof [Friedman, 1993]. The common formalization
of the trading mechanism of an auction consists of an inter-
action protocol and a set of market policies. An interaction
protocol specifies the sequence of communication between
traders and the market maker. Figure 1 shows the interaction
protocol of the English auction [FIPA00031, 2001] as an ex-
ample. While these graphical protocols can be viewed as a

Initiztor, Particpant,

\ inform<@rtof-auztion :infarm,
cfp-l:cp, motundzrstood®,
propase®, accept-proposal®,
reRctproposal, ofp-2efp,

FIPA-Englis h-A uzton-P otocol request’, inform® H

i
i
: i
1 infom-stant-of austion N, !
n ID

1 el
7
i

P {m)0)motundersteod

1 popose I

Ectprposal /D ofp2

1 2iefp2

1/inform-2 n

Figure 1: FIPA English Auction Interaction Protocol.

formalization of a trading mechanism, they cannot be fully
automatically processed by a computer. Hence, they are un-
suited as a specification language that can be understood by
General Trading Agents without human intervention.

Market policies specify the rules that are used by the mar-
ket maker to make decisions. These policies include accept-
ing policy, matching policy, clearing policy, pricing policy,
and so on. The accepting policy determines whether an offer
is accepted or not. In many finical markets, market makers
provide bid-ask quotations to traders to guide market price
(called quote-driven [Madhavan, 1992]). The matching pol-
icy specifies how bids and asks are matched. For instance, the
four-head matching policy always matches the highest match-
able ask with the lowest matchable bid [Wurman ez al., 1998].
The clearing policy determines when matching is being made.
An important distinction of auction types often made is that
between continuous and periodic clearing policies [Madha-
van, 1992]. In a continuous market, matching is made con-
tinuously whenever new offers arrive. In a periodic market,
offers are accumulated for simultaneous execution at a single
market clearing price.

A market is dynamic in the sense that whenever a new of-
fer comes in or a transaction is executed, the market situation
changes. Motivated by the formal semantics of GDL as a
finite state machine [Schiffel and Thielscher, 20091, we pro-
pose to understand any market as a state transition system,
in which the transitions are triggered by messages from the
participating traders (say, bidding) and actions by the market
maker (say, matching). To this end, a state transition system
describing a market is given by the following constituents.

e sy —an initial state.
e T —a set of terminal states

e [(a,s,t) —a relation defining a to be a possible action
by the market maker in state s at time ¢ (the legality
relation).

e u(a,m,s,t)—an update function defining the succes-
sor state when the market maker does action a or re-
ceives messages m in state s at time ¢ ! .

e o(a,m, s,t) —the messages (output) sent by the market
maker when it does action a or receives messages m
in state s at time t.

For the sake of simplicity, we assume that time is discretized
and represented by the natural numbers. The time at the initial
state is set to 0.

Take English auction as an example. In the initial state,
the good for sale is unallocated and the bid pool is empty.
The market maker broadcasts a call-for-proposals, which in-
cludes a so-called reserve price that thus becomes known to
all participating traders. Whenever a new bid is received, the
market maker updates the current state by the new highest bid
price, provided the bid can be accepted. This continues for a
fixed period of time, at the end of which the market maker
announces the winner. The language defined in the following
section will allow us to formally specify the actions, mes-
sages, and state transitions that characterize this type of auc-
tion, and in Section 3.2 we will give the full specification of
English auction as an example.

"Note that the market state is updated only if the market maker
performs an action or receives a message from a trader. See Sec-
tion 4 for more details.



3 A Market Specification Language

Having defined a general market model, we proceed by show-
ing how GDL can be modified to a suitable language that al-
lows to specify an arbitrary market. A comparison of our
market model with the game model shows that the Market
Specification Language (MSL) needs to modify and extend
GDL in the following ways.

e There is a special market maker, who acts (possibly non-
deterministically) according to specified rules.

e Rather than making moves, traders send messages to the
market maker.

e Rather than having complete state information, traders
receive messages from the market maker according to
specified rules.

e Time and real numbers, along with the standard arith-
metic functions and relations, are pre-defined language
elements.

