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ABSTRACT
In this paper, we examine a setting in which a number of partially
substitutable goods is sold in sequential single unit auctions. Each
bidder needs to buy exactly one of these goods. In previous work,
this setting has been simplified by assuming that bidders do not
know their valuations for all items a priori, but rather are informed
of their true valuation for each item right before the correspond-
ing auction takes place. In our analysis we don’t make this as-
sumption. This complicates significantly the computation of the
equilibrium strategies. We examine this setting both for first and
second-price auction variants, initially when the closing prices are
not announced, for which case we prove that sequential first and
second-price auctions are revenue equivalent, and then when the
prices are announced; in the latter case, because of the asymmetry
in the announced prices between the two auction variants, revenue
equivalence does not hold. We finish the paper, by giving some ini-
tial results about the case when free disposal is allowed, and there-
fore a bidder can purchase more than one item.

1. INTRODUCTION
Auctions have become commonplace when allocating resources in
multiagent systems; they are used to trade all kinds of commod-
ity, from flowers and food to keyword targeted advertisement slots,
from bonds and securities to spectrum rights. There are several auc-
tion formats that can be used when selling a group of items; some
of the best known ones are combinatorial auctions [6], parallel auc-
tions [3], or sequential auctions [1, 2]. Out of these, separate (i.e.
non combinatorial) auctions each selling a single item are the most
common case on the internet, since they are easy to implement. In
most interesting scenarios these auctions are analyzed as sequential
auctions, because their closing times do not coincide and therefore
the result of the earlier ones are known by the time that a bidder
would bid for the later ones.

Using sequential auctions to sell a number of items is the model
that we examine in this paper. In [2], the authors examined a model
where an auctioneer sells a number of partially substitutable items
to a number of bidders. Their motivating example is that of adver-
tisers bidding for advertising space on a particular network. There
are several possible advertisement slots available, each associated
with a particular program and time, and each advertiser wants to ad-
vertise on this network only once. The slots are therefore partially
substitutable. However, different slots have a different value to each

.

advertiser depending on the audience towards which he would like
to target his ad. Another motivating example is that of a person
who wants to buy a painting for her office; there is space for one
painting only and there are several paintings to be auctioned off
at a particular auction house, where this person visits in order to
purchase a painting. The different paintings have different values
not only because of their inherent valuation, but also because of the
personal preferences of the buyer.

Now, in [2], the authors assumed that the valuations of the dif-
ferent items do not become known to the bidders until after all the
previous auctions have been concluded. This simplifies the analysis
of how bidders bid, because in previous auctions they all have the
same expected profit from the remaining auctions, given that they
don’t each know how much they value the remaining items. It is
more realistic to remove this assumption and let each bidder know
his entire set of valuations from the beginning of the game. This
means that the bid placed at each auction depends on the entire vec-
tor of valuations rather than a single one, which was the case when
the valuations are not known a priori. Therefore, in this paper we
focus on computing the equilibrium strategies of the bidders, while
in [2], the focus was on computing the optimal agenda (i.e. order
of the items being auctioned) of the seller in order to maximize her
revenue. The other difference is that here we examine both first and
second price auctions, whereas in [2] only sequential second price
auctions were considered.

This paper is organized as follows. In section 2, we formally
present the setting that we will analyze. In section 3, we give the
equilibrium strategies for the sequential first price and second price
auctions with the assumption that the closing prices are not an-
nounced; under this setting we prove that the two auction variants
are revenue equivalent. In section 4, we include in our analysis
also the information obtained from announcements about the clos-
ing prices of the auctions; the equilibrium strategies computed in
this section are generalizations of those in the previous section. In
section 5, we proceed to give a small example to illustrate and clar-
ify how the computation of the equilibria is executed both when
prices are not announced and when they are. In section 6, we dis-
cuss about other related work and conclude. Finally, in the ap-
pendix, we give some initial results of the case when free disposal
is allowed.

2. PROBLEM SETUP
In this section we formally describe the auction setting to be ana-
lyzed and give the notation that we use. The setting is similar to that
in [2] with the exception that each bidder knows all his valuations
a priori.

In particular, there arem > 1 sequential auctions each selling
a single item. The order in which these goods are sold is common



knowledge. There aren > 1 bidders participating in these auc-
tions. Each bidderi has a different independent valuationvi

j for
the good sold in thejth auction. In general, these valuations are
i.i.d. variables and the valuations of bidders for thejth item are
drawn from known distributions with cumulative density function
(cdf) Fj(), ∀j ≤ m. These goods are partially substitutable in the
sense that each bidder can buy only one good and it can use (and
bid for) any one of them. The bidders must bid for all items, al-
though they have the option of placing bids equal to0, in which
case they might win only if all bidders place bids equal to zero. In
such a case of a tie, the winner is selected randomly. Once a bid-
der has won any item it stops bidding in the remaining auctions.
The bidders are risk neutral and only care about maximizing their
utility, which is defined as the difference between the valuationvi

j

minus the price paid, if they win thejth auction, or0 if they don’t
win any auctions.

We will compute and analyze the symmetric Bayes-Nash equi-
libria that exist in sequential first auctions and sequential second
price auctions. The equilibria that we compute are defined by a
bidding strategy, which maps the agents’ valuationsvi

j to bidsbi
j .

There are a number of other parameters that we will use in order to
compute these bids, but we define those at the corresponding the-
orems. In the case that the closing prices are announced, then the
bidding strategies depend on these parameters as well, and we will
describe how to incorporate this information in our analysis.

3. EQUILIBRIUM COMPUTATION WHEN
NO PRICES ARE ANNOUNCED

In this section, we examine the strategic behavior of bidders when
the closing prices of previous auctions are not announced and there-
fore the bidders do not learn any information about the private val-
ues of their opponents.

