
Formalising a protocol for recording provenance in Grids

Paul Groth Michael Luck Luc Moreau

School of Electronics and Computer Science
University of Southampton

{pg03r, mml, l.moreau}@ecs.soton.ac.uk

Abstract

Both the scientific and business communities are beginning to rely on Grids as problem-
solving mechanisms. These communities also have requirements in terms of provenance.
Provenance is the documentation of process and the necessity for it is apparent in fields ranging
from medicine to aerospace. To support provenance capture in Grids, we have developed an
implementation-independent protocol for the recording of provenance. We describe the protocol
in the context of a service-oriented architecture and formalise the entities involved using an
abstract state machine or a three-dimensional state transition diagram. Using these techniques
we sketch a liveness property for the system.

1 Introduction

A Grid is a system that coordinates computational
resources not subject to centralized control using
standard, open, general-purpose protocols and inter-
faces to deliver non-trivial qualities of service [3].
By coordinating diverse, distributed computational
resources, Grids can be used to address large-scale
problems that might otherwise be beyond the scope
of local, homogenous systems. The scientific and
business communities are beginning to rely on Grids
as problem-solving mechanisms. These same com-
munities also have requirements in terms ofprove-
nance, which is the documentation of theprocess
that leads to a result. The necessity for provenance
is apparent in a wide range of fields. For exam-
ple, the American Food and Drug Administration re-
quires that the provenance of a drug’s discovery be
kept as long as the drug is in use (up to 50 years
sometimes). In chemistry, provenance is used to de-
tail the procedure by which a material is generated,
allowing the material to be patented. In aerospace,
simulation records as well as other provenance data
are required to be kept up to 99 years after the de-
sign of an aircraft. In financial auditing, the Amer-
ican Sarbanes-Oxley Act requires public accounting
firms to maintain the provenance of an audit report
for at least seven years after the issue of that re-
port (United States Public Law No. 107-204). In
medicine, the provenance of an organ is vital for
its effective and safe transplantation. These are just
some examples of the requirements for provenance
in science and business. Provenance is even more

important when there is no physical record as in the
case of a purelyin-silico scientific process.

Given the need for provenance information and
the emergence of Grids as infrastructure for run-
ning major applications, a problem arises that has
yet to be fully addressed by the Grid community,
namely, how to record provenance in Grids? Some
bespoke and ad-hoc solutions have been developed
to address the lack of provenance recording capabil-
ity in Grid infrastructure. Unfortunately, this means
that such provenance systems cannot interoperate.
This incompatibility of components prevents prove-
nance from being shared. Furthermore, the absence
of components for recording provenance makes the
development of applications requiring provenance
recording more complicated and onerous.

Another drawback to current bespoke solutions is
the inability for provenance to be shared among dif-
ferent parties and trusted by those parties; for exam-
ple, in the case of auditing of an application after it
has run. Even with the availability of provenance
related software components, the goal of sharing
trusted provenance information will not be achieved.
To address this problem, standards should be devel-
oped for how provenance information is recorded,
represented, and accessed. Such standards would
allow provenance to be shared across applications,
provenance components, and Grids, making prove-
nance information more accessible and valuable. In
summary, the paucity of standards, components, and
techniques for recording provenance is a problem
that needs to be addressed by the Grid community.
This work is a first step towards addressing these



problems.
Given the length of this paper, we assume the

reader is familiar with Grids, Virtual Organisations
(VO), Web Services, and service-oriented architec-
tures (SOA). The rest of the paper is organised as fol-
lows: Section 2 presents a set of requirements that a
provenance recording system should address. Then,
Section 3 outlines a design for a provenance record-
ing system in the context of service-oriented archi-
tectures. The key element of our system is the Prove-
nance Recording Protocol described in Section 4. In
Section 5, the actors in the system are formalised,
and the formalisations are then used, in Section 6, to
derive some important properties of the system. Fi-
nally, Section 7 discusses related work, followed by
a conclusion.

