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ABSTRACT advertiser depending on the audience towards which he would like

to target his ad. Another motivating example is that of a person
hWhO wants to buy a painting for her office; there is space for one
painting only and there are several paintings to be auctioned off

this setting has been simplified by assuming that bidders do noi at a particular _au_ction hous_e, where t_hi§ person vis_its in order to
know their valuations for all items a priori, but rather are informed PUrchase a painting. The different paintings have different values
of their true valuation for each item right before the correspond- not only because of their inherent valuation, but also because of the

ing auction takes place. In our analysis we don't make this as- Personal preferences of the buyer.

sumption. This complicates significantly the computation of the ¢ NOW.’ in [Z]d the agthors aisumed thﬁt tLl_e(zj(\j/aluatio_r;s gf theil dri]f'
equilibrium strategies. We examine this setting both for first and erent ftems do not become known 1o the bidaers until aiter all the

second-price auction variants, initially when the closing prices are Previous auctions have been concluded. This simplifies the analysis
not announced, for which case we prove that sequential first and of how bidders bid, because in previous auctions they all have the

second-price auctions are revenue equivalent, and then when thes2M€ €xpected profit from the remaining auctions, given that they
prices are announced; in the latter case, because of the asymmetr on't each I§n0W how much they valu_e the remaining |t_ems. Itis
in the announced prices between the two auction variants, revenug 0" realistic to remove this assumption and let each bidder know

equivalence does not hold. We finish the paper, by giving some ini- S entlrﬁ sert] oL_\:jaIulatlogs fromhthe bgglndnlng Oc]; the ghame. This
tial results about the case when free disposal is allowed, and there-meanSt atF e bid placed at eac auction epends on the entire vec-
fore a bidder can purchase more than one item. tor of valuations rather than a single one, which was the case when

the valuations are not known a priori. Therefore, in this paper we
focus on computing the equilibrium strategies of the bidders, while
1. INTRODUCTION in [2], the focus was on computing the optimal agenda (i.e. order
Auctions have become commonplace when allocating resources inof the items being auctioned) of the seller in order to maximize her
multiagent systems; they are used to trade all kinds of commod- revenue. The other difference is that here we examine both first and
ity, from flowers and food to keyword targeted advertisement slots, second price auctions, whereas in [2] only sequential second price
from bonds and securities to spectrum rights. There are several aucguctions were considered.
tion formats that can be used when selling a group of items; some  This paper is organized as follows. In section 2, we formally
of the best known ones are combinatorial auctions [6], parallel auc- present the setting that we will analyze. In section 3, we give the
tions [3], or sequential auctions [1, 2]. Out of these, separate (i.e. equilibrium strategies for the sequential first price and second price
non combinatorial) auctions each selling a single item are the most auctions with the assumption that the closing prices are not an-
common case on the internet, since they are easy to implement. Innounced; under this setting we prove that the two auction variants
most interesting scenarios these auctions are analyzed as sequentiake revenue equivalent. In section 4, we include in our analysis
auctions, because their closing times do not coincide and thereforeg|so the information obtained from announcements about the clos-
the result of the earlier ones are known by the time that a bidder ing prices of the auctions; the equilibrium strategies computed in
would bid for the later ones. this section are generalizations of those in the previous section. In

Using sequential auctions to sell a number of items is the model section 5, we proceed to give a small example to illustrate and clar-
that we examine in this paper. In [2], the authors examined a model ify how the computation of the equilibria is executed both when
where an auctioneer sells a number of partially substitutable items prices are not announced and when they are. In section 6, we dis-
to a number of bidders. Their motivating example is that of adver- cuss about other related work and conclude. Finally, in the ap-
tisers bidding for advertising space on a particular network. There pendix, we give some initial results of the case when free disposal
are several possible advertisement slots available, each associateg allowed.
with a particular program and time, and each advertiser wants to ad-
vertise on this network only once. The slots are therefore partially
substitutable. However, different slots have a different value to each 2. PROBLEM SETUP
In this section we formally describe the auction setting to be ana-
lyzed and give the notation that we use. The setting is similar to that
in [2] with the exception that each bidder knows all his valuations
a priori.

In particular, there aren > 1 sequential auctions each selling
a single item. The order in which these goods are sold is common

In this paper, we examine a setting in which a number of partially
substitutable goods is sold in sequential single unit auctions. Eac
bidder needs to buy exactly one of these goods. In previous work



knowledge. There are > 1 bidders participating in these auc-
tions. Each biddet has a different independent valuatioh for
the good sold in thg®* auction. In general, these valuations are
i.i.d. variables and the valuations of bidders for tHié item are
drawn from known distributions with cumulative density function
(cdf) F;(),V5 < m. These goods are partially substitutable in the

’
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PROOF. Proof by induction. In the last!") auction, there are
(N —m+1) participating bidders, agn — 1) of the other bidders
have won an item and have dropped out, and we know that it is a

sense that each bidder can buy only one good and it can use (andveakly dominant strategy in this case to bid truthfully. Thus the

bid for) any one of them. The bidders must bid for all items, al-
though they have the option of placing bids equabtan which
case they might win only if all bidders place bids equal to zero. In

such a case of a tie, the winner is selected randomly. Once a bid-

der has won any item it stops bidding in the remaining auctions.
The bidders are risk neutral and only care about maximizing their
utility, which is defined as the difference between the valuam"gr)n
minus the price paid, if they win thg" auction, or0 if they don't
win any auctions.