In the following, we first define the formal syntax of MSL
and then show how any set of MSL rules can be interpreted
by our formal market model.

3.1 Syntax

Just like GDL, MSL is based on the standard syntax of clausal
logic, including negation.

Definition 1

e A term is either a variable, or a function symbol applied
to terms as arguments (a constant is a function symbol
with no argument).

e An atom is a predicate symbol applied to terms as argu-
ments.

e A literal is an atom or its negation.

e A clause is an implication h < by A ... A b, where
head h is an atom andbody by A...Ab, aconjunction
of literals (n > 0).

As a tailor-made specification language, MSL uses a few
pre-defined predicate symbols. These are shown in Table 1
together with their informal meaning. In addition, we take
both natural numbers and real numbers as pre-defined lan-
guage elements. These are accompanied by the basic arith-
metic functions +, —, %, /,mod and relations <, <,=,> >
with the standard interpretation.

Throughout the paper, we adopt the Prolog convention ac-
cording to which variables are denoted by uppercase letters
and predicate and function symbols start with a lowercase let-
ter. In the following, we illustrate the use of the keywords by
giving a complete set of MSL rules describing a simple auc-
tion.

3.2 Example: English Auction

English auction is one of the most commonly used market
models. Assume that there is a single item from a single
seller. The market maker (auctioneer) accepts buyers to bid
openly against one another, with each subsequent bid higher
than the previous one. The market maker terminates the mar-
ket either when a fixed clearing time is reached or when for

trader(A) A is a trader

message(A,M) | trader A can send message M
init(P) P holds in the initial state
true(P) P holds in the current state
next(P) P holds in the next state
legal(A) market maker’s action A is executable
does(4) market maker does action A
receive(A,M) | receives message M from trader A
send(A, M) send trader A message M

time(T) T is the current time

terminal the market is closed

Table 1: MSL keywords.

three units of time no further bid is made. The following MSL
rules describe this formally.

trader (a.l) <«
trader (a.m) <
init (timer (0) )<«

accept (bid(A,P)) <=

receive (A, mybid(P)) A —reject (P)
reject (P) <= PSRESERVE_PRICE
reject (P) < true(bid(A,P1l)) A PLP1
reject (P) <= receive (A, my bid(P1l)) N P<P1

reject (P) <= true(timer (3))

legal (clearing (A, P)) <=

true (timer (3)) Atrue (bid(A,P))
legal (call) <=

true (timer (T)) AN T<3

next (B) < accept (B)
next (bid(A,P)) <<=
true (bid(A,P)) A —outbid
next (timer (0)) <= outbid
next (timer (T+1) )<
true (timer (T)) A does(call) A —outbid
outbid <= accept (B)

message (A, my-bid (P)) <«

trader (A) A P> 0
send (A, bid._accepted(P) )<«

accept (bid(A,P))
send (A, bid.rejected(P) )<«

receive (A, my bid(P)) A reject (P)
send (A, call(T))<«

trader (A) A true(timer(T)) A does(call)
send (A, best_price(P)) <«

trader (A) A true (bid (A1l,P))
send (A, winner (Al,P)) <=

trader (A) N does(clearing(Al,P))

terminal < true(timer (4))
terminal < time (MAX_TIME)

The above code in MSL specifies a set of market
rules which compose an English auction.  The rule
for accept (bid(A,P)), in conjunction with the rules



for reject (P), specifies the accepting policy of the
market maker: when it receives a bid from a trader
(receive (A, my_bid (P))), the new bid price, P, must
always be higher than the existing highest bid price (or, if
it is the first bid, it needs to be no less than the given RE-
SERVE_PRICE. Also, P must be higher than any other bid
that arrives simultaneously, and the bid comes too late when
the timer has reached 3 (it takes one unit of time for a bid to
be processed after it is accepted).