2 Requirements

The first step in determining the requirements placed
on a provenance recording system is defining what
kind of provenance information the system should
support. In the context of a service-oriented archi-
tecture, we have identified two types of provenance
information that a system should record through ba-
sic requirements gathering: (1) provenance about the
interaction between actors and (2) provenance about
each actor.

With these two types of provenance information
as background, there are a number of requirements
that a provenance recording system needs to ad-
dress. These requirements include trust, preserva-
tion, security, scalability, generality and customis-
ability. In the case of recording provenance about a
client-service interaction, both the client and service
must trust that the system maintains an accurate rep-
resentation of their interaction. They also must trust
that the system will be able to preserve provenance
for an extended period of time. Given the impor-
tance of provenance to some organisations, any sys-
tem should be secure against internal and external
threats. A provenance recording system should also
have the ability to deal with both a large amount and
a wide variety of provenance information, therefore,
it needs to be scalable, general, and customizable.

With these requirements in mind, we now detail
our system for recording provenance in a SOA.

3 SOA Provenance Recording

Figure 1(a) shows a typical workflow based service-
oriented architecture. A client initiator invokes a
workflow enactment engine which, in turn, invokes
various services based on the workflow specified by
the initiator. In essence, the architecture can be bro-
ken down into two types of actors: clients who in-
voke services and services that receive invocations

and return results. This is the minimum architecture
for which our system should record provenance. In
the requirements section, we identified two types of
provenance information that a provenance recording
system should support, namely, provenance about
the interaction between actors and provenance about
the actors themselves. To support the gathering
of these types of provenance information in the
aforementioned architecture, our system introduces
trusted third party provenance services as shown in
Figure 1(b).
Third Party Provenance ServicesWe see third
party provenance services as key to fulfilling the
requirements outlined above. In the case of the
trust requirement, neither the client nor the service
need to trust the other to maintain accurate prove-
nance information about an interaction. They only
need to trust the provenance service that they mutu-
ally agree upon. Provenance services also support
preservation: by placing the burden of preservation
on the provenance service, neither clients nor ser-
vices have to maintain provenance information be-
yond the scope of any given application run. Record-
ing provenance across multiple provenance services
also eliminates a central point of failure as well as
lowering the demand placed on particular prove-
nance services. We imagine federations of prove-
nance services actively managing provenance infor-
mation in order to maximise storage and network re-
sources, improving scalability. The use of multiple
provenance services also promotes a competitive en-
vironment, in which clients and services can choose
which provenance service best suits their needs in
terms of factors such as trust, reliability and possi-
bly cost.
Advanced Architecture Support As well as sup-
porting typical workflow enactment based architec-
tures, our system supports more advanced architec-
tures like the one shown in Figure 1(d). In order to
maintain provenance across provenance services, a
client needs to inform the original provenance ser-
vice when it uses a new provenance service. For ex-
ample, in Figure 1(d), Service 1 must inform Prove-
nance Service 1 that it has used Provenance Service
2 when invoking Service 3. This creates a link be-
tween provenance services that can be followed in
order to provide the entire provenance trace for an
application started by a client initiator.
A Triangle of Interaction Provenance services are
central to recording the interactions between clients
and services in our system. For each interaction be-
tween a client and service, consisting of a negotia-
tion between parties, an invocation and a result, each
party is required to submit their view of the interac-
tion to a common provenance service. Even though
our architecture considers multiple actors, the inter-



