An experiment management framework for TAC SCM agent evaluation

John Collins Wolfgang Ketter Anuraag Pakanati
Dept of CSE Rotterdam Sch. of Mgmit. Dept of CSE
University of Minnesota RSM Erasmus University Michigan State University

Minneapolis, MN

Abstract

We describe a web-based system for defining and running
TAC SCM experiments, and collecting results. It is a research
tool, intended to support experimentation and evaluation of
alternate agent configurations. With it, we are able to set up
sets of experiments, each of which runs multiple games with
a fixed set of competing agents. Game and agent logs are
gathered together for later analysis. Experiment sets can be
queued, and given enough hardware, multiple games can be
run in parallel.

Introduction

Participants in the Trading Agent Competition for Supply
Chain Management (TAC SCM) (Collins et al. 2005) and
other trading agent scenarios are practicing a style of re-
search called “competitive benchmarking.” These are chal-
lenging domains for autonomous agents, and also challeng-
ing domains for research, because they require multiple
kinds of rational decision-making, and because there is no
absolute performance standard by which to judge alterna-
tive approaches. Therefore, we create communities around
specific problems, like the TAC SCM scenario, as well as
TAC Travel (Wellman, Greenwald, & Stone 2007), TAC Ad
Auctions (Jordan er al. 2009), and other scenarios. Each
team builds and enters their own agent, and the competition
provides a relative performance standard by which to judge
different approaches to the various decision problems that
agents must solve in order to participate.

Unfortunately, the organized competitions typically do
not provide nearly enough data for serious study. Most pub-
lished papers include data from hundreds to thousands of
games. This is necessary for several reasons. First, the
TAC SCM game scenario includes multiple sources of vari-
ability. Customer demand and supplier capacity can vary
over wide ranges, and the relatively small number of agents
competing in the scenario creates an “oligopoly” market
situation, which makes supply and demand, and therefore
prices, quite sensitive to the detailed behaviors of the agents.
This variability can make two successive games quite dif-
ferent from each other, and so a large number of games are
necessary to evaluate performance over the full range of pos-
sible market conditions. Second, a tournament round in the
TAC SCM competition typically includes only 18 games,

Rotterdam, NL

East Lansing, MI

which is not enough to separate subtle differences in perfor-
mance with any degree of statistical confidence. For exam-
ple, Jordan ef al. ran over 12,000 simulations in their study
of relative agent performance (Jordan, Kiekintveld, & Well-
man 2007). In addition, the development of a viable compe-
tition agent typically involves considerable experimentation
to determine which of several alternate strategies will give
the best performance against a variety of competing agents.

The high degree of variability among successive
TAC SCM games forces experimenters to run large num-
bers of games in order to show statistically significant per-
formance differences. Sodomka er al. (2007) showed that
by controlling the random number sequences in the simula-
tion server, one could run multiple games with essentially
the same market conditions. This allows statistical analysis
using a paired-means t-test, which can reduce the number of
games required to show statistically significant differences
by a large margin. However, the need to run different con-
figurations with the same sets of initial conditions adds sig-
nificant complexity to the process of running experiments.

A further complication one encounters in running exper-
iments in the TAC SCM domain is that many agents are
largely compute-bound for much of the game. This means
that running a game with a server and six agents may re-
quire seven different machines, for nearly an hour per game.
The result is that an experiment with 30 games ties up seven
machines for more than 24 hours. Only the most dedicated
graduate students are willing to hang around and make sure
all the agents are starting correctly in each game for days
at a time. The remainder of this paper describes a system
developed by the MinneTAC team to solve this problem.
We describe the concepts behind the MinneTAC Experiment
Manager in the next section. Then we follow with some im-
portant details of the design, and some typical results. We
conclude with a discussion of the some of the difficulties we
have encountered and ideas for improvement, and speculate
on the possibility of making this tool publicly available.

Related work

We follow a design-oriented approach, as laid out
by (Hevner et al. 2004). With the design and implemen-
tation of the experiment manager we have create a valid ar-
tifact, which is relevant and necessary to solve existing prob-
lems and test thoroughly systems in the IS domain.