The clearing policy is specified by the legal clause. We
use a call action and a timer to facilitate the clearing ac-
tion. The auctioneer makes a call for new bid whenever the
market has not be cleared. If there is no outbid after three
calls, the market is cleared.

The next clauses specify the state update, triggered
either by a trader message, the call action, or the
clearing action. Note that a bid takes effect at the next
state after it is accepted (next (B) <= accept (B)). The
statement next (bid(A,P)) <« true (bid(A,P)) A
— outbid is known as a frame axiom in reasoning about ac-
tions. It says that if there is no outbid, an existing bid remains
in the next state. The timer is reseted whenever there is an
outbid.

The message clause specifies the format and legality of
incoming messages. The predicate receive indicates the
received messages that are in the message pool. The clauses
for send detail the outgoing messages. Together, these rules
constitute a fully formal, logic-based specification of the in-
teraction protocol of the market shown in Figure 2 2. Among
the messages that the market maker sends to the traders, the
notifications of acceptance and rejection are one-to-one. The
others are announced to all traders (note the deference of
trader variables).

3.3 Syntactic restrictions

MSL imposes some syntactic restrictions on the use of the
pre-defined predicates from Table 1 in much the same way
GDL is restricted to ensure effective derivability of all infor-
mation necessary for legal game play. These restrictions are
based on the notion of a dependency graph for a given set of
clauses (see, e.g., [Lloyd, 1987]).

Definition 2 The dependency graph for a set G of clauses
is a directed, labeled graph whose nodes are the predicate
symbols that occur in G and where there is a positive edge
p*+ q if G contains a clause p(5) < ... Aq(t) A ..., and
a negative edge p =, q if G contains a clause p(3) < ... A
—g(t) AL ...

Definition 3 A valid MSL specification is a finite set of
clauses M that satisfies the following conditions.

e trader only appears in the head of clauses that have
an empty body;

e init and message only appear as head of clauses and
are not connected, in the dependency graph for G, to
any of the keywords in Table 1 except for trader;

Note that it is slight simpler than the FIPA specification given
in Figure 1.

/Market maker trader \
1

A

}-_____

my bid(P) 1..n

A

bid_accepted(P)

1
—4 bid_rejected(P)

1 call(T)

A 4

best_price(P) n

y

-

winner(A,P)

1

.

Figure 2: Simplified interaction protocol of English auction.

/

e true and time only appear in the body of clauses;
e does and receive only appear in the body of clauses

and are not connected, in the dependency graph for G,
to any of legal and terminal;

e next and send only appear as head of clauses.

Moreover, in order to ensure effective derivability, M and
the corresponding dependency graph T' must obey the fol-
lowing restrictions.

1. There are no cycles involving a negative edge in 1" (this
is also known as being stratified [Apt et al., 1987; van
Gelder, 1989]);

2. Each variable in a clause occurs in at least one posi-
tive atom in the body (this is also known as being al-

lowed [Lloyd and Topor, 1986]);

3. If p and q occur in a cycle in T' and G contains a
clause

p(8) < bi(t) A... Aq(vg,...
then for every i € {1,...,k},

R A Aba(E)

e v; is variable-free, or
e v; isone of S1,...,8m (:=5), or
e v, occurs in some t_; (1 < j < n) such that b;
does not occur in a cycle with p in T.
Stratified logic programs are known to admit a specific stan-

dard model; we refer to [Apt et al., 1987] for details and just
mention the following properties:



1. To obtain the standard model, clauses with variables are
replaced by their (possibly infinitely many) ground in-
stances.