Workflow

Enactment

Engine

Service 3

Service 2

Service 1

Client

Initiator

(a) Typical workflow based architecture

Workflow

Enactment

Engine

Service 3

Service 2

Service 1

Client

Initiator

Provenance

Service 1

Provenance

Service 2

(b) Workflow based architecture with prove-
nance recording

Client Service

Provenance

Service

Result

Invoke

Record

 Provenance

Record

Provenance

(c) The interaction between a client service
and provenance service

Workflow

Enactment

Engine

Service 1
Client

Initiator

Provenance

Service 1

Provenance

Service 2

Service 2

Service 3

Service 4

(d) Architecture with provenance recording
and services invoking other services

Fig. 1: Architecture diagrams

action between all these actors can be reduced down
to a common ”triangular” pattern of interaction de-
scribed above and shown in Figure 1(c). This reduc-
tion is possible because our system is based on the
simple one-to-one interaction between a client and
service that is the foundation of service-oriented ar-
chitectures. The only additional requirement is that
this interaction be recorded in a third party. The
interaction of these three actors is governed by the
Provenance Recording Protocol, which we will de-
tail later in the paper.
The case for recording two viewsThe triangular
nature of the interaction between the client, service
and provenance service stems from the requirement
that both the client and service submit their view of
their interaction to the provenance service. At its
most basic, this view consists of the input and output
data of the service. Each party submits to the prove-
nance service all the data that it sends and receives
during an interaction. This requirement is vital for
recording an accurate picture of a client-service in-
teraction because it allows the provenance service to
verify an interaction by checking that the views of
the two parties agree. Without this requirement, sev-
eral problems could arise.

For example, in the case where the client is the
only party recording the interaction in the prove-
nance service, the service is completely dependent
on the client to submit provenance. In fact, with-
out the submission of provenance from the service,
there would be no evidence that the client invoked
the service should the client choose not to record the

interaction. In our system, the provenance service
would know that a service was invoked because the
service submits that information. The same problem
also exists in the case where the service is the only
party submitting to the provenance service. We note
that the requirement that both parties submit their
views does not prevent collusion between parties,
but it does allow the provenance service to detect
when the two parties disagree about the record of an
interaction.
Actor ProvenanceWe have mainly discussed how
our system supports the recording of information
about the interaction between actors in a service-
oriented architecture. Our system also supports the
submission of provenance information about each
actor. This information could include anything from
the workflow that an enactment engine runs to the
disk and processing power a service used in a com-
putation. Typically, this information can only be
provided by the actor itself, so it cannot be veri-
fied like interaction provenance. We use a simple
mechanism to store actor-centric provenance by ty-
ing it to interaction provenance. The basis for our
provenance recording system is the interaction be-
tween one client, one service and one provenance
service. This interaction is specified by the Prove-
nance Recording Protocol, which is presented next.

4 Recording Protocol

PReP is a four phase protocol consisting of negotia-
tion, invocation, provenance recording and termina-



Name Notation Fields
propose pro ACTIVITY ID, PSALLOWEDL IST, EXTRA

reply reply ACTIVITY ID, PSACCEPTED, EXTRA

invoke inv ACTIVITY ID, DATA , EXTRA

result res ACTIVITY ID, DATA , EXTRA

record negotiation rec neg ACTIVITY ID, PSALLOWEDL IST, PSACCEPTED, EXTRA

record negotiation acknowledgement rec neg ack ACTIVITY ID

record invocation rec inv ACTIVITY ID, EXTRA , DATA

record invocation acknowledgement rec inv ack ACTIVITY ID

record result rec res ACTIVITY ID, DATA

record result acknowledgement rec res ack ACTIVITY ID

submission finished sf ACTIVITY ID, NUMOFMESSAGES

submission finished acknowledgement sf ack ACTIVITY ID

additional provenance ap ACTIVITY ID, EXTRA

additional provenance acknowledgementap ack ACTIVITY ID

Fig. 2: Protocol messages, their formal notation and message parameters.

tion phases. The negotiation phase allows a client
and service to agree on a provenance service to store
a trace of their interaction. After this phase, the pro-
tocol enters the invocation phase, during which a
client invokes a service and receives a result. Syn-
chronously, in the provenance recording phase, both
the client and service submit their input and output
data to the provenance service. When all data has
been received by the provenance service, the termi-
nation phase occurs. After discussing the messages
and their parameters used by PReP, we consider the
four phases in detail.