THEOREM 1. Assume thatn bidders participate inm sequen-
tial second-price auctions, each selling one item. The items are
assumed to be partially substitutable and each bidder is interested
in purchasing exactly one item. The valuation of the item sold in
the jth auction to bidderi is vi

j . The valuations for thejth item
to the bidders are i.i.d. variables drawn from prior distribution
Fj(v). The valuations that each bidder has for different items are
independent. In this scenario, it is a symmetric Bayes-Nash equi-
librium strategy1 for each agent to bid:

bi
j = max

�
0, vi

j −
mX

k=j+1

EP i
k

	
(1)

whereEP i
k, the expected profit of bidderi from thekth auction, is:

EP i
j =

(R bi
j

0−
�
vi

j − ω −Pm
k=j+1 EP i

k

�
d

dω
Φn−j

j (ω)dω bi
j > 0

1
n−j+1

�
vi

j −
Pm

k=j+1 EP i
k

�
Φn−j

j (0) bi
j = 0

(2)
andΦj(), the pdf of any opponent bid in thejth auction, is:

Φj(x) =

Z ∞

0

. . .

Z ∞

0| {z }
(m−j) integrals

Fj(x +

mX
k=j+1

EP i
k)· (3)

1To be precise at each auction it is a weakly dominant strategy for
the bidders to bid in this way, provided that other bidders will play
the dominant strategy in the remaining rounds. Because of this de-
pendence on bidders playing the dominant strategy in the remain-
ing rounds, in order to have the computed strategy be the dominant
strategy in the current round (auction), the overall solution concept
is a Nash equilibrium.

F
′
j+1(ωj+1) . . . F

′
m(ωm)| {z }

(m−j) terms

· dωj+1 . . . dωm| {z }
(m−j) vars

PROOF. Proof by induction. In the last (mth) auction, there are
(N −m+1) participating bidders, as(m−1) of the other bidders
have won an item and have dropped out, and we know that it is a
weakly dominant strategy in this case to bid truthfully. Thus the
equations hold whenj = m.

Assume now that the equations are correct for all auctions be-
tween the(j + 1)th andmth. We now need to prove that they hold
for thejth auction. From the point of view of each bidderi, it faces
(N−j) opponents, as(j−1) opponents have already won one item
each and left. The expected profit of bidderi when he bidsbi

j in
thejth auction is:

EP i
j =

Z bi
j

0−

�
vi

j − ω −
mX

k=j+1

EP i
k

� d

dω
Φn−j

j (ω)dω (4)

because if he wins he will get profit equal tovi
j − ω, whereω

is the second highest bid (the highest opponent bid), and he will
lose the profit

Pm
k=j+1 EP i

k that this agent would have made in
the later rounds if he were to participate in them (which will not
happen because the agent will win and withdraw); the probability
of the highest opponent bid being equal toω has pdfΦn−j

j (ω). The
bid which maximizes the expected utility does not actually depend
on the opponent bids as described by pdfΦj(), and is equal to
bi
j = vi

j −
Pm

k=j+1 EP i
k, if this term is positive. Otherwise the

bidder expects to gain more from the later round and would not
want to bid anything more thanbi

j = 0. Thus we get equation 1.
From equation 4, we get equation 2, for the case whenbi

j > 0.
However, we also need to consider the case whenbi

j = 0. In this
case the bidder will win only if all the other bidders will also bid
0, which happens with probability equal toΦn−j

j (0); one bidder
will be selected randomly with (equal for each bidder) probabil-
ity 1

n−j+1
and in this instance the bidder will make profitvi

j −Pm
k=j+1 EP i

k ≤ 0.
To get equation 3, we must consider all possible cases for the

values that can be obtained by the valuations for the items in auc-
tions (j + 1) throughm for any opponenti; we denote these val-
ues byωj+1, . . . , ωm. The probability of this case happening is
equal toF

′
j+1(ωj+1) . . . F

′
m(ωm). Given these values for all the

valuations in the later auctions we can now compute the expected
profit in all the later auctionsEP i

k,∀k = j + 1, . . . , m. From
equation 1 we know thatbi

j = max
�
0, vi

j −
Pm

k=j+1 EP i
k

	
.

Thus, the probability thatbi
j = 0 is equal to the probability that

vi
j ≤ Pm

k=j+1 EP i
k, which is F (

Pm
k=j+1 EP i

k). Additionally,

the probability thatbi
j ≤ x (for x > 0) is equal to the probability

thatvi
j −

Pm
k=j+1 EP i

k ≤ x ⇔ vi
j ≤ x +

Pm
k=j+1 EP i

k, which

is F (x +
Pm

k=j+1 EP i
k). So∀x ≥ 0 the probability thatbi

j ≤ x is

F (x +
Pm

k=j+1 EP i
k). All these observations give us equation 3.

Thus we were able to prove that all the equations hold for thejth

auction, which completes the proof by induction.

Note that the crucial parameter in each auction is the valuation
for the item discounted by the expected profit in the later auctions:
vi

j −
Pm

k=j+1 EP i
k, which is the additional value they expect to

gain from this item; we’ll call this term the “discounted valuation”
from now on. The agents bid truthfully in the sense that they bid
this discounted valuation (if it is positive). We will show in the next
theorem that this value is the crucial parameter also in the case of
sequential first-price auctions.