We will compute and analyze the symmetric Bayes-Nash equi-

libria that exist in sequential first auctions and sequential second

price auctions. The equilibria that we compute are defined by a
bidding strategy, which maps the agents’ valuatioh$o bidsbj.

There are a number of other parameters that we will use in order to |gge the profity >

equations hold whej = m.

Assume now that the equations are correct for all auctions be-
tween the(j + 1)*" andm". We now need to prove that they hold
for the j*" auction. From the point of view of each biddeit faces
(N —j) opponents, a§j —1) opponents have already won one item
each and left. The expected profit of biddexhen he bidsbj- in
the j*" auction is:

R
EP = /
=

because if he wins he will get profit equal ¢ — w, wherew
is the second highest bid (the highest opponent bid), and he will
i1 E Py that this agent would have made in

d

dw

(v;- —w— Z EP,;)

k=j+1

7 (w)dw  (4)

compute these bids, but we define those at the corresponding theyhe |ater rounds if he were to participate in them (which will not

orems. In the case that the closing prices are announced, then th,appen because the agent will win and withdraw); the probability
bidding strategies depend on these parameters as well, and we willyf the highest opponent bid being equaktbas pdf®” 7 (w). The
J

describe how to incorporate this information in our analysis.

3. EQUILIBRIUM COMPUTATION WHEN
NO PRICES ARE ANNOUNCED

In this section, we examine the strategic behavior of bidders when

the closing prices of previous auctions are not announced and there-

fore the bidders do not learn any information about the private val-
ues of their opponents.

THEOREM 1. Assume that bidders participate inn sequen-
tial second-price auctions, each selling one item. The items are
assumed to be partially substitutable and each bidder is interested
in purchasing exactly one item. The valuation of the item sold in
the j*" auction to bidderi is vi. The valuations for thg*" item
to the bidders are i.i.d. variables drawn from prior distribution
F;(v). The valuations that each bidder has for different items are
independent. In this scenario, it is a symmetric Bayes-Nash equi-
librium strategy for each agent to bid:

b;- = max{O,v§ — Z EP;i}
k=j+1

@)

whereE P}, the expected profit of biddefrom thek!" auction, is:

EP;':{

bl % m i n—j %
Jol (W —w =30 EPL) 4507 7 (w)dw b} >0

k=j+1

n%m(vjl - Z;cn:j+1 Epli)q);ij(o) b; :( ())
2
and®; (), the pdf of any opponent bid in th&" auction, is:
®,(x) = / / Fiz+ S EP))- @A)
0 0

(m—j) integrals

To be precise at each auction it is a weakly dominant strategy for
the bidders to bid in this way, provided that other bidders will play

the dominant strategy in the remaining rounds. Because of this de-

bid which maximizes the expected utility does not actually depend
on the opponent bids as described by @df(), and is equal to

by = vj — i, EP;, if this term is positive. Otherwise the
bidder expects to gain more from the later round and would not
want to bid anything more thab4 = 0. Thus we get equation 1.
From equation 4, we get equation 2, for the case V\Iijen» 0.
However, we also need to consider the case V\Hjeﬁ 0. In this
case the bidder will win only if all the other bidders will also bid
0, which happens with probability equal @7 (0); one bidder
will be selected randomly with (equal for each bidder) probabil-
ity ﬁ and in this instance the bidder will make profit —

v EPL<0.

To get equation 3, we must consider all possible cases for the
values that can be obtained by the valuations for the items in auc-
tions (j + 1) throughm for any opponent; we denote these val-
ues byw;y1,...,wm. The probability of this case happening is
equal toF;H(le) L F, (wm). Given these values for all the
valuations in the later auctions we can now compute the expected
profit in all the later auctiongz P, vk = j + 1,...,m. From
equation 1 we know thab; = max {0,v; — >,L ., EPi}.
Thus, the probability thalbj- = 0 is equal to the probability that
v; < Yop.., EPL whichis F(3°0L . EPy). Additionally,
the probability tha’b§- < z (for z > 0) is equal to the probability
thatv} — D ki1 EPi<zev, <z+ D ki1 E P}, which
is F(x+ Y, EP;). Sovz > 0 the probability thab} < z is
Flz+ 30010 EP}). All these observations give us equation 3.

Thus we were able to prove that all the equations hold foy the
auction, which completes the proof by inductiori.]

Note that the crucial parameter in each auction is the valuation
for the item discounted by the expected profit in the later auctions:
vj — Z;’;Hl EP{, which is the additional value they expect to
gain from this item; we’ll call this term the “discounted valuation”
from now on. The agents bid truthfully in the sense that they bid

pendence on bidders playing the dominant strategy in the remain-_ . A o X X
ing rounds, in order to have the computed strategy be the dominantthis discounted valuation (if itis positive). We will show in the next
strategy in the current round (auction), the overall solution concept theorem that this value is the crucial parameter also in the case of
is a Nash equilibrium. sequential first-price auctions.