We model the protocol as an asynchronous
message-passing system, in which all communica-
tion is expressed by an outbound message followed
by a return message. The return message is either
a result of the service invocation, a reply from the
service during negotiation, or an acknowledgement
that the provenance service has received a particular
message. Figure 2 lists the fourteen messages in our
protocol.

These messages can be divided into two groups:
those that are between a client and service; and those
that are used to interact with the provenance service.
The propose, reply, invokeandresult messages be-
long to the first group, while therecord, submission
finishedandadditional provenancemessages belong
to the second. The usage of each message is de-
scribed in more detail when we present the phases
of the protocol. The message parameters shown in
Figure 2 are detailed below.

The ACTIVITY ID parameter identifies one ex-
change between a client and server. It contains:
NONCEID, an identifier generated by the client to
distinguish between other exchanges with the called
service; SESSIONID, comprising all invocations that
pertain to one result (the client originator of Figure
1(b) generates this identifier, which must be unique);
THREADID, which allows clients to parse multiple
interactions with the same service; TIMESTAMP, the
time when a message was sent, based on the clock of

the sender; CLIENT, which identifies the client; and
SERVICE, which identifies the service.

Other parameters are: DATA , which contains data
exchanged between a client and service; EXTRA,
which is an envelope that can contain other mes-
sages related or unrelated to the protocol allowing
it to be extended; NUMOFMESSAGES, which indi-
cates the total number of messages an entity sends to
the provenance service; PSALLOWEDL IST, which
is a list of approved provenance services; and PSAC-
CEPTED, which contains a reference to a provenance
service that an entity accepts, or a rejection token.

PReP is divided into four phases: negotiation, in-
vocation, provenance recording, and termination.
Negotiation is the process by which a client and ser-
vice agree on a provenance service to use. Typically,
a client presents a list of provenance services it trusts
to the service via apropose message. The service
then extracts the PSALLOWEDL IST from the pro-
pose message and selects a provenance service from
the list. The service then replies with aresponse
messagecontaining the selected provenance service
or a rejection in the PSACCEPTEDparameter. Al-
though the negotiation modelled here is simple, with
only one request-response, the protocol is extensible
through the use of the EXTRA parameter. Entities
can encode more complicated messages into this en-
velope, providing a means for complex negotiations
to take place allowing for more custom provenance
recording and advanced negotiations [4]. A client
and service that have already negotiated and agreed
on a provenance service might like to skip the ne-
gotiation phase of the protocol. Therefore, a mes-
sage informing the service of the use of a previously
agreed provenance service can be enclosed in the
EXTRA envelope of theinvoke message. However,
the provenance service still needs to be informed of
the agreement between the service and client via the
record negotiation message.
Invocation If a client has successfully negotiated
with a service, it can then invoke the service and



receive a result via theinvoke messageand result
message. We have tried to limit the impact of PReP
on normal invocation, the only extra parameters re-
quired to be sent are the ACTIVITY ID and the EX-
TRA envelope. The ACTIVITY ID is necessary to
identify the exchange in relation to the provenance
stored in the service, while the EXTRA envelope al-
lows the protocol to be used without a negotiation
phase and for later protocol extension.
Provenance Recording is the key phase of the
protocol. As discussed previously, the client and
service are required to submit copies of all their
sent and received messages to the provenance ser-
vice. Submission is done through the various record
messages with both the client and service sending
record negotiation, record invocationandrecord re-
sult messages. Acknowledgement messages then
inform the sender that each message has been re-
ceived by the provenance service. Therecord nego-
tiation messagecontains the list of provenance ser-
vices (PSALLOWEDL IST), the client proposed, and
the provenance service accepted (PSACCEPTED) by
the service. Therecord invocationandrecord result
messages together contain the entire data transmitted
between the client and service from the perspective
of both entities. The requirement that all data be sub-
mitted allows the provenance service to have a com-
plete view of the exchange. In order not to delay ser-
vice invocation, the submission process can be done
in a totally asynchronous fashion; for example, the
client could send arecord invocation messageto the
provenance service before or after receiving aresult
messagefrom the service. Although the protocol re-
quires two copies of an invocation to be sent to the
provenance service, it minimises any performance
penalties through the use of asynchronous submis-
sion while adding the benefit of storing the complete
provenance of an exchange.