THEOREM 2. Assume the same setting as theorem 1 with the
difference that the auctions are now first price auctions. In this sce-
nario, it is a symmetric Bayes-Nash equilibrium strategy for each
agent to bid:

bi
j = gj

�
max

�
0, vi

j −
mX

k=j+1

EP i
k

	�
(5)

whereΦj(), the probability distribution of the discounted valua-
tions, is given by equation 3 and

EP i
j =

(�
vi

j − bi
j −

Pm
k=j+1 EP i

k

�
Φn−j

j (g−1
j (bi

j)) bi
j > 0

1
n−j+1

�
vi

j −
Pm

k=j+1 EP i
k

�
Φn−j

j (0) bi
j = 0

(6)

gj(x) = x− 1

Φn−j
j (x)

Z x

0+
Φn−j

j (ω)dω (7)

PROOF. Again we will use induction to prove this theorem. In
the last (mth) auction, there are(N−m+1) participating bidders,
and we know that the symmetric Bayes-Nash equilibrium strategy

in this case is to bidbi
m = vi

m− 1

F n−m
m (vi

m)

R vi
m

0
F n−m

m (ω)dω. [4]

From this fact it follows that the equations hold whenj = m.
Assume now that the equations are correct for all auctions be-

tween the(j + 1)th andmth. We now need to prove that they hold
for thejth auction. From the point of view of each bidderi, it faces
(n − j) opponents in this auction. The expected profit of bidderi
when he bidsbi

j in thejth auction is:

EP i
j =

�
vi

j − bi
j −

mX
k=j+1

EP i
k

�
Φn−j

j (g−1
j (bi

j)) (8)

because if he wins he will get profit equal tovi
j − bi

j , and he will
lose the profit

Pm
k=j+1 EP i

k that this agent would have made in the
later rounds by participating in them. The probability of winning
when biddingbi

j is Φn−j
j (g−1

j (bi
j)), because the bidbi

j must be
higher than all(n − j) opponent bids and each opponent bid has
pdf Φj(g

−1
j (x)), sinceΦj(x) is the pdf of the opponent discounted

valuations and the bids at the equilibrium are mapped from these
discounted valuations by functiongj(). The bid which maximizes
the expected utility is found by settingd

dbi
j
EP i

j = 0. This gives:

Φj(g
−1
j (x)) = (n− j)

�
vi

j − bi
j −

mX
k=j+1

EP i
k

�Φ′j(g−1
j (bi

j))

g
′
j(g

−1
j (bi

j))
(9)

Given that, at the equilibrium, it must bebi
j = gj

�
vi

j−
Pm

k=j+1 EP i
k

�
,

when the discounted valuationvi
j −
Pm

k=j+1 EP i
k is positive (or0

otherwise, when the discounted valuation is zero or negative), and
the fact that the boundary condition islimx→0+ gj(x) = 0, it fol-
lows that the solution of differential equation 9 is indeed given by
equation 7.

Given that the discounted valuationvi
j −

Pm
k=j+1 EP i

k is the
crucial parameter in both first and second price auction settings,
we can now prove that the two settings are revenue equivalent:

COROLLARY 1. The expected revenue of the seller and the bid-
ders is (in expectation) the same in both the case whenm sequen-
tial first-price auctions are used and the case whenm sequential
second-price auctions are used.

PROOF. We give a short proof. It is sufficient to show that the
expected revenueEP i

k of bidder i in the kth auction is the same
under both settings. We do this by using induction. In the last

auction, the two auctions (first and second-price) are known to be
revenue equivalent; see [4]. Assume thatEP i

k is the same in all
the auctions between the(j + 1)th andmth. Now since the dis-
counted valuations for thejth auction are given by the same for-
mulavi

j −
Pm

k=j+1 EP i
k for both settings and the expected profits

EP i
k are the same∀i = j + 1, . . . , m for both settings, it follows

that the discounted valuations are the same for both settings and are
given by the same pdfΦj(). Given that, according to equation 7, in
the sequential first-price auctions setting, the discounted valuation
vi

j −
Pm

k=j+1 EP i
k of each bidderi is mapped to a bid equal to

the expected value of the highest opponent discounted value, con-
ditional on the fact that this highest opponent discounted value is
lower thanvi

j −
Pm

k=j+1 EP i
k, and that, in the sequential second-

price auctions setting, the bidders bid truthfully their discounted
valuations, it follows that in both settings the expected seller profit
is equal to the expected value of the second highest, among all bid-
ders, discounted valuation. From this it also follows that the ex-
pected profits of the biddersEP i

j in the jth auction are the same
under both auction settings.

4. EQUILIBRIUM COMPUTATION WHEN
THE PRICES ARE ANNOUNCED

In this section, we extend the results of the previous section to in-
clude knowledge of the pricespi (i < j) paid by winning bidders in
the first(j − 1) auctions, when the bidding strategy in thejth auc-
tion is considered. These prices can be mapped to the discounted
valuations that produced them and this gives some knowledge of
the discounted valuations of the opponents that remain in the auc-
tion. In the first price setting, the information learned is that all re-
maining bidders have discounted valuations for the previous rounds
which are smaller or equal than the respective discounted valua-
tions of the winning bidders. In the second price setting, some
similar information is learned, meaning that all discounted valu-
ations are smaller than the discounted valuations that correspond
to the announced prices, with one exception: as each announced
price corresponds to the second highest bid, this means that one
of the remaining bidders has a discounted valuation with is equal
(and not potentially smaller) than the valuation which is mapped
from the announced price. Now, in the case when all the items are
the same, which is examined in [4], this poses no problem for the
analysis, because this bidder will win the auction that immediately
follows and the fact that the remaining bidders have learned his pri-
vate valuation does not matter as it is a dominant strategy for them
to discount their valuation according to the expected gain in future
auctions (in which this bidder will no longer participate). However,
in the setting that we examine, there is no guarantee that this bid-
der will win the next auction and thus his valuation will potentially
influence the bidding of the remaining bidders. Furthermore, it is
entirely likely that different bidders, which had set the prices for
some previous auctions, will remain in the future auctions. In or-
der to be100% accurate in our analysis of the second price setting,
we would have to examine all possible cases for which bidder had
had the second highest bid and thus had set the price in the pre-
vious auctions, what is the probability that this bidder remains in
each future auction, and also what is probability that the same bid-
der has set the price in more than one previous auctions (and which
auctions specifically). We will instead make the assumption that
all the discounted valuations are smaller or equal to one that cor-
responds to each announced price and thus ignore the fact that we
know that one of these (but not exactly which one) is equal to the
closing price.2 It might initially seem that this assumption could
2We only need make this assumption, when the identity of the bid-