THEOREM 2. Assume the same setting as theorem 1 with the
difference that the auctions are now first price auctions. In this sce-
nario, it is a symmetric Bayes-Nash equilibrium strategy for each
agent to bid:

m

b; = gj(max {O,v; — Z EP,z})

k=j+1

®)

where®;(), the probability distribution of the discounted valua-
tions, is given by equation 3 and

- b;’ * Zz;j-u Epli)q)?_j(gfl(b;‘)) b;’ >0

(¥5
1
n—j+1

EP}

(v; - Z;n:j+1 Eplz)q)?ij(o) b;’ =0
(6)
1 * gn—i
gj(z) =z — W /O+ 7 (w)dw (7)

PROOF Again we will use induction to prove this theorem. In
the last n*") auction, there aréN —m + 1) participating bidders,
and we know that the symmetric Bayes-Nash equilibrium strategy
in this case is t0 bid},, = v,z Jom FR (W) dw. [4]
From this fact it follows that theméquatrint)ns hold whee: m.

Assume now that the equations are correct for all auctions be-
tween the(j + 1)** andm'". We now need to prove that they hold
for thej* auction. From the point of view of each biddeit faces
(n — j) opponents in this auction. The expected profit of bidder
when he bid$’ in the j** auction is:

EP} = (v;—b;— > EP)® (g, (b))  (®)

k=j+1
because if he wins he will get profit equal b — b}, and he will
lose the profiE;”:j+1 E P} that this agent would have made in the
later rounds by participating in them. The probability of winning
when biddingb is 7~ (g; ' (b})), because the bid; must be
higher than allln — j) opponent bids and each opponent bid has
pdf®;(g; ' (z)), sinced;(x) is the pdf of the opponent discounted

auction, the two auctions (first and second-price) are known to be
revenue equivalent; see [4]. Assume ttiaP; is the same in all

the auctions between thg + 1) andm'". Now since the dis-
counted valuations for'thjeth auction are given by the same for-
mulav; — ZZ”:HI E Py, for both settings and the expected profits

EP} are the sam¥i = j + 1,..., m for both settings, it follows

that the discounted valuations are the same for both settings and are
given by the same pdb; (). Given that, according to equation 7, in
the sequential first-price auctions setting, the discounted valuation
v — >4, ,, EP;, of each bidder is mapped to a bid equal to
the expected value of the highest opponent discounted value, con-
ditional on the fact that this highest opponent discounted value is
lower thanv} — i EP{, and that, in the sequential second-
price auctions setting, the bidders bid truthfully their discounted
valuations, it follows that in both settings the expected seller profit
is equal to the expected value of the second highest, among all bid-
ders, discounted valuation. From this it also follows that the ex-
pected profits of the bidde@P} in the ;" auction are the same
under both auction settings ]

4. EQUILIBRIUM COMPUTATION WHEN
THE PRICES ARE ANNOUNCED

In this section, we extend the results of the previous section to in-
clude knowledge of the prices (i < j) paid by winning bidders in

the first(j — 1) auctions, when the bidding strategy in t& auc-

tion is considered. These prices can be mapped to the discounted
valuations that produced them and this gives some knowledge of
the discounted valuations of the opponents that remain in the auc-
tion. In the first price setting, the information learned is that all re-
maining bidders have discounted valuations for the previous rounds
which are smaller or equal than the respective discounted valua-
tions of the winning bidders. In the second price setting, some
similar information is learned, meaning that all discounted valu-
ations are smaller than the discounted valuations that correspond
to the announced prices, with one exception: as each announced
price corresponds to the second highest bid, this means that one
of the remaining bidders has a discounted valuation with is equal

valuations and the bids at the equilibrium are mapped from these (and not potentially smaller) than the valuation which is mapped

discounted valuations by functigp (). The bid which maximizes
the expected utility is found by settingy_EP; = 0. This gives:
J

9;(g;(b3))

Given that, at the equilibrium, it must bé = g; (U;‘*ZZ;J-H EP),
when the discounted valuatiofy — >} .| EP; is positive (010
otherwise, when the discounted valuation i
the fact that the boundary conditionlisn,, o+ g;(z) = 0, it fol-
lows that the solution of differential equation 9 is indeed given by
equation 7. [

. D (g (bt
@) = (- (i —bi— Y B 2L )

k=j+1

(g5 ©)

Given that the discounted valuatiafy — >} . | EP;, is the

crucial parameter in both first and second price auction settings,

we can now prove that the two settings are revenue equivalent:

COROLLARY 1. The expected revenue of the seller and the bid-
ders is (in expectation) the same in both the case whesequen-
tial first-price auctions are used and the case whersequential
second-price auctions are used.