We cater for actor provenance instead of interac-
tion provenance by theadditional provenance mes-
sage. With this message, an actor can record prove-
nance about itself or other actors in the architecture
by enclosing in the EXTRA envelope whatever in-
formation is pertinent. An important use of this ca-
pability is the linking of provenance records across
provenance services as described in Section 3. We
note that there are no constraints on the data that can
be submitted to the provenance service, allowing a
wide variety of applications to be supported.
Termination The final phase of the protocol is ter-
mination. The protocol terminates when the prove-
nance service has received all expected messages
from both the client and the service. The client and
service are notified of termination through the ac-
knowledgement to thesubmission finished message,
which is a blocking call that waits until all expected

messages are received from the client and service.
The number of expected messages is determined by
the NUMOFMESSAGESparameter in thesubmission
finished message. Because of the asynchronous na-
ture of the protocol, thesubmission finished message
can be sent any time after the negotiation phase.

5 Actors

ACTIVITY ID = SESSIONID×NONCEID×THREADID×TIMESTAMP×
CLIENT × SERVICE (Activity Identification)
Elements ofRN, RI, RR andSF are constructed as follows:
rec neg : ACTIVITY ID × PSALLOWEDL IST × PSACCEPTED ×
EXTRA → RN (Negotiation Messages)
rec inv : ACTIVITY ID× EXTRA × DATA → RI (Invocation Messages)
rec res : ACTIVITY ID × EXTRA × DATA → RR (Result Messages)
sf : ACTIVITY ID × NUMOFMESSAGES→ SF

(Submission Finished Messages)

AP = {ap1, ap2, . . . , apn} (Additional Provenance Messages)
M = RN ∪ RI ∪ RR ∪ SF ∪ PU (Messages)
APL = P(AP ) (Set of Sets of Additional Provenance Messages)
CN = RN (Client Negotiation Messages)
CI = RI (Client Invocation Messages)
CR = RR (Client Result Messages)
CSF = SF (Client Submission Finished Messages)
SN = RN (Service Negotiation Messages)
SI = RI (Service Invocation Messages)
SR = RR (Service Result Messages)
SSF = SF (Service Submission Finished Messages)
CS = ACTIVITY ID → CN × CI × CR× CSF × APL

(Client Records, a Client Message Store)
SS = ACTIVITY ID → SN × SI × SR× SSF × APL

(Service Records, Service Message Store)
PS = CS × SS (Set of Provenance Services)
Characteristic variables:
p = 〈client T, service T 〉, ai ∈ ACTIVITY ID, rec neg ∈
RN, rec inv ∈ RI, rec res ∈ RR, sf ∈ SF, ap ∈ AP ,
apl ∈ APL, client T ∈ CS, service T ∈ SS, e ∈ EXTRA,
psal ∈ PSALLOWEDL IST, psa ∈ PSACCEPTED, d ∈ DATA ,
nid ∈ NONCEID, tid ∈ THREADID, ts ∈ TIMESTAMP,
client ∈ CLIENT, service ∈ SERVICE, nm ∈ NUMOFMESSAGES

If ai = 〈sid, nid, tid, ts, client, service〉 then
ai.sid = sid, ai.nid = nid, ai.tid = tid, ai.ts = ts,
ai.client = client, ai.service = service

If sf = 〈ai, nm〉 thensf.ai = ai, sf.nm = nm
If service T [ai] = 〈rec neg, rec inv, rec res, sf, apl〉 then

service T [ai].rec neg = rec neg,
service T [ai].rec inv = rec inv,
service T [ai].rec res = rec res, service T [ai].sf = sf,
service T [ai].apl = apl

The same notation applies forclient T [ai].