impact significantly the bids of the remaining bidders. However,
for an agent to have such a high valuation it would mean that both
his valuation for the auction that just closed was relatively high
and that his valuations for subsequent auctions are lower than most
of the other participants. Therefore, it is unlikely that this bidder
will have the highest discounted valuation in any of the remaining
auctions. By assuming that his discounted valuation can be smaller
we do increase somewhat the computed probability of him having a
higher discounted valuation in future auctions, but this makes small
difference to the final computations, especially in cases where the
total number of bidders is significantly higher than the number of
items sold.

On the other handif the identity of the second highest bidder is
revealed together with the bid, we need not make the previous as-
sumption, but we can rather incorporate the fact that we know his
discounted valuation precisely into our analysis. While the next
theorem is presented with this assumption we will discuss after-
wards how it is modified in order to account for this knowledge in
the case that the identities of the second highest bidders are also
announced. In the theorems that follow we will use the following
function:

Definition 1. The indicator functionI takes as input a boolean
expressione and returns:
I(e) = 1, if expressione = true, and
I(e) = 0, if expressione = false.

THEOREM 3. Assume the same setting as theorem 1 with the
difference that the prices−→p = {pk}(k = 1, . . . , j − 1), at which
the previous auctions have closed, are announced and are common
knowledge to bidders at thejth auction. In this scenario, it is a
symmetric Bayes-Nash equilibrium strategy for each agent to bid:

bi
j = max

�
0, vi

j −
mX

k=j+1

EP i
j,k

	
(10)

whereEP i
j,k, the expected profit of bidderi from thekth auction,

as computed during thejth auction3, is:

EP i
j,k =

(R bi
k

0−
�
vi

k − ω −Pm
λ=k+1 EP i

j,λ

�
d

dω
Φn−k

j,k (ω)dω bi
k > 0

1
n−k+1

�
vi

k −
Pm

λ=k+1 EP i
j,λ

�
Φn−k

j,k (0) bi
k = 0

(11)
andΦj,k(), the pdf of any opponent bid in thekth auction, as com-
puted during thejth auction, is given by dividingN(x,−→p ), the
probability that any combination of valuations gives discounted
valuations which are consistent with the prices−→p observed in the
previous auctions and that the bid in the current auction would be
≤ x, byD(−→p ), the probability that any combination of valuations
gives discounted valuations which are consistent with the prices−→p
observed in the previous auctions. Thus,Φj,k() = N(x,−→p )

D(−→p )
. These

terms are computed as follows:

N(x,−→p ) =

Z ∞

0

. . .

Z ∞

0

F
′
1(ω1) . . . F

′
m(ωm) · dω1 . . . dωm·

der who set the price is not known. As we explain later in this sec-
tion, if this information is available, this assumption is not made,
and thus the equilibrium strategy is computed entirely accurately.
3At that stage, right before thejth auction has been contacted, the
closing pricesp1, . . . , pj−1 have been observed. These observa-
tions change the expected profit from future rounds and this is the
reason why we need to index the expected future profits by when
the round at which this computations is made.

I({ωj −
mX

k=j+1

EP i
j,k ≤ x} ∧

λ̂<j

{ωλ −
mX

k=λ+1

EP i
λ,k ≤ pλ})

(12)

D(−→p ) =

Z ∞

0

. . .

Z ∞

0

I(
λ̂<j

{ωλ−
mX

k=λ+1

EP i
λ,k ≤ pλ})· (13)

F
′
1(ω1) . . . F

′
m(ωm) · dω1 . . . dωm

PROOF. Again we do this proof by induction. However, we are
going to need a double induction both onj, the number of the
current auction at which the computation is performed, and onk,
which is number of the auction examined.

The first induction is onj. Whenj = 1 there is no price infor-
mation and, we can verify easily that the equations of this theorem
generate the equations of theorem 1. Now assume that the theo-
rem is correct when the computation is performed before auctions
1, . . . , j−1. We have computed both the bidding strategies and the
expected profit at all rounds before each auction started. We need
to show that the equations hold also when we perform the same
computations before thejth auction is run.

To prove this fact, we need a second induction, which is fairly
similar to the proof of theorem 1. We need the equations to hold
for any auctionk = j, . . . , m considered. In the last (mth) auction,
there are(N−m+1) participating bidders, as(m−1) of the other
bidders have won an item and have dropped out, and we know that
it is a weakly dominant strategy in this case to bid truthfully. Thus
the equations hold whenk = m.

Assume now that the equations are correct for all auctions be-
tween the(k + 1)th andmth. We now need to prove that they
hold for thekth auction. From the point of view of each bidderi, it
faces(N − k) opponents, as(k − 1) opponents have already won
one item each and left. Most of the proof now is similar to that of
theorem 1. What is different essentially is the computation of the
distribution of any opponent’s bid, because the closing prices−→p
must be included in the agents’ reasoning.