PROOF We give a short proof. It is sufficient to show that the
expected revenu& P, of bidderi in the k" auction is the same
under both settings. We do this by using induction. In the last

from the announced price. Now, in the case when all the items are
the same, which is examined in [4], this poses no problem for the
analysis, because this bidder will win the auction that immediately
follows and the fact that the remaining bidders have learned his pri-
vate valuation does not matter as it is a dominant strategy for them
to discount their valuation according to the expected gain in future
auctions (in which this bidder will no longer participate). However,

in the setting that we examine, there is no guarantee that this bid-

s zero or negative), and Qer will win the next auction and thus his valuation will potentially

influence the bidding of the remaining bidders. Furthermore, it is
entirely likely that different bidders, which had set the prices for
some previous auctions, will remain in the future auctions. In or-
der to bel00% accurate in our analysis of the second price setting,
we would have to examine all possible cases for which bidder had
had the second highest bid and thus had set the price in the pre-
vious auctions, what is the probability that this bidder remains in
each future auction, and also what is probability that the same bid-
der has set the price in more than one previous auctions (and which
auctions specifically). We will instead make the assumption that
all the discounted valuations are smaller or equal to one that cor-
responds to each announced price and thus ignore the fact that we
know that one of these (but not exactly which one) is equal to the
closing pricé® It might initially seem that this assumption could

2\We only need make this assumption, when the identity of the bid-



impact significantly the bids of the remaining bidders. However, o - i _ G i<
for an agent to have such a high valuation it would mean that both Z({ws kz;rl EPjx <z} A A/<\V{M k;l EPyk < pr})
= j =

his valuation for the auction that just closed was relatively high (12)
and that his valuations for subsequent auctions are lower than most . . .
of the other participants. Therefore, it is unlikely that this bidder —y i
will have the highest discounted valuation in any of the remaining b(p) */0 /0 I /\V{w*f > ERk<p)) (13
auctions. By assuming that his discounted valuation can be smaller A<d kAT
we do increase somewhat the computed probability of him having a / ’
higher discounted valuation in futurpe auct?ons, but %/his makes smgall Fi(w1) .. Fp(wm) - dwr ... dom
difference to the final computations, especially in cases where the PROOF Again we do this proof by induction. However, we are
total number of bidders is significantly higher than the number of going to need a double induction both gnthe number of the
items sold. current auction at which the computation is performed, and,on

On the other hanif the identity of the second highest bidder is  which is number of the auction examined.
revealed together with the bid, we need not make the previous as- The first induction is ory. Whenj = 1 there is no price infor-
sumption but we can rather incorporate the fact that we know his mation and, we can verify easily that the equations of this theorem
discounted valuation precisely into our analysis. While the next generate the equations of theorem 1. Now assume that the theo-
theorem is presented with this assumption we will discuss after- rem is correct when the computation is performed before auctions
wards how it is modified in order to account for this knowledge in 1,...,j—1. We have computed both the bidding strategies and the
the case that the identities of the second highest bidders are alseexpected profit at all rounds before each auction started. We need
announced. In the theorems that follow we will use the following to show that the equations hold also when we perform the same
function: computations before thg" auction is run.

To prove this fact, we need a second induction, which is fairly
Definition 1. The indicator functiorf takes as input a boolean  similar to the proof of theorem 1. We need the equations to hold

expressiore and returns: for any auctiork = 4, ..., m considered. In the last(") auction,
Z(e) = 1, if expressiore = true, and there ar§ N —m+1) participating bidders, asn — 1) of the other
Z(e) = 0, if expressiore = false. bidders have won an item and have dropped out, and we know that

it is a weakly dominant strategy in this case to bid truthfully. Thus
THEOREM 3. Assume the same setting as theorem 1 with the the equations hold wheln= m.
difference that the pricep’ = {px}(k = 1,...,j — 1), at which Assume now that the equations are correct for all auctions be-
the previous auctions have closed, are announced and are commoriween the(k + 1)"* andm'. We now need to prove that they
knowledge to bidders at thg" auction. In this scenario, itisa  hold for thek*" auction. From the point of view of each biddgeit

symmetric Bayes-Nash equilibrium strategy for each agent to bid: faces(N — k) opponents, agk — 1) opponents have already won
one item each and left. Most of the proof now is similar to that of

p P i ; theorem 1. What is different essentially is the computation of the
bj = max {0, vj — Z EP; .} (10) distribution of any opponent’s bid, because the closing pripes
=i+l must be included in the agents’ reasoning.
To computed; () we need to prove the validity of equations 12
and 13. We must consider all possible values that the valuations of
any opponent can have for the items in auctiomghroughm; we

where EP; ., the expected profit of bidderfrom thek*" auction,
as computed during thg" auctior?, is:

_ b (vl —w— 3T Ep )iqwfk( Vo b >0 denote these values by, ..., wn,. The/probability/ofthis particu-
EPj, = { 0 Yk iw %hk“ I dw Zik wjaw , lar combination happening is equal K (w1) . . . F,,, (wm). Given
m(vk D) S EPj,A)‘I)j,k (0) b =0 these values for all the valuations that the opponent might have
o _ (11) in all auctions, we need to compute the conditional probability of
and®; (), the pdf of any opponent bid in thé" auction, as €OM-  him having a discounted valuation less or equat tgiven feasible
puted during thej*" auction, is given by dividingV(z, 7'), the combinations of valuations. Now, we know from the announced

probability that any combination of valuations gives discounted prices that the bid (which was equal to the discounted valuation) of
valuations which are consistent with the pricesobserved in the that opponent in tha*” auction (as computed right before the"
previous auctions and that the bid in the current auction would be ayction) was:

<z, by D(p), the probability that any combination of valuations m
gives discounted valuations which are consistent Witﬂ the prifes Wy — Z EP} . < px
observed in the previous auctions. This,,() = “575). These S T
terms are computed as follows:

If valuationsv, = wi1,...,vm = wm, do not satisfy all these in-
equalities then that combination of valuations is not supported by

- oo o, / the observed closing prices and is not feasible. Thus equation 13 is
Nz, p) = / / Fi(w) . Fo(wm) - dwr .. dwpm: correct because it gives the probability that the combination of val-
0 0 uations is feasible. Similarly, the nominator given by equation 12
der who set the price is not known. As we explain later in this sec- s all those combinations which, in addition, give a discounted val-
tion, if this information is available, this assumption is not made, |;ation (which is equal to the bid) smaller or equalitoWe know

and thus the equilibrium strategy is computed entirely accurately. L ) - )
SAt that stage, right before th&" auction has been contacted, the :]b?rit?/y dividing the two terms we get the desired conditional prob

closing pricesp,...,p;—1 have been observed. These observa- ) . . .
tions change the expected profit from future rounds and this is the This completes the inner inductive step. As a result the theorem
reason why we need to index the expected future profits by when correctly computes the bids when making the computations before
the round at which this computations is made. the 7' auction. This is why the outer induction also holds, which




completes the proof. []

Now, there is a way to extend this theorem to account for knowl-
edge of a particular bidders bids being in some auctions equal to
the closing price. Assume that the identities of the bidders who

have set the closing prices by placing the second highest bids are

announced. Then, for any biddethat did not set any closing price,
the computation ob(*) (), his probability of bidding up ta: in the

current auction, remains the same as in theorem 3. However, for the

other bidders this is not the case. If it is known that biddeas set
the prices in all auctions € Z, whereZ C {1,...,j — 1}, then
w: — Y., EPL, = p., for those values € Z. We need to
modify the expressions fav () and D() appropriately. Let us call
the new functionsV () and D(). Asw. — 1" | EPL, = p-
is equivalent top. < w. — Y7L, | EP!; < p. + Ap., when
Ap. — 0, we can easily verify that

N 97N (z, P)
N(@, P, 2)=———""2Azn...A
(ZE, p ’Z) 1921 . 792|Z| z1 Z‘Z‘
wherezy, ..., Az z are the elements of sét. Similarly:
~ IZID(P)
- —_—
D(p,z) = 1921...192‘Z‘AZ1'”AZ‘Z|

and the distribution of this opponent's bidds? (z) = Nﬁ(fT?z;)
in which all the termsA\ z; are eliminated. ’

For each biddet, the distribution of the highest bid of all his
opponents is given bﬂ#i <I>(A>(a:). In equation 11, we replace
term®"~* with this new computation in order to find out the ex-
pect profit of each bidderand then use this to compute the bid as
given by equation 10. It should be noted that the bidding strategies
of the bidders are no longer symmetric because of the difference in
the knowledge about opponents’ valuations.

Having described how to modify theorem 3 in order to compute
the equilibria accurately, we now proceed to give the extension of

theorem 2, for the case when the winners’ bids are announced. In

this case we know that all the remaining bids were lower than those
prices.

THEOREM 4. Assume the same setting as theorem 3 with the
difference that the auctions are now first price auctions and also
thatp = {px}(k = 1,...,5 — 1) are the discounted valuations
that produced the closing prices obsenfebh this scenario, it is a
symmetric Bayes-Nash equilibrium strategy for each agent to bid:

b;- = gj,j(max {O, v;- — i EP?’,C})

k=j+1

(14)

where®; (), the pdf of any opponents’ discounted valuation in
the k** auction, as computed during thé" auction, is®; 1 ()

ND(“(“’%), where these terms are computed by equations 12 and 13,

and
g, — { (= bk = Tl BPL) 25 (970.(06) 85 >0
7 it Wk — ks EPA) @77 (0) bi =0
(15)
and the bidding strategy; » () that maps the discounted valuation
to the bid in thek'" auction (as computed before thg" auction
takes place) is given by equation:
[
o+

o1
77 (z)

“As the bidding strategieg, () are known we can map any clos-

ing pricep), to the discounted valuatig, that produced this bid.

gjk(z) = 1 (w)dw (16)

PROOF The proof is done by induction similar to the proof of
theorem 3. The outer induction is gnthe number of the auction
before which this computation is performed. Whes: 1, no price
information is known, so we have the case described in theorem 2
and it is easy to verify that the equations of this theorem give the
equations of theorem 2.