2. Clauses are interpreted as reverse implications.

3. The standard model is minimal while interpreting nega-
tion as non-derivability (the “negation-as-failure” prin-
ciple [Clark, 1978]);

The further syntactic restrictions for MSL guarantee that
agents can make effective use of a market specification by
a simple derivation mechanism based on standard resolution
for clausal logic (see again [Lloyd, 1987], for instance).

4 Semantics

We are now in a position to give a precise definition of how
a valid MSL specification determines a market model. In
the following, derivability means entailment via the standard
model of a stratified set of clauses.

To begin with, the derivable instances of trader(A) de-
fine the traders. The derivable instances of message(A,M)
define the possible messages M for trader A that are under-
stood and processed by the market maker. The five compo-
nents of the state transition system (cf. Section 2) are deter-
mined as follows.

1. The initial state sg is the set of all derivable instances
of init(P) along with timepoint 0.

2. Inorder to determine whether a state belongs to the set of
terminal states 7', this state (and the current timepoint)
has to be encoded first using the keywords true and
time. More precisely, let s = {p1,...,p,} be a finite
set of terms (e.g., the derivable instances of init(P) at
the beginning) and ¢ € N, then by s;™° we denote the
clauses

true(p;) <
true(p,) < M
time(t) <

Let these be added to the given MSL specification, then
state s attime ¢ is terminal justin case terminal can
be derived.

3. Similarly, the possible legal moves of the market maker
in state s at time ¢ —relation [(a, s,t)—is given by the
derivable instances of legal(a) after adding sf™¢ to
the given market rules.

4. In order to determine a state update—function
u(a, M, s,t) —the action a by the market maker and
the messages M by the traders have to be encoded first,
using the keywords does and receive. More pre-
cisely, let M = {(a1,m1),...,(an,my,)} be a (pos-
sibly empty) set of (agent,message)-pairs and a an ac-
tion by the market maker, then by a%°°s U M*eceive we
denote the clauses

receive(ai,my) <

@)

receive(ay,, my) <
does(a) <

(The market maker may also perform no action at the
time of the state update, in which case the last clause is
omitted.) Let these clauses, plus the clauses (1) for given
state s and time t) be added to the given MSL specifi-
cation, then the updated state w(a, M, s,t) is given by
all derivable instances of next(p).

5. Similarly, the messages which the market maker sends
to the traders when doing action @ and receiv-
ing messages m in state s at time ¢—function
o(a,M,s,t)—are given by the derivable instances
of send(a,m) after adding the clauses s;™° and

ad°es U MTeceive o the given market rules.

5 Market Model Execution

The execution of an MSL market subtly differs from the ex-
ecution of a game model determined by a GDL specification,
for two reasons. First, traders send messages asynchronously.
Given discretized time, this means that at any timepoint a
trader may or may not make a move. Second, while the con-
ditions for the actions of the market maker are specified in
the rules, the market maker may have the choice among sev-
eral possibilities. This means that the market maker chooses
exactly one among the possible legal actions whenever the
triggering conditions for one or more of its actions are satis-
fied.

A possible execution of a market is therefore given by an
evolving sequence of states

Sog — 81 — ... — Sp

(where s; denotes the state at time %) and messages
00y -+ ,0n-1

(where o; are the messages sent by the market maker at
time %) such that

e sq is the initial state;
e s, € T is the first terminal state in the sequence;

e let M be the set of all (agent,message)-pairs received
by the market maker at time ¢, then

- Si41 = s; and o; is empty if M is empty and
no a satisfies l(a, s;,14),

- 841 = u(a,M,s,i) and o; = o(a, M, s,%) if M
is not empty and/or a can be selected that satisfies
l(a, siy1).

6 Specifications of Typical Markets

In this section, we present three further examples of market
specifications given in MSL in order to illustrate its general
expressivity: one for Sealed-Bid Auction, one for Call Mar-
kets and the other for Continuous Double Auction. All three
are commonly used in the real word.