To computeΦj,k() we need to prove the validity of equations 12
and 13. We must consider all possible values that the valuations of
any opponenti can have for the items in auctions1 throughm; we
denote these values byω1, . . . , ωm. The probability of this particu-
lar combination happening is equal toF

′
1(ω1) . . . F

′
m(ωm). Given

these values for all the valuations that the opponent might have
in all auctions, we need to compute the conditional probability of
him having a discounted valuation less or equal tox, given feasible
combinations of valuations. Now, we know from the announced
prices that the bid (which was equal to the discounted valuation) of
that opponent in theλth auction (as computed right before theλth

auction) was:

ωλ −
mX

k=λ+1

EP i
λ,k ≤ pλ

If valuationsv1 = ω1, . . . , vm = ωm do not satisfy all these in-
equalities then that combination of valuations is not supported by
the observed closing prices and is not feasible. Thus equation 13 is
correct because it gives the probability that the combination of val-
uations is feasible. Similarly, the nominator given by equation 12
is all those combinations which, in addition, give a discounted val-
uation (which is equal to the bid) smaller or equal tox. We know
that by dividing the two terms we get the desired conditional prob-
ability.

This completes the inner inductive step. As a result the theorem
correctly computes the bids when making the computations before
thejth auction. This is why the outer induction also holds, which



completes the proof.

Now, there is a way to extend this theorem to account for knowl-
edge of a particular bidders bids being in some auctions equal to
the closing price. Assume that the identities of the bidders who
have set the closing prices by placing the second highest bids are
announced. Then, for any bidderi that did not set any closing price,
the computation ofΦ(i)(x), his probability of bidding up tox in the
current auction, remains the same as in theorem 3. However, for the
other bidders this is not the case. If it is known that bidderi has set
the prices in all auctionsz ∈ Z, whereZ ⊆ {1, . . . , j − 1}, then
ωz −

Pm
k=z+1 EP i

z,k = pz, for those valuesz ∈ Z. We need to
modify the expressions forN() andD() appropriately. Let us call
the new functionseN() and eD(). As ωz −

Pm
k=z+1 EP i

z,k = pz

is equivalent topz ≤ ωz −
Pm

k=z+1 EP i
z,k ≤ pz + ∆pz, when

∆pz → 0, we can easily verify thateN(x,−→p , z) =
ϑ|Z|N(x,−→p )

ϑz1 . . . ϑz|Z|
∆z1 . . . ∆z|Z|

wherez1, . . . , ∆z|Z| are the elements of setZ. Similarly:eD(−→p , z) =
ϑ|Z|D(−→p )

ϑz1 . . . ϑz|Z|
∆z1 . . . ∆z|Z|

and the distribution of this opponent’s bid isΦ(i)(x) =
eN(x,−→p ,z)eD(−→p ,z)

,

in which all the terms∆zi are eliminated.
For each bidderi, the distribution of the highest bid of all his

opponents is given by
Q

λ6=i Φ(λ)(x). In equation 11, we replace

termΦn−k, with this new computation in order to find out the ex-
pect profit of each bidderi and then use this to compute the bid as
given by equation 10. It should be noted that the bidding strategies
of the bidders are no longer symmetric because of the difference in
the knowledge about opponents’ valuations.

Having described how to modify theorem 3 in order to compute
the equilibria accurately, we now proceed to give the extension of
theorem 2, for the case when the winners’ bids are announced. In
this case we know that all the remaining bids were lower than those
prices.

THEOREM 4. Assume the same setting as theorem 3 with the
difference that the auctions are now first price auctions and also
that−→p = {pk}(k = 1, . . . , j − 1) are the discounted valuations
that produced the closing prices observed.4 In this scenario, it is a
symmetric Bayes-Nash equilibrium strategy for each agent to bid:

bi
j = gj,j

�
max

�
0, vi

j −
mX

k=j+1

EP i
j,k

	�
(14)

whereΦj,k(), the pdf of any opponents’ discounted valuation in
thekth auction, as computed during thejth auction, isΦj,k() =
N(x,−→p )

D(−→p )
, where these terms are computed by equations 12 and 13,

and

EP i
j,k =

(�
vi

k − bi
k −

Pm
λ=k+1 EP i

j,λ

�
Φn−j

j,k (g−1
j,k(bi

j)) bi
j > 0

1
n−k+1

�
vi

k −
Pm

λ=k+1 EP i
j,λ

�
Φn−j

j,k (0) bi
j = 0

(15)
and the bidding strategygj,k() that maps the discounted valuation
to the bid in thekth auction (as computed before thejth auction
takes place) is given by equation:

gj,k(x) = x− 1

Φn−j
j,k (x)

Z x

0+
Φn−j

j,k (ω)dω (16)

4As the bidding strategiesgλ,λ() are known we can map any clos-
ing pricep′λ to the discounted valuationpλ that produced this bid.

PROOF. The proof is done by induction similar to the proof of
theorem 3. The outer induction is onj, the number of the auction
before which this computation is performed. Whenj = 1, no price
information is known, so we have the case described in theorem 2
and it is easy to verify that the equations of this theorem give the
equations of theorem 2.

Assuming that the theorem is correct when the computations are
performed before auctions1, . . . , j − 1, we need to show that the
equations hold also when we perform the same computations be-
fore thejth auction is run. This inductive step is proved by a sec-
ond induction, which is fairly similar to the proof of theorem 2. We
need the equations to hold for any auctionk = j, . . . , m consid-
ered. In the last (mth) auction, there are(N−m+1) participating
bidders, and we know that the symmetric Bayes-Nash equilibrium

strategy in this case is to bidbi
m = vi

m− 1

F n−m
m (vi

m)

R vi
m

0
F n−m

m (ω)dω. [4]

From this fact it follows that the equations hold whenk = m. The
inductive step is proven in more or less the same way as in the proof
of theorem 2. The only difference is in the way that the distribution
Φj,k(x) of any opponent’s discounted valuation in thekth auction
as computed before thejth auction, is generated. The latter is done
in exactly the same way as in theorem 3. Note, in fact, that if the
observed discounted valuations are the same in both auction vari-
ants, then the distributionsΦj,k(x) would be identical. The rest of
the proof follows the proof of theorem 2.