To our knowledge the Michigan AuctionBot (Wurman,
Wellman, & Walsh 1998) is the only other auction platform
in the community that allows for the systematic testing of
software agents. AuctionBot was used as the underlying
platform for the design and implementation of TAC Travel
(now called TAC Classic) (Stone & Greenwald 2005). Auc-
tionBot was mainly designed to support research into auc-
tions and mechanism design. Our architecture is designed
to support research into agents, auctions, business networks,
ontologies, and human-agent interaction.

(Corkan & Lindsey 1992) developed experiment manager
software for an automated chemistry workstation, including
a scheduler for parallel experimentation. Another interest-
ing agent testing environment is James- A Java Based agent
modeling environment for simulation has been developed
to support the compositional construction of test beds for
multi-agent systems and their execution in distributed envi-
ronments (Uhrmacher & Kullick 2000).

Conceptual model

Many experimental programs involve comparing multiple
configurations of a single agent (in our case different con-
figurations of MinneTAC (Collins et al. 2008; Collins, Ket-
ter, & Gini 2009)) against a fixed set of competitors, with
enough games for each configuration to discover statistically
significant effects. The MinneTAC Experiment Manager is
designed to support exactly this type of experimental pro-
gram.

The system is based on a few basic concepts, as shown
schematically in Figure 1. At the top level is a work queue
whose entries are Experiment Sets. Each Experiment Set
consists of one or more Experiments, one for each configu-
ration that is being compared. Experiments are made up of
Games. Normally, each Experiment encapsulates the same
number of games. The sequence of games in each Exper-
iment are initialized with a common sequence of random-
number seeds, so that game ##£ in each Experiment has
identical market conditions (modulo variations caused by
randomness in the competing agents).

T T T

work queue

/Experiment Set User: \

Status:

Competitors:
Configuration:
Status:

Experiment

Game 1 Game 2 | *** | Gamen

- L/

Figure 1: Basic conceptual elements: Experiment Sets, Ex-
periments, and Games

The Experiment Manager is controlled through a web in-
terface. Figure 2 shows the screen for setting up a new ex-
periment.

Experiment set name: [Demo42 |

User: jcollins

Games per experiment: |2

MinneTAC Configs

One experiment with n games will be set up for each
MinneTAC configuration you list below. Experiments will be
run in the arder given by the selected configurations.

Sequence MinneTAC Variant
1. [tac2008 ~ |
2.

3.

6. | select... ~ |

Hosts and Competitors

You need seven hosts to run an experiment. Because of the
design of the experiment manager, you cannot run multiple
processes on a single machine. If you try, most likely one of
the processes will not be started, and your experiment will

fail silently.
Agent Host
Server | group_Servers v |
MinneTAC | group_Fast v |
TacTex-2007 ~		group_Any ~
DeepMaize-2007 ~		group_Any ~
PhantAgent-2007 ~		group_Any ~
Mertacor-2005 ~		group_Any v
crocodile-2005 v		group_any V

Seeds

® Randomly chosen subset of seedfiles.

) all games have completely random parameters (no
seeds used!)

)| want to choose seeds that should be used for each
game.

[submit | [cancel |

Figure 2: Creating a new Experiment Set

Design details

The Experiment Manager is built in three pieces, a web-
based front end, a database, and a back end that actually
runs the servers and agents. Running a game requires up to
7 machines. If there is enough hardware available, the sys-
tem can run multiple games simultaneously. The system is
set up as shown in Figure 3. The general scheme is that the

webserver

browsers

frontend

database

backend

Figure 3: Deployment architecture of the MinneTAC Experiment Manager

front end adds work items to a queue in the database, and
the back end runs independently on each available machine,
looking in the database for work to do.

The front end is a straightforward web application that
allows users to inspect the work queue, add new experi-
ment sets to the queue, modify existing sets that have not
yet been completed, and inspect those that have been com-
pleted. Other functions allow users to set up and manage
competitor agents, set up and manage MinneTAC variants,
and determine which host machines are available for work.