6.1 Sealed-Bid Auction

Sealed-bid auction is one of the simplest market mechanisms
used in the real world. It differs from English auction in that
traders’ bids are concealed from each other. The following



MSL code specifies a first-price sealed-bid auction where the
highest bidder gets the award and pays the amount he bid.
trader (a.l) <«

trader (am) &

accept (bid(A,P)) <«
receive (A, mybid(P)) A
time (1)

legal (clearing(A,P)) <«
true (bid(A,P)) A
bestbid (P) A
time (2)

next (bid (A,P)) < accept (bid(A,P))
next (bid(A,P)) < true(bid(A,P))

bestbid (P) <«

true (bid(A,P)) A —outbid(P)
outbid (P) <«

true (bid(A,P1)) A P1L > P

message (A, my_bid (P)) < trader (A) A P>0

send (A, call_for_bid) <«
trader (A) A time (0)

send (A, bid.received (P)) <«
receive (A, mybid (P))

send (A, winner (Al,P)) <«
trader (A) Adoes(clearing(Al,P))

terminal < time (3).

At time 0, the market maker sends a call-for-bid to all
traders. Only the bids that are received at time 1 are accepted.
Once a bid is accepted, a private acknowledgement is sent to
the bidder who submitted the bid. The auction is cleared at
time 2. The trader who sent in the highest bid wins the auc-
tion. Note that if there are more than one highest bids, the
market maker choose one of them. The auction terminates at
time 3.

We remark that although the market specification is pub-
lic information for all market participants, the individual bids
are private information, which can only be seen by the respec-
tive sender and the market maker. This is significant different
from General Game Playing, in which each player’s move is
announced to every player. In the above example, the call-
for-bid and winner announcement are sent to every trader but
the acknowledgment of a bid is sent only to the trader who
submitted the bid.

6.2 Call market

A call market, also known as clearing house (CH), is a mar-
ket institution in which each transaction takes place at pre-
determined intervals and where all of the bids and asks are
aggregated and transacted at once. The market maker deter-
mines the market clearing price based on the bids and asks
received during this period [Amihud and Mendelson, 1987].
A call market is actually a type of periodic double auction.
The following rules specify a simplified call market with a
single type of commodities.

trader (a.l) <
trader (a.m) <

accept (ask (A,Q,P)) <=

receive (A,my-ask (Q,P)) A trader (A)
accept (bid (A, Q,P) )<

receive (A, my_-bid (Q,P)) A trader (A)

legal (clearing (P)) <«
time (T) A
T mod TIME_INTERVAL = TIME_INTERVAL-1 A
PRICING_POLICY (P)

cleared (A,Q,P)<«
does (clearing (P1l)) Atrue (bid(A,Q,P))A
P >P1

cleared(A,Q,P) <«
does (clearing (P1l)) Atrue(ask(A,Q,P)) A
P<P1

next (B) <= accept (B)
next (ask (A,Q,P)) <«

true (ask(A,Q,P)) AN —-cleared(A,Q,P)
next (bid(A,Q,P)) <=

true (bid(A,Q,P)) AN—cleared(A,Q,P)
message (A, my_ask (Q,P)) <=

trader (A) A Q>0 A P>0
message (A, my bid (Q,P)) &

trader (A) A Q>0 A P>0

send (A, quote (P)) <=
trader (A) A does (clearing (P))
send (A, cleared (Q,P)) <
cleared(A,Q,P)

terminal < time (MAX_TIME+1)

The specification shows that the market maker accepts
any non-negative incoming bids and asks (accepting policy)
and clears the market periodically using a single price for
both bids and asks. Note that we did not specify the pric-
ing policy PRICING_POLICY (P). The market maker can
keep it as private information (it could announce a quote
based on the previous business period, as it is shown in
the above code). The market maker can also publicize its
pricing policy by releasing the algorithms of the function
PRICING_POLICY (P).

We remark that the specification has been simplified in that
we did not consider limited orders: no restrictions have been
put on quantity or price of incoming offers.