As far as revenue equivalence is concerned, it is easy to see that,
if the observed discounted valuations are the same in both auction
variants, then the distributionsΦj,k(x) would be identical and then
both the sequential first price and second price auctions would give
the same revenue. However, in general this does not hold because
of the different information provided by the closing prices of the
two different auction variants:

CLAIM 1. Revenue equivalence does not hold between sequen-
tial first-price auctions and sequential second-price auctions.

5. COMPUTING THE EQUILIBRIA: AN EX-
AMPLE

In this section, we give an example case in order to further clar-
ify the algorithm with which the bidding strategies are computed
both when prices are announced and when they are not. We fur-
ther show that, when the bidder who submitted the second price in
each auction is known, we can use the fact that we know his dis-
counted valuation precisely, in our analysis, and thus not make the
assumption discussed at the beginning of section 4.

To keep it as simple as possible, we assume that there aren = 3
bidders andm = 3 items for sale in sequential second price auc-
tions. The item valuations are independent and drawn from distri-
butionsF1, which is uniform on[0, 2], F2, which is uniform on
[1, 2], andF3, which is uniform on[0, 1].

The first step both when prices are announced and when they are
not is to compute the bidding strategies for all bidders before the
first auction takes places. In this case the computation is the same
in both cases. To be more precise, the computation when prices
are not announced does not change as each auction is completed
and thus we need only compute the bidding strategies once; on the
other hand, this computation is valid before the first auction also
when prices are announced, because at that point there is no price
information yet.

Now, when the last auction would be reached, there would only
be1 bidder left, this bidder would bid

b3 = v3



and his expected profit in that auction will be

EP3 = v3

Given this information, in the second auction, where there would
be2 bidders left, they would bidb2 = v2 − EP3 ⇔

b2 = v2 − v3

because it is alwaysv2 ≥ v3.
The distribution of the opponent bid in this auction has cdf which

is computed by the following equation:

Φ2(x) =

Z 1

0

F2(x + ω3)F
′
3(ω3)dω3 =

Z 1

0

F2(x + ω3)dω3

For x > 2, Φ2(x) = 1 and forx < 0, Φ2(x) = 0. We consider
two cases:
If x ∈ [0, 1], thenF2(x + ω3) = 0, whenω3 < 1 − x, and
F2(x + ω3) = x + ω3 − 1, otherwise, thus

Φ2(x) =

Z 1

1−x

(x + ω3 − 1)dω3 =
1

2
x2

If x ∈ [1, 2], thenF2(x + ω3) = 1, whenω3 > 2 − x, and
F2(x + ω3) = x + ω3 − 1, otherwise, thus

Φ2(x) =

Z 2−x

0

(x+ω3−1)dω3 +

Z 1

2−x

vdω3 = −1

2
x2 +2x−1

Using this distribution, the expected profit of a bidder in that
auction can be computed as:

EP2 =

Z v2−v3

0

(v2 − ω − v3)Φ
′
2(ω)dω

If v2 − v3 ≤ 1, then this equation becomes:

EP2 =

Z v2−v3

0

(v2 − ω − v3)ωdω =
1

6
(v2 − v3)

3

If v2 − v3 > 1, then this equation becomes:

EP2 =

Z 1

0

(v2−ω−v3)ωdω+

Z v2−v3

1

(v2−ω−v3)(2−ω)dω ⇔

EP2 =
1

6
(v2 − v3)

3 − 1

3
(v2 − v3 − 1)3

Having computed the expected profit from the latter auctions, it
is now possible to compute the bidders’ bidding strategy in the first
auction.

Any one of the3 bidders would bidb1 = max{0, v1 − EP3 −
EP2}
If v2 − v3 ≤ 1 then

b1 = max{0, v1 − v3 − 1

6
(v2 − v3)

3}

If v2 − v3 > 1 then

b1 = max{0, v1 − v3 − 1

6
(v2 − v3)

3 +
1

3
(v2 − v3 − 1)3}

Let us now examine how the analysis would be changed if there
are price announcements. First of all, the bid in the third auction
would not change as it is a weakly dominant strategy to bidb3 =
v3. Furthermore,EP2,3 = v3 once more because in the last auction
there is only one bidder remaining.5 However, as a result of the
5Note that if that were not the case, thenEP2,3 would be different
from EP1,3, because the distributionΦ2,3 of any opponent’s bid
would also change.

pricep being announced as the closing price of the first auction, we
know that the bids of the bidders wereb1 ≤ p. There are two cases:
If p = 0, thenb1 = 0 and thus we know thatv1−EP3−EP2 ≤ 0
as the bidb1 is the maximum of0 andv1 − EP3 − EP2.
If p > 0, then it isv1 − EP3 − EP2 ≤ p.
Thus in both cases it isv1−EP3−EP2 ≤ p. Note that according
to our notation,EP2 = EP1,2 andEP3 = EP1,3, meaning that
both these were computed before the1st auction; they have been
computed already as described previously in this section.

We will now demonstrate how to compute the probabilityΦ2,2(x)
of the opponent bid in the second auction given that the closing
price p in the first auction has been announced. We know that
Φ2,2(x) = N(x,p)

D(p)
, whereD(p) is the probability of the com-

binations of valuations that agree with the observed pricep, and
N(x, p) is the probability of the combinations of valuations that
not only agree with the observed pricep, but also give a bidb2 ≤ x,
whereb2 = v2 − v3 in this case sinceEP2,3 = v3.