The database contains the work queue and status of in-
process experiment sets, along with the status of each avail-
able host, agent configurations, and records of completed
experiments. Since the system is intended to support mul-
tiple users, some of these data sets (agent configurations
and records of completed experiment sets) are partitioned
by user. This is important because each experimenter needs
to be able to control their own configurations and interact
with their own experiments.

The back end consists of two types of “cron” jobs, one
that manages games, and one on each host that manages
its host. Every 5 minutes, the game manager checks to see
whether there are games that need to be run, and hosts avail-
able to run them. If so, it assigns resources and makes a
game active. Each host manager wakes up every two min-
utes, and checks to see whether its host is currently involved
in a game (running a server or an agent for a game that has
started and not yet completed). If not, the host manager
looks to see whether it has been assigned new work by the
game manager. If there is new work, then the host manager
starts up the necessary process and updates its status in the
database.

This high-level description implies that once hosts have
work to do, it is just a matter of starting up the necessary
processes. This simple view ignores three important prob-
lems:

e Many of the hosts we use are general-purpose desktop

workstations, and we occasionally experience failures due
to user activity on a host. This means that if a game fails
to complete, it may be necessary to re-start the game using
a different set of hosts.

e There is a correct order for starting processes. For each
game, the server must be running before agents can be
started.

e The server and many of the agents generate large quan-
tities of log data. Our computing environment uses the
Network File System (NFS) for shared directories, and we
experience serious contention problems when 18 agents
running on 18 different machines are all trying to write
voluminous log entries every 15 seconds.

The problem of starting processes in order is easily solved
by introducing multiple states to the host management pro-
cess. The contention problem is much more difficult. The
solution we have arrived at is to run each agent from a host-
local filesystem, and then copy the logs back to the shared
area when a game completes. But this is not quite enough.
There is no fixed association between hosts and agents, and
the host-local filesystems are not backed up. Also, agents
can change, so each game must be sure to use the current
“master” copy of each of its agents. This means that agents
must be copied to the local filesystems prior to each game,
which creates more contention for the shared filesystem.
The result is some uncertainty about the time required to set
up the environment for a game, which complicates the host
managers and creates a requirement to communicate among
them, because once the first agent joins a game, all other
agents must join within a limited time (typically about 90
seconds) in order to have every agent ready to start on the
first day.

Sample results

There are two ways to evaluate the power of our approach.
The first is off-line, running the model on saved data and

comparing its estimates and predictions to the actual data.
The second is online, integrating the model into a working
agent, and letting the agent play against other competitive
agents. Here we describe a set of online experiments.

In this set of experiments we compared two different con-
figurations of the MinneTAC agent. We concentrated on the
sales side and compared different agent configurations for
determining the probability of customer offer acceptance,
and the prediction of future prices.

The agents used in our experiments were obtained from
the TAC SCM agent repository'. In addition to MinneTAC,
we selected four other finalists from the 2006 competition,
and an agent from the 2005 competition. The agents are:

. MinneTAC — University of Minnesota

. DeepMaize — University of Michigan

. Maxon — Xonar, Inc.

. PhantAgent — Politechnica University of Bucharest

whn A W N =

. RationalSCM — Australian National University; competed
in 2005.

6. TacTex — University of Texas; winner TAC SCM 2006

For our experiments we use a controlled server (Sodomka,
Collins, & Gini 2007) to run Ng games, each with a differ-
ent pseudo-random sequence, with MinneTAC and the five
other agents, and then run Ng games with the same mar-
ket factors (the same set of N pseudo-random sequences)
with a modified MinneTAC and the same set of competing
agents. In other words, all the pseudo-random sequences,
as well as the set of agents competing with our test agent,
from the first set of Ng games are repeated in the second
set of Ng games. For our tests, Ng = 23. This method
removes the profit variability due to the agents seeing differ-
ent market conditions, and at the same time it removes the
possibility of being hindered by unwanted interactions that
can occur when multiple copies of agents under test are run
against each other.

We use two different versions of our MinneTAC agent,
each using different models for for strategic decisions (price
and price trend prediction) and for tactical decisions (order
probability calculation).