6.3 Continuous double auction

Continuous double auction (CDA) is the most commonly
used market model in financial markets. In a continuous auc-
tion market, trading is carried out continuously through the
market maker who collects bids and asks from traders and
matches existing orders whenever possible.

trader (a.l) <«

trader (a.m) <



accepts (ask(A,Q,P)) «
receive (A,my-ask (Q,P)) A
P<ASK_QUOTE

accepts (bid(Id,A,Q,P)) <«
receive (A, my_bid (Q,P))A
P>BID_QUOTE

legal (match(Al1,0Q1,P1,A2,02,P2,Q,P)) <
true (ask (Al,Q1,P1)) A
true (bid (A2,Q02,P2)) A
P1 < P2 Aminimum(Ql,Q2,Q) A
P1<PAP<P2

minimum (Q1,Q2,Q1) < 01 < Q2
minimum (Q1l, Q2,Q2) < Q1 > Q2

cleared(ask (A1,Q1,P1)) <«

does (match (Al1,Q1,P1,A2,02,P2,Q,P))
cleared (bid (A2,Q2,P2)) <

does (match (Al1,Q1,P1,A2,02,P2,Q,P))
next (0O) < accepts (0)

next (0) <«
true (0O) A mcleared (0)

next (ask (Al,Q1-Q,P1l)) <«
true (ask (A1,Q1,P1))A
does (match (Al1,Q1,P1,A2,02,P2,Q,P))A
Q1 > Q

next (bid (A2,02-Q,P2)) <«
true (bid (A2,Q,P2)) A
does (match (Al1,Q1,P1,A2,02,P2,Q,P)) A
Q2 > Q

message (A, my-ask (Q,P)) <=
trader (A) A Q>0 A P>0

message (A, my_bid(Q,P)) «
trader (A) A Q>0 A P>0

send (Al,clearing(Ql,P1,Q,P)) <

does (match (A1,Q1,P1,A2,0Q02,P2,Q,P))
send (A2,clearing(Q2,P2,Q,P)) <

does (match (Al1,Q1,P1,A2,02,P2,Q,P))

terminal < time (MAX_TIME+1)

According to this specification, the market maker sets an
ASK_QUOTE and a BID_QUOTE as the threshold for ac-
cepting bids and asks. Similar to the pricing policy in a call
market, the market maker can either keep the quotes as pri-
vate information or release them by providing the algorithms
for calculating the quotes.

Once an offer (bid or ask) is accepted, it is added to the next
state (offer pool). The market maker continuously searches
for possible matches among the existing offers. For each
match, a fully satisfied offer is removed from the state while
partially satisfied offers remain in the pool with the residual
quantity. As for the preceding specification for call markets,
the actual pricing policy is left underspecified.

7 Summary

We have introduced a general market specification language
(MSL) by modifying and extending the Game Description

Language that is used in the context of General Game Play-
ing to formalize the rules of arbitrary games in a machine-
processable fashion. We have specified syntax and semantics
for MSL, and we have given formalizations of a set of stan-
dard auction types to illustrate the usefulness of this language
as a formal basis for General Trading Agents .

This is an on-goning work with many aspects that have
not been fully investigated. Firstly, the semantics of the in-
teraction between the market maker and traders cannot be
fully specified in MSL. As a general issue, there are a ver-
ity of formal languages that have been proposed for speci-
fying agent communication protocols [Endriss et al., 2003;
Labrou and Finin, 1997; Mcginnis and Miller, 2008]. Al-
though these languages are not especially designed for mar-
ket specifications, the communication primitives that have
been intensively discussed in the context of agent commu-
nication languages, such as tell, inform, ask, and etc., can
be introduced to specify interaction in a market. Secondly,
all examples we presented in this paper are concerned with
the exchange of a single good. However, we strongly
believe that the language is sufficiently expressive to de-
scribe more complicated markets, such as combinatorial auc-
tions [Boutilier and Hoos, 2001; Cerquides er al., 2007,
Uckelman and Endriss, 2008]. Thirdly, the design and imple-
mentation of market policies for different business demand,
especially e-business, has been intensively investigated in re-
cent years [Wurman et al., 2001; Niu ef al., 2008]. However,
design market rules with a purely logical, programmable lan-
guage has not been studied in general.