Notice that the probability ofv1 ≤ v3 + EP2 + p is v3+EP2+p
2

.
Thus the denominatorD(p) can be computed as equal to:6

D(p) =

Z 2

1

Z 1

0

ω3 + EP2 + p

2
dω3dω2 =

Z 2

1

Z 1

0

ω3 +
(ω2−ω3)3

6
+ p

2
dω3dω2−

Z 2

1

Z ω2−1

0

(ω2 − ω3 − 1)3

3
dω3dω2

⇔ D(p) =
p

2
+

11

30

The nominatorN(x, p) can be computed, in a similar way. We
distinguish two cases:
If x ≤ 1, then we need to integrate forv2 ∈ [1, 1 + x] andv3 ∈
[v2 − x, 1] so thatv2 − v3 ≤ x and thus:

N(x, p) =

Z 1+x

1

Z 1

ω2−x

ω3 + EP2 + p

2
dω3dω2 =

Z 1+x

1

Z 1

ω2−x

ω3 + (ω2−ω3)3

6
+ p

2
dω3dω2 ⇔

N(x, p) =
1

4
x2 − 1

12
x3 +

1

60
x5 +

1

4
px2

Therefore:

Φ2,2(x) =
1
4
x2 − 1

12
x3 + 1

60
x5 + 1

4
px2

p
2

+ 11
30

, x ≤ 1

If x > 1, then we again distinguish several cases and get finally the
following equation:

N(x, p) =

Z 2

1

Z 1

ω2−1

ω3 + (ω2−ω3)3

6
+ p

2
dω3dω2+

6In this instance we chose to accelerate the computation by select-
ing one variablev1 and removing it from the integration by select-
ing directly the probability of it satisfying the inequality, rather than
using the indicator functionI as in equation 13. This can be done
in general for bothN() andD() and for more than one inequali-
ties. From each inequalityωλ−

Pm
k=λ+1 EP i

λ,k ≤ pλ, we use the
Bisection Method to find the value ofvi

k for which both sides of
the inequality become equal (we take the algorithm from chapter 9
of [5]). This valuevi∗

k is the smallest for which the inequality holds.
It should also be noted that we are forced to discretize the compu-
tation even though the distributionFj() are continuous, when we
use numerical methods to find these equilibria.



Z x

1

Z ω2−1

0

ω3 + (ω2−ω3)3

6
− (ω2−ω3−1)3

3
+ p

2
dω3dω2+

Z 2

x

Z ω2−1

ω2−x

ω3 + (ω2−ω3)3

6
− (ω2−ω3−1)3

3
+ p

2
dω3dω2 ⇔

N(x, p) = −1

2
p+

4

3
x−1

2
−13

12
x2−1

6
x4+

7

12
x3+

1

60
x5−1

4
px2+px

Therefore:

Φ2,2(x) =
− 1

2
p + 4

3
x− 1

2
− 13

12
x2 − 1

6
x4 + 7

12
x3 + 1

60
x5 − 1

4
px2 + px

p
2

+ 11
30

whenx > 1.
The final part of this example is to show how we can compute

accuratelyΦ2,2(x) when we know the identity of the bidder who
placed a bid equal top in the first auction.7 In this case ifp = 0
the analysis is still the same as before because it isv1 − EP3 −
EP2 ≤ 0. However, whenp > 0, then this means that for the
opponent bidder who placed this bid it is:v1 − EP3 − EP2 = p.
To computeΦ2,2(x) in this case we need to notice that bothD(p)
andN(x, p) are events that happen with probability0 in our setting.
To work around this problem we changev1 − EP3 − EP2 = p to
p ≤ v1 − EP3 − EP2 ≤ p + ∆p and take the limit as∆p → 0.
Then using the equations we have already computed, we can show
that:

D(p) =
1

2
∆p

and ifx ≤ 1:

N(x, p) =
1

4
x2∆p

whereas ifx > 1:

N(x, p) = −1

2
∆p− 1

4
x2∆p + x∆p

Therefore, ifx ≤ 1:

Φ2,2(x) =
1

2
x2

and, ifx > 1:

Φ2,2(x) = −1

2
x2 + 2x− 1

Notice that this can be generalized to any number of pricesp1, . . . , pj−1,
as was described in the previous section. More specifically, if it is
known that a bidder has placed some bids equal to those prices, then
we can computeD andN as before for the case of inequalities and
then use these equations to compute the conditional probabilityΦ
both in the case of equalities and inequalities in the same way; i.e.
for each equalitybλ = pλ, we change it topλ ≤ bλ ≤ pλ + ∆pλ

and take the limit as∆pλ → 0.

6. DISCUSSION AND CONCLUSIONS
In this paper we examined a sequence of first price or second price
auctions each selling a single item. These items are partially substi-
tutable in the sense that each bidder would bid on any one of them
7Actually since there are only two bidders left in the second auc-
tion, the one who did not place a bid equal top in the first auction
knows that the other did, even if it is not explicitly announced. But
in general this information needs to be announced for the other bid-
ders to be able to do this computation. Then, we don’t make the
assumption thatb ≤ p for the bidder who set the closing price, and
use the more accurate information that in fact his bid isb = p.

but only want to purchase one item in total. We initially gave the
equilibrium strategies when the closing prices of auctions are not
announced; under this setting we prove that using sequential first
price auctions or sequential second price auctions yields the same
expected revenue to the auctioneer. After that, we extended our
analysis to include also the information obtained from announce-
ments about the closing prices of the auctions; we can compute
the equilibrium strategies in the first price variant accurately in all
cases, but for the second price variant we need to also learn the
identity of the bidder who submitted the second highest bid or dis-
regard the fact that we know the actual bid of some bidder (if we
don’t known who this bidder was). Because the analysis is quite
complicated, we then proceeded to give a small example to illus-
trate and clarify how the computation of the equilibria is executed
both when prices are not announced and when they are.