For strategic decisions we used two different price pre-
diction methods. The first is a price-follower method (an
exponential smoother predicts future prices, without us-
ing a regime model), while the second uses regimes with
Markov prediction as described in (Ketter et al. 2007;
2009) (called “Regime-M” in Table 1).

For tactical decisions we used two methods to calculate
the order probability. The first is a simple linear interpola-
tion between the smoothed minimum and maximum prices,
the second uses the regime model and makes predictions
using the exponential smoother (called “Regime-E” in Ta-
ble 1).

We used the Wilcoxon signed rank test (Gibbons 1986;
Hollander & Wolfe 2000) to assess statistical significance
among these three experiments. This is a non-parametric
test of the difference between the medians of two samples

"ttp://www.sics.se/tac/showagents.php

Experiment | 1 2
Strategic: Follower | Regime-M
Tactical: Linear Regime-E

Agent Mean Profit/Std. Dev. (in $M)

TacTex 8.75/5.68 | 9.21/5.39
DeepMaize | 8.84/4.63 | 8.32/4.18
PhantAgent | 8.05/5.42 | 8.17/5.44
Maxon 4.24/4.52 | 4.02/4.18
MinneTAC | 1.35/3.70 | 2.12/3.76
Rational 0.74/491 | 1.31/4.53

Table 1: Experimental results with repeated market condi-
tions and two variations of MinneTAC for order probability,
price and price trend predictions. Mean profit and standard
deviation results are based on 23 games. Regime-M uses the
regime model with Markov prediction process, and Regime-
E uses the regime model with exponential smoother lookup
process.

Test # I: Exp2-Exp 1
a=0051p | h | srank
All 0.0138 | 1 | 57
Positive 0.0054 | 1 | 13
Negative || 0.4258 | O | 15

Table 2: Wilcoxon signed rank test of equality of medians.
The tests were performed at a significance level of o = 0.05
based on 23 data points. p represents the p-value, h is the
result of the hypothesis test, srank gives the value of the
signed rank statistic.

that does not require the samples to come from normal (or
even the same) distribution. The test is used to determine
whether the median of a symmetric population is 0. First, the
data are ranked without regard to sign. Second, the signs of
the original observations are attached to their corresponding
ranks. Finally, the one sample z statistic (mean / standard
error of the mean) is calculated from the signed ranks.

Table 2 shows the results of the Wilcoxon test on our three
experimental setups. The null hypothesis can be rejected if
the medians from the two different samples are different. pis
the probability of observing a result equally or more extreme
than the one using the data (from both samples) if the null
hypothesis is true. If p is near zero, this casts doubt on the
null hypothesis. The field “srank™ contains the value of the
signed rank statistic.

We performed the tests on (1) the set of all the games,
(2) only the positive profit games, and (3) only the negative
profit games. We find significant differences between the
outcome of experiments (2) and (1). We are able to reject
the null hypothesis of equal median for the set of all games
and the set of all positive games, but not for the set of neg-
ative games. The most likely reason why we are not able
to reject the null hypothesis of equal median for the set of
negative games is that in negative games an agent is more
concerned with controlling cost than making profit and so
the differences between the configuration are less apparent.

We are also able to show significance between experiments
(2) and (1) for the set of all and all positive games. We are
able to reject the null hypothesis for the set of all games
at o = 0.05 significance level. It is possible that the test
would show significance with a larger sample size. We have
shown statistical significance between the original configu-
ration and the regime/regime configuration.

Conclusion and future work

Autonomous agents participating in market simulations
must typically make their decisions in environments con-
taining high complexity, high variability, and incomplete in-
formation. While such complexity accurately represents the
problems real businesses face on a daily basis, researchers
can take advantage of the fact they are working in a sim-
ulated environment to systematically control factors that
would otherwise add noise to the model output.

We have created a tool which allows researchers to me-
thodically control market conditions in the TAC SCM envi-
ronment. We have used this tool to measure the amount of
variability caused by uncontrollable stochastic agents, and
have demonstrated how researchers can determine which
variables are most important in affecting the specified out-
put.

We are planning to implement analyses routines which are
called upon completion of an experiment set to simplify and
automate the data analyses, i.e. parse agent log and game
server files and store results in Matlab data files.