Assuming that the theorem is correct when the computations are
performed before auctioris ..., 5 — 1, we need to show that the
equations hold also when we perform the same computations be-
fore thej** auction is run. This inductive step is proved by a sec-
ond induction, which is fairly similar to the proof of theorem 2. We
need the equations to hold for any auctior= j, ..., m consid-
ered. In the last'") auction, there aréN —m + 1) participating
bidders, and we know that the symmetric Bayes-Nash equilibrium
strategy in this case is to bid, = v?,— annlz(vi ) foviﬂ F2m™(w)dw. [4]
From this fact it follows that the equatigns hold whier= m. The
inductive step is proven in more or less the same way as in the proof
of theorem 2. The only difference is in the way that the distribution
®; () of any opponent’s discounted valuation in tfé& auction
as computed before thé" auction, is generated. The latter is done
in exactly the same way as in theorem 3. Note, in fact, that if the
observed discounted valuations are the same in both auction vari-
ants, then the distributionB; . (z) would be identical. The rest of
the proof follows the proof of theorem 2.[]

As far as revenue equivalence is concerned, it is easy to see that,
if the observed discounted valuations are the same in both auction
variants, then the distributiors; ;. () would be identical and then
both the sequential first price and second price auctions would give
the same revenue. However, in general this does not hold because
of the different information provided by the closing prices of the
two different auction variants:

CLAIM 1. Revenue equivalence does not hold between sequen-
tial first-price auctions and sequential second-price auctions.

5. COMPUTING THE EQUILIBRIA: AN EX-
AMPLE

In this section, we give an example case in order to further clar-
ify the algorithm with which the bidding strategies are computed
both when prices are announced and when they are not. We fur-
ther show that, when the bidder who submitted the second price in
each auction is known, we can use the fact that we know his dis-
counted valuation precisely, in our analysis, and thus not make the
assumption discussed at the beginning of section 4.

To keep it as simple as possible, we assume that thene aré
bidders andn = 3 items for sale in sequential second price auc-
tions. The item valuations are independent and drawn from distri-
butions F1, which is uniform on[0, 2], F», which is uniform on
[1,2], andF3, which is uniform on0, 1].

The first step both when prices are announced and when they are
not is to compute the bidding strategies for all bidders before the
first auction takes places. In this case the computation is the same
in both cases. To be more precise, the computation when prices
are not announced does not change as each auction is completed
and thus we need only compute the bidding strategies once; on the
other hand, this computation is valid before the first auction also
when prices are announced, because at that point there is no price
information yet.

Now, when the last auction would be reached, there would only
be1 bidder left, this bidder would bid

bz = v3



and his expected profit in that auction will be
EP3 = V3

Given this information, in the second auction, where there would
be2 bidders left, they would bidy = vo — EP3 <

bzI’UQ—’Ug

because it is always, > vs.
The distribution of the opponent bid in this auction has cdf which
is computed by the following equation:

1 1
‘13'2(23) :/ FQ(CE + W3)F3:(W3)daJ3 = / FQ(CC +W3)dW3
0 0
Forz > 2, ®3(x) = 1 and forz < 0, ®2(x) = 0. We consider
two cases:

If z € [0,1], then F>(z + w3) = 0, whenws < 1 — z, and
Fy(x 4+ w3) = x + ws — 1, otherwise, thus

1
Dy(x) = / (x4 ws — 1)dws = %xQ
1—x

If z € [1,2], thenF>(z + w3) = 1, whenws > 2 — z, and
Fy(x 4+ w3) = x + ws — 1, otherwise, thus

s (x) :/02_x(m+w3—1)dw3+/2i

Using this distribution, the expected profit of a bidder in that
auction can be computed as:

vdws = —1m2—|—2x—1
© 2

EP,

V2 —vU3
/ (03 — w — v3) B () dw
0
If v2 —vs < 1, then this equation becomes:
v —v3 1 .
EP; = / (v2 — w — vg)wdw = g(vz - v3)®
0
If v2 —vs > 1, then this equation becomes:

1 vy —v3
EP; = / (Uz—w—v3)wdw+/ (v2—w—v3)(2~w)dw &
0 1

1
EP; = 5 3

Having computed the expected profit from the latter auctions, it
is now possible to compute the bidders’ bidding strategy in the first
auction.

Any one of the3 bidders would bich; = max{0,v, — EPs —
EP,}
If vy — 3 < 1 then

(’Ug — 1)3)3 (’Uz — V3 — 1)3

1 3
6(02 —v3)"}

b1 = max{0,v1 —v3 —
If v2 —v3 > 1then

3

Let us now examine how the analysis would be changed if there
are price announcements. First of all, the bid in the third auction
would not change as it is a weakly dominant strategy tobbig=
vs. Furthermore P> 3 = v3 once more because in the last auction
there is only one bidder remainifigHowever, as a result of the

1
b1 = max{0,v1 —v3 — 6(1}2 — v3)3 + = (v2 —v3 — 1)3}

SNote that if that were not the case, ther, 3 would be different
from EP; 3, because the distributio@: 5 of any opponent’s bid
would also change.

pricep being announced as the closing price of the first auction, we
know that the bids of the bidders were < p. There are two cases:
If p =0, thenb; = 0 and thus we know that, — EP; — EP> <0
as the bidh, is the maximum of) andv, — EP; — EPs.
If p >0, thenitisvy — EP; — EP>, < p.
Thus in both cases itisy, — EP; — EP> < p. Note that according
to our notation,EP>, = EP; > and EP; = EP; 3, meaning that
both these were computed before tié auction; they have been
computed already as described previously in this section.