Initial State:
pi = 〈client Ti, service Ti〉, client Ti = ai → ∅,
service Ti = ai → ∅

Fig. 3: Provenance Service State Space

We now consider how the provenance service, ser-
vice and client act in response to the messages they
send and receive. To understand the actions of these
actors, we use complementary formalisation tech-
niques, chosen because of the nature of the actors
involved. First, we represent the provenance service
as an abstract state machine (ASM). Second, we use
a 3D state diagram to show the possible responses
of the client and service. Both techniques assume
asynchronous message passing. The importance of
the internal functionality of the provenance service
lends itself to an ASM formalisation whereas, given



the importance of the external interactions of the
client and service, a state transition diagram formali-
sation is more appropriate. We begin with the prove-
nance service.
The Provenance Serviceplays the central role in
PReP. As far as recording is concerned, its inter-
action with the outside world is simple: it receives
messages and sends acknowledgements. It does not
initiate any communication and its purpose is to sim-
ply store messages. By formalising the provenance
service, we can explain how the accumulation of
messages dictates its actions.

To detail these actions, we model the provenance
service as an ASM whose behaviour is governed by
a set of transitions it is allowed to perform. The no-
tation allows for any form of transition with no limits
on complexity or granularity and has been used pre-
viously to describe a distributed reference counting
algorithm.
The ASM State SpaceThe state space of the ma-
chine is shown in Figure 3. An instance of a prove-
nance service,p, is a tuple that consists of an element
from the Client Message Store,CS, and an element
from the Service Message Store,SS. These two ta-
bles are defined as functions whose argument is of
type ACTIVITY ID and consist of sets of messages
that are from either the client or the service. The
set of messages is defined as the union of the sets
RN,RI, RR, SF, and AP . All of these sets, ex-
cludingAP , are in turn defined by inductive types,
whose constructors are named according to the mes-
sages in Figure 2. On the other hand,AP is a set
that contains all of theadditional provenance mes-
sages. Note thatSS andCS are not defined using
AP but withAPL, the power set ofAP . Informally,
this shows that any number ofadditional provenance
messagescan be stored per an ACTIVITY ID.

Given the state space, the ASM is described by
an initial state and a set of transitions. Figure 3
contains the initial state space, which can be sum-
marised as empty client and service message stores.
We use an arrow notation for a function taking an ar-
gument and returning a result. Therefore,client Ti

andservice Ti take an ACTIVITY ID as an argument
and return an empty state.
The ASM Rules The transitions of the ASM are
described through rules with the following form:

rule name(v1, v2, · · · ) :

condition1(v1, v2, · · · )∧condition2(v1, v2, · · · )∧· · ·
→ {

pseudo statement1;

· · ·
pseudo statementn;

}
Rules are identified by their name and a number of
variables that the rule operates over. Any number

of conditions must be met in order for a rule to be
fireable. A new state is achieved after applying all
the pseudo-statements to the state that met the con-
ditions of the rule. The execution of a rule is atomic,
so that no other rule may interrupt or interleave with
an executing rule. This maintains the consistency of
the ASM.