Currently the experiment manager has a PHP/JavaScript
frontend and a Python backend communicating through a
MySQL database. We are currently working on to replace
the PHP/JavaScript frontend with a Python implementation
so that we only have to maintain one code base with a good
object-oriented design. Through this refactoring the code
should be much more modular and understandable.

After these efforts are done we are planning to release
the experiment manager as a testing tool to the TAC SCM
community with full documentation. The will enable all the
teams in the community to thoroughly test their agents under
the same conditions and make much stronger claims about
their agents and experimental results.

Acknowledgments

We would like to acknowledge the help from TAC SCM
researchers who made this work possible by making their
agents available for others to use.

References

Collins, J.; Arunachalam, R.; Sadeh, N.; Ericsson, J.;
Finne, N.; and Janson, S. 2005. The supply chain manage-
ment game for the 2006 trading agent competition. Tech-
nical Report CMU-ISRI-05-132, Carnegie Mellon Univer-
sity, Pittsburgh, PA.

Collins, J.; Ketter, W.; Gini, M.; and Agovic, A. 2008.
Software architecture of the MinneTAC supply-chain trad-

ing agent. Technical Report 08-031, University of Min-
nesota, Department of Computer Science and Engineering,
Minneapolis, MN.

Collins, J.; Ketter, W.; and Gini, M. 2009. Flexible de-
cision control in an autonomous trading agent. Electronic
Research Commerce and Applications in publication.

Corkan, L., and Lindsey, J. 1992. Experiment manager
software for an automated chemistry workstation, includ-
ing a scheduler for parallel experimentation. Chemometrics
and intelligent laboratory systems 17(1):47-74.

Gibbons, J. D. 1986. Nonparametric statistical inference.
Technometrics 28(3):275.

Hevner, A.; March, S.; Park, J.; and Ram, S. 2004. Design
science in information systems research. Management In-
formation Systems Quarterly 28(1):75-106.

Hollander, M., and Wolfe, D. A. 2000. Nonparametric
statistical methods. Journal of the American Statistical As-
sociation 95(449):333.

Jordan, P. R.; Cassell, B.; Callender, L. F.; and Wellman,
M. P. 2009. The ad auctions game for the 2009 trading
agent competition. Technical report, University of Michi-
gan, Department of Computer Science and Engineering.

Jordan, P. R.; Kiekintveld, C.; and Wellman, M. P. 2007.
Empirical game-theoretic analysis of the tac supply chain
game. In Proc. of the Sixth Int’l Conf. on Autonomous
Agents and Multi-Agent Systems, 1188—1195.

Ketter, W.; Collins, J.; Gini, M.; Gupta, A.; and Schrater,
P. 2007. A predictive empirical model for pricing and re-
source allocation decisions. In Proc. of 9th Int’l Conf. on
Electronic Commerce, 449—458.

Ketter, W.; Collins, J.; Gini, M.; Gupta, A.; and Schrater,
P. 2009. Detecting and Forecasting Economic Regimes
in Multi-Agent Automated Exchanges. Decision Support
Systems in publication.

Sodomka, E.; Collins, J.; and Gini, M. 2007. Efficient sta-
tistical methods for evaluating trading agent performance.
In Proc. of the Twenty-Second National Conference on Ar-
tificial Intelligence, 770-775.

Stone, P., and Greenwald, A. 2005. The first international
trading agent competition: Autonomous bidding agents.
Electronic Commerce Research 5(1):229-64.

Uhrmacher, A. M., and Kullick, B. G. 2000. plug and
test”: software agents in virtual environments. In WSC *00:
Proceedings of the 32nd conference on Winter simulation,
1722-1729. San Diego, CA, USA: Society for Computer
Simulation International.

Wellman, M. P.; Greenwald, A.; and Stone, P. 2007. Au-
tonomous Bidding Agents. MIT Press.

Wurman, P.; Wellman, M.; and Walsh, W. 1998. The
Michigan Internet AuctionBot: A configurable auction
server for human and software agents. In Proceedings

of the second international conference on Autonomous
agents, 301-308. ACM New York, NY, USA.