We will now demonstrate how to compute the probabily ()
of the opponent bid in the second auction given that the closing
price p in the first auction has been announced. We know that
Do o(x) ND(H(”I;?, where D(p) is the probability of the com-
binations of valuations that agree with the observed ppicand
N(z,p) is the probability of the combinations of valuations that
not only agree with the observed priggbut also give a bids < z,
whereb, = vo — v3 in this case sinc& P 3 = vs.

Notice that the probability of; < vs + EP, + pis 23+2Fte,
Thus the denominatdd(p) can be computed as equal®to:

2 1
+ EP> +

D(p):/ /O wdwgdwz:

1

—wa)3 ;
/2 /1 =t = wa i wrmws T ) 1)3 dwsdw2
1 Jo 2

2 wo—1 _
P dwsdws f/ / (w2
1 Jo 3

11

_P
BERET

The nominatorN (x, p) can be computed, in a similar way. We
distinguish two cases:
If x < 1, then we need to integrate fos € [1,1 + x] andvs €
[va — z, 1] so thatv, — v3 < z and thus:

1+x 1
Nap = [
1 wo—x
/1+x /1 w3 + (w276w3)3 +p
1 wo—x 2

< D(p)

w3+EP2+pdw

5 3dwe =

du}gdwg =

1o 1 3 1 5 1 5
N(z,p) = 72° — =2’ + —2”+
(@,p) = 707 = @ + 5o@ + gp7
Therefore:
1,2 1.3, 1.5, 1.2
T — 527 4 g5x” + gpx
Byo(a) = 2 2 60 1P z<1

11
5+ 3
If x > 1, then we again distinguish several cases and get finally the
following equation:

=[]

8In this instance we chose to accelerate the computation by select-
ing one variable); and removing it from the integration by select-
ing directly the probability of it satisfying the inequality, rather than
using the indicator functiof as in equation 13. This can be done
in general for bothv() and D() and for more than one inequali-
ties. From each inequalitys — ;" | EPy , < px, we use the
Bisection Method to find the value ef, for which both sides of

the inequality become equal (we take the algorithm from chapter 9
of [5]). This valuev,” is the smallest for which the inequality holds.

It should also be noted that we are forced to discretize the compu-
tation even though the distributiafi; () are continuous, when we
use numerical methods to find these equilibria.

w _,’_(w2—w3)3 +
3 6

5 P dwsdwa+




_ (wp—w3—1)®

/z /ngl ws + (W2*6W3)3
1 0

5 3 dwszdws+
2 pwa—l 0y (wp—w3)®  (wp—w3—1)3
// 3 6 3 dwsdws &
x wo—T 2
1 4 1 13 5 1 4 7 53 1 5 1 4
N - Cptcp s 2.2 2 L i
(.p) = —gpt3e—g =15 —% Tp% tgg? ~gPT TPT
Therefore:
by HP T3 e~ det 4 o+ e~ A 4o
2,2(x) = p L 11
z2t35
whenz > 1.

The final part of this example is to show how we can compute
accurately®, »(z) when we know the identity of the bidder who
placed a bid equal tp in the first auctior. In this case ifp = 0
the analysis is still the same as before becauseut is EP; —
EP, < 0. However, wherp > 0, then this means that for the
opponent bidder who placed this bid itis; — EP; — EP> = p.

To computed; »(z) in this case we need to notice that bdiip)
andN (z, p) are events that happen with probabilitin our setting.

To work around this problem we change— EP; — EP, = pto

p <wv1 — EP; — EP, < p+ Ap and take the limit ag\p — 0.
Then using the equations we have already computed, we can sho
that:

1
D(p) gAP

and ifx < 1:
1
N(z,p) = Zx2Ap
whereas ift > 1:

1
~2?Ap + zAp

1
N(z,p) = —QAP— 1

Therefore, ifx < 1:
1
@22(%’) = 5332
and, ifx > 1:

1
@2’2(.’1’) = —51’2 +2xr—1
Notice that this can be generalized to any number of ppiges. . , p;j—1

as was described in the previous section. More specifically, if it is

but only want to purchase one item in total. We initially gave the
equilibrium strategies when the closing prices of auctions are not
announced; under this setting we prove that using sequential first
price auctions or sequential second price auctions yields the same
expected revenue to the auctioneer. After that, we extended our
analysis to include also the information obtained from announce-
ments about the closing prices of the auctions; we can compute
the equilibrium strategies in the first price variant accurately in all
cases, but for the second price variant we need to also learn the
identity of the bidder who submitted the second highest bid or dis-
regard the fact that we know the actual bid of some bidder (if we
don’t known who this bidder was). Because the analysis is quite
complicated, we then proceeded to give a small example to illus-
trate and clarify how the computation of the equilibria is executed
both when prices are not announced and when they are.