There are a variety of potential applications of MSL to be
investigated. Firstly, the rules of an e-market can be spec-
ified in MSL and made publicly available. With a simple
logical reasoning module, any autonomous trading agent can
understand the specification and enter the market for busi-
ness. Secondly, a market can change its rules dynamically
as long as the new market specification is sent to all partic-
ipating traders. Thirdly, the language can be used for de-
signing market games such as the Trading Agent Competi-
tion (TAC) [Wellman et al., 2007; Niu et al., 2008]. MSL
provides the basis for turning this competition into a much
more challenging one where the detailed problem specifica-
tion is no longer revealed in advance, requiring the participat-
ing agents—or teams of agents—to compete in a previously
unknown setting.

ACKNOWLEDGMENTS

This research was partially supported by the Australian
Research Council through Discovery Project DP0988750
and by Deutsche Forschungsgemeinschaft under Con-
tract TH 541/16-1. Thanks to the anonymous reviewers for
their valuable comments.

References

[Amihud and Mendelson, 1987] Y. Amihud and H. Mendel-
son. Trading mechanisms and stock returns: an empiri-
cal investigation. The Journal of Finance, Vol XLII, No
3, 1987.



[Apt et al., 1987] Krzysztof Apt, H. A. Blair, and A. Walker.
Towards a theory of declarative knowledge. In J.
Minker, editor, Foundations of Deductive Databases
and Logic Programming, chapter 2, pages 89—148. Mor-
gan Kaufmann, 1987.

[Boutilier and Hoos, 2001] Craig Boutilier and Holger H.
Hoos. Bidding languages for combinatorial auctions.
In IJCAI, pages 1211-1217, 2001.

[Cerquides et al., 2007] Jests Cerquides, Ulle Endriss, An-
drea Giovannucci, and Juan A. Rodriguez-Aguilar. Bid-
ding languages and winner determination for mixed
multi-unit combinatorial auctions. In IJCAI, pages
1221-1226, 2007.

[Clark, 1978] Keith Clark. Negation as failure. In H. Gallaire
and J. Minker, editors, Logic and Data Bases, pages
293-322. Plenum Press, 1978.

[Clune, 2007] Jim Clune. Heuristic evaluation functions for
general game playing. In Proceedings of the AAAI
National Conference on Artificial Intelligence, pages
1134-1139, Vancouver, July 2007. AAAI Press.

[Endriss et al., 2003] Ulrich Endriss, Nicolas Maudet,
Fariba Sadri, and Francesca Toni. Protocol confor-
mance for logic-based agents. In Proceedings of
the 18th International Joint Conference on Artificial
Intelligence (IJCAI-2003), pages 679-684. Morgan
Kaufmann Publishers, 2003.

[Finnsson and Bjornsson, 2008] Hilmar Finnsson and Yngvi
Bjornsson. Simulation-based approach to general game
playing. In Proceedings of the AAAI National Confer-
ence on Artificial Intelligence, pages 259-264, Chicago,
July 2008. AAAI Press.

[FIPA00031, 2001] FIPA00031
tion Interaction Protocol Specification. Foun-
dation for Intelligent Physical Agents, 2001.
http://www.fipa.org/specs/fipa00031/

FIPA English Auc-

[Friedman, 1993] D. Friedman. The double auction institu-
tion: A survey. In D. Friedman and J. Rust, editors, The
Double Auction Market: Institutions, Theories and Ev-
idence, chapter 1, pages 325. Perseus Publishing, Cam-
bridge, MA, 1993.