Our next steps in this ongoing work is to find the optimal agenda,
i.e. order of auctions that would maximize the revenue of the seller.
Another avenue of research that we are currently pursuing is what
happens iffree disposalis possible in this scenario. It is somewhat
restrictive to assume that once a buyer has purchased an item it can-
not try to purchase any other for which it has a higher valuation. For
example, in the case of a person buying paintings, even if she can
only display one painting, she could still buy two and store the one
not put on display. In this case, the fact that an item is purchased
at some auction would decrease the bids for future items, because
now the utility from obtaining a more valuable item is discounted
by the valuation of the item that has been previously obtained. The
full equilibrium analysis of this case is ongoing and will be pre-
sented in future work; however we give some of our initial results
on computing the equilibrium in the appendix that follows. An-
other issue that we plan to examine is to determine the auction type
that would yield the highest revenue for the seller in the case that
prices are announced, as revenue equivalence does not hold in this
case.
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APPENDIX

A. FREE DISPOSAL
In this section we give some initial results about what happens

when free disposal is allowed. This means that, unlike in the pre-
vious work presented in this paper, when a bidder wins an item he
is not forced to stop participating in the remaining auctions. The
results that we present here are preliminary, because it is assumed
at each auction roundj, in the reasoning that each agent executes,
that each one of the previous auctions has been won by a differ-
ent bidder. Now, this is the most likely case, however, it is always
possible that a single bidder might win two or more of the previ-
ous auctions, even though this event is fairly unlikely, given that
the effective valuations of a bidder for the items sold in the remain-
ing rounds are discounted by the valuation of the item that was last
won, and therefore a bidder would have to have a pair of valuations
vα, vβ (α < β), such thatvα is high enough to win theαth auction
and yetvβ − vα is also win enough to win theβth auction, con-
sidering that there will be bidders in that round who have not won
any of the previous auctions and therefore their valuations are not
discounted.

Having made this assumption, theorem 1 can be extended to al-
low for free disposal. We will use the notationv0 = 0, i.e. we
assume a dummy auction (with order number0), before the first
auction, for which everyone has valuationv0 = 0. This will allow
us to give one set of equation both for bidders who have won some
previous auction and for those that have not; in the latter case we as-
sume that the last auction that these bidders have won is the dummy

auction0. Additionally,
−→
vi = vi

1, . . . , v
i
m. Now, in this scenario, it

is a symmetric Bayes-Nash equilibrium strategy for each agent to
bid:8

bi
j = max

�
0, vi

j − vi
k + EP i

j+1(
−→
vi , j)− EP i

j+1(
−→
vi , k)

	
whenvi

j − vi
k > 0 and is otherwise:

bi
j = 0,

whereEP i
j (
−→
vi , k), the expected profit of bidderi from the jth

auction, when the most valued item that it has won was acquired
by winning thekth auction, is:

EP i
j (
−→
vi , k) = EP i

j+1(
−→
vi , k) +

R bi
j

0−
�
bi
j − ω

�
d

dω

�
Φn−j

j,0 (ω)
Qj−1

λ=0,λ6=k Φj,λ(ω)
�
dω

whenbi
j > 0. Whenbi

j = 0 it is:

EP i
j (
−→
vi , k) = EP i

j+1(
−→
vi , k) +

Φ
n−j
j,0 (0)

Qj−1
λ=0,λ6=k

Φj,λ(0)

n−j+1�
vi

j − vi
k + EP i

j+1(
−→
vi , j)− EP i

j+1(
−→
vi , k)

�
if vi

j > vi
k, and otherwise it is:

EP i
j (
−→
vi , k) = EP i

j+1(
−→
vi , k)

Φj,k(), the pdf of any opponent bid in thejth auction, when the
most valued item was won in thekth auction, is given by:

Φj,k(x)=

Z ∞

0

. . .

Z ∞

0| {z }
(m−j+1) integrals

Fj(x+vi
k−EP i

j+1(
−→
vi , j)+EP i

j+1(
−→
vi , k))·

F
′
k(ωk) F

′
j+1(ωj+1) . . . F

′
m(ωm)| {z }

(m−j) terms

·dωk dωj+1 . . . dωm| {z }
(m−j) vars

The assumption that we made, which was that, at each auction

8We don’t give the proof here, but some of the main ideas are sim-
ilar to the proof of theorem 1, although there are some additional
steps given the extra complexity that the valuations of a bidder are
reduced in the remaining auctions, if it wins any auction, whereas in
the scenario of theorem 1, the valuations for the remaining rounds
effectively become0 (as the agent must drop out).

roundj, in the reasoning that each agent executes, each one of the
previous auctions has been won by a different bidder, allows us
to simplify the computation of the expected profit, in that we can
then take the pdf of the distribution of the highest opponent bid
to be equal to:Φn−j

j,0 (ω)
Qj−1

λ=0,λ6=k Φj,λ(ω). We believe that we
should be able to remove this assumption, however this will lead
to having to account for all possible combinations for which agents
could have won each combination of auctions in the past and this
will complicate significantly the analysis.

Using similar reasoning, we can show thatthe first-price auction
variant of this scenario is revenue equivalent to the second-price
auction settingthat was just presented. Using this knowledge, we
can extend these results to compute the Bayes-Nash equilibrium for
the case of sequential first-price auctions with free disposal.