Our next steps in this ongoing work is to find the optimal agenda,
i.e. order of auctions that would maximize the revenue of the seller.
Another avenue of research that we are currently pursuing is what
happens ifree disposals possible in this scenario. It is somewhat
restrictive to assume that once a buyer has purchased an item it can-
not try to purchase any other for which it has a higher valuation. For
example, in the case of a person buying paintings, even if she can
only display one painting, she could still buy two and store the one
not put on display. In this case, the fact that an item is purchased

WAt some auction would decrease the bids for future items, because

now the utility from obtaining a more valuable item is discounted
by the valuation of the item that has been previously obtained. The
full equilibrium analysis of this case is ongoing and will be pre-
sented in future work; however we give some of our initial results
on computing the equilibrium in the appendix that follows. An-
other issue that we plan to examine is to determine the auction type
that would yield the highest revenue for the seller in the case that
prices are announced, as revenue equivalence does not hold in this
case.
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APPENDIX roundj, in the reasoning that each agent executes, each one of the
previous auctions has been won by a different bidder, allows us

A. FREE DISPOSAL to simplify the computation of the expected profit, in that we can

In this section we give some initial results about what happens then take the pdf of the distribution of the highest opponent bid
when free disposal is allowed. This means that, unlike in the pre- to be equal to:®7 o (W) TTZ BA#I@ ®; »(w). We believe that we
vious work presented in this paper, when a bidder wins an item he should be able to remove this assumptlon however this will lead
is not forced to stop participating in the remaining auctions. The to having to account for all possible combinations for which agents
results that we present here are preliminary, because it is assumeaould have won each combination of auctions in the past and this
at each auction roung] in the reasoning that each agent executes, will complicate significantly the analysis.
that each one of the previous auctions has been won by a differ-  Using similar reasoning, we can show tktz first-price auction
ent bidder. Now, this is the most likely case, however, it is always variant of this scenario is revenue equivalent to the second-price
possible that a single bidder might win two or more of the previ- auction settinghat was just presented. Using this knowledge, we
ous auctions, even though this event is fairly unlikely, given that can extend these results to compute the Bayes-Nash equilibrium for
the effective valuations of a bidder for the items sold in the remain- the case of sequential first-price auctions with free disposal.
ing rounds are discounted by the valuation of the item that was last
won, and therefore a bidder would have to have a pair of valuations
Va, Vg (o < f3), such thaw,, is high enough to win the auction
and yetvs — v, is also win enough to win thg*" auction, con-
sidering that there will be bidders in that round who have not won
any of the previous auctions and therefore their valuations are not
discounted.

Having made this assumption, theorem 1 can be extended to al-
low for free disposal. We will use the notatiag = 0, i.e. we
assume a dummy auction (with order numbgr before the first
auction, for which everyone has valuation = 0. This will allow
us to give one set of equation both for bidders who have won some
previous auction and for those that have not; in the latter case we as-
sume that the last auction that these bidders have won is the dummy

— .
auction0. Additionally, v* = v1, ..., v,,. Now, in this scenario, it
is a symmetric Bayes-Nash equillbrlum strategy for each agent to
bid 2

bi = max{O,v} —vj, 4+ EPj1(v',j) — EP},1(v',k)}
whenv} — v}, > 0 and is otherwise:
bl =0,
where EP; (v*, k), the expected profit of bidderfrom the jt"
auction, when the most valued item that it has won was acquired
by winning thek!" auction is:

.
EP}(v', k) = EP7'+1('U k) —|—f0_ (b5 —w)

dw (‘I);Loj( )H)\ =0,A#k D, A(W))dw

whenb} > 0. Whenb} = 0itis:

i3 ; @7 07O T2 5k ©i2 (0)
EP}(v',k) = EP; +1(u k) + Oﬁ SpAZk J2

(vi —vj, + EP} 1 (v, j) — EPj +1(v k))

if v > vk, and otherW|se itis:
EPl(fu k) = EPZJFI(U k)

®; x(), the pdf of any opponent bid in thé" auction, when the
most valued item was won in the" auction is given by:

/ / Fj(z+vi—EP}, ( )+EP+1(U k)):

(m— J+1) integrals

Fk(wk) Fj+1(wj+1) e Fm(wm) ~du.)k de+1 . dwm
(m—jﬁerms (mf;)ruoms

The assumption that we made, which was that, at each auction

8We don't give the proof here, but some of the main ideas are sim-
ilar to the proof of theorem 1, although there are some additional
steps given the extra complexity that the valuations of a bidder are
reduced in the remaining auctions, if it wins any auction, whereas in
the scenario of theorem 1, the valuations for the remaining rounds
effectively becomé (as the agent must drop out).