[Genesereth et al., 2006] Michael Genesereth, Nathaniel
Love, and Barney Pell. General game playing. Al
Magazine, 26(2):73-84, 2006.

[Kuhlmann et al., 2006] Gregory Kuhlmann, Kurt Dresner,
and Peter Stone. Automatic heuristic construction in
a complete general game player. In Proceedings of
the AAAI National Conference on Artificial Intelligence,
pages 1457-1462, Boston, July 2006. AAAI Press.

[Labrou and Finin, 1997] Yannis Labrou and Timothy W.
Finin. Semantics and conversations for an agent com-
munication language. In IJCAI (1), pages 584-591,
1997.

[Lloyd and Topor, 1986] John Lloyd and R. Topor. A basis
for deductive database systems II. Journal of Logic Pro-
gramming, 3(1):55-67, 1986.

[Lloyd, 1987] John Lloyd. Foundations of Logic Program-
ming. Series Symbolic Computation. Springer, second,
extended edition, 1987.

[Love et al., 2006] Nathaniel Love, Timothy Hinrichs,
David Haley, Eric Schkufza, and Michael Genesereth.
General Game Playing: Game Description Language
Specification. Technical Report LG-2006-01, Stanford
Logic Group, Computer Science Department, Stanford
University, 353 Serra Mall, Stanford, CA 94305, 2006.
Available at: games.stanford.edu.

[Madhavan, 1992] A.Madhavan. Trading mechanisms in se-
curities markets. The Journal of Finance, Vol. XLVII,
No. 2, 607-641, 1992.

[Mcginnis and Miller, 2008] Jarred Mcginnis and Tim
Miller. Amongst first-class protocols. In Engineering
Societies in the Agents World VIII, page 208223.
Springer, 2008.

[Niu er al., 2008] Jinzhong Niu, Kai Cai, Enrico Gerding,
Peter McBurney, and Simon Parsons. Characterizing
effective auction mechanisms: Insights from the 2007
TAC Mechanism Design Competition. In Padgham,
Parkes, M iiller, and Parsons, editors, Proceedings of
the 7th International Conference on Autonomous Agents
and Multiagent Systems, pages 1079-1086, 2008.

[Schiffel and Thielscher, 2007] Stephan Schiffel and
Michael Thielscher. Fluxplayer: A successful general
game player. In Proceedings of the AAAI National
Conference on Artificial Intelligence, pages 1191-1196,
Vancouver, July 2007. AAAI Press.

[Schiffel and Thielscher, 2009] S. Schiffel and M. Thiel-
scher. Specifying multiagent systems in the game de-
scription language. In J. Filipe, A. Fred, and B. Sharp,
editors, Proceedings of the International Conference on
Agents and Artificial Intelligence, pages 21-28, Porto,
2009.

[Uckelman and Endriss, 2008] Joel Uckelman and Ulle En-
driss. Winner determination in combinatorial auctions
with logic-based bidding languages. In AAMAS (3),
pages 1617-1620, 2008.

[van Gelder, 1989] A. van Gelder. The alternating fixpoint of
logic programs with negation. In Proceedings of the 8th

Symposium on Principles of Database Systems, pages
1-10. ACM SIGACT-SIGMOD, 1989.

[Wurman et al., 1998] P. R. Wurman, W.E. Walsh and M.
Wellman, Flexible double auctions for electronic com-
merce: theory and implementation, Decision Support
Systems 24(1), 17-27, 1998.

[Wellman et al., 2007] M. Wellman, A. Greenwald, and P.

Stone, Autonomous Bidding Agents: Strategies and
Lessons from the Trading Agent Competition, MIT
Press.

[Wurman et al., 2001] P. R. Wurman, M. P. Wellman, and
W. E. Walsh. A parameterization of the auction design
space. Games and Economic Behavior, pages 304-338,
2001.