Figure 5 shows two of the ASM’s transition rules.
receive neg is the transition rule for the receipt
of a record negotiation message. It specifies the
behaviour of the provenance service when receiv-
ing, from entityx, a rec neg message containing:
an ACTIVITY ID, a PSALLOWEDL IST, a PSAC-
CEPTED parameter and an EXTRA envelope. The
condition placed on the rule states that for the rule to
fire there must be arec neg message, which is part
of the communication channel (K) betweenx and
p. A communication channel is some point-to-point
communication mechanism provided by the imple-
mentation. If this condition is satisfied, the message
is consumed using thereceive pseudo-statement.
The rule then determines whetherx is a client or
service and puts therec neg message in the correct
field of the appropriate table. After this table up-
date, anrec neg ack is sent using thesend pseudo-
statement. Finally, thenotify rule is called, which
tests to see if all messages have been received from
both the client and the service. If all messages have
been received, thesubmission finished acknowledge-
ment messagecan be sent. The test is achieved by
invoking the functioncomplete[ai], which checks
that none of the fields accessed byai are null. The
other four transitions not listed follow the same pat-
tern as thereceive neg rule, consuming a message
and placing it into the the correct field of the appro-
priate table. The entire set of rules can be found at
http://www.pasoa.org/protocol/rules.htm .

receive neg(p, x, ai, psal, psa, e) :
rec neg(ai, psal, psa, e) ∈ K(x, p)

→ {
receive(rec neg(ai, psal, psa, e), x, p);
if(x = ai.client), then
client T [ai].rec neg := rec neg(ai, psal, psa, e);
elif(x = ai.service), then
service T [ai].rec neg := rec neg(ai, psal, psa, e);
send(rec negack(ai), x);
notify(p, ai);

}

notify(p, ai) :
complete[ai];

→ {
send(sf ack(ai), x);

}

Fig. 4: The abstract state machine’s rules

The Client and ServiceWe now formalise the ac-
tions of the client and the service. In this case, we
have chosen not to use the ASM formalism because
we have no knowledge of the decision algorithm a



service would use when selecting a provenance ser-
vice from the list proposed by the client. Further-
more, we want developers to be free to experiment
with any sort of algorithm they deem best. How-
ever, we still want to formally investigate the actions
of the client and service in response to PReP, so we
represent the two entities with a 3D state transition
diagram, which offers an intuitive yet formal means
to describe the actions of the client and service based
on sent and received messages.

Figure 5 shows the state transition diagram for
both the client and service. It contains all the pos-
sible states of a client or service with regard to the
PReP. Transitions between states are only permitted
when messages are sent or received by the actor. For
example, transition (4) is the receipt of aresult mes-
sageand transition (5) is the sending of aninvoke
messagein the case of the client. The diagram shows
all possible ways that a client or service could send
and receive messages.

We believe that these formalisations provide a
firm basis for developers to implement the protocol.
The ASM and 3D state transition diagram allow de-
velopers to understand the interaction of the client,
service, and provenance service without prescribing
a particular implementation technique. This gives
developers the opportunity to choose the implemen-
tation mechanisms that fit their needs.

6 Properties

Given the above formal representations of the client,
service and provenance service, we now can show an
important property of PReP, namely, liveness. In dis-
tributed systems, it is common to refer to safety and
liveness properties, to denote that nothing bad will
happen and that something good will eventually hap-
pen. In the case of PReP, liveness is that ultimately
the submission finished acknowledgementmessage
will be sent to both the client and the service.

To show that the protocol is indeed live, we first
make some assumptions about the system imple-
menting PReP. We assume that the client and service
are live i.e. that they will eventually send and receive
all the messages designated in the protocol. We also
assume that the communication channel,K, is live.
Therefore, all sent messages will be delivered to the
addressed party.

Given these assumptions, we now show that both
the client and service will eventually end their in-
teraction with the provenance service for one invo-
cation of the service. Using the state transition dia-
gram in Figure 5, we can show that this termination
property holds. First, we make the assumption that
there are a finite number ofadditional provenance
messages, although these are represented by cycles

in the graph. With this assumption, we can deter-
mine a bound on the number of messages a client or
service will exchange. Excludingadditional prove-
nance messages, we calculate this bound by enu-
merating all paths from the start state to the end
state in the graph and selecting the longest, which
is twelve transitions i.e. messages long. Given this
fixed bound and a finite number ofadditional prove-
nance messages, the client and service send and re-
ceive a finite number of messages and then termi-
nate.

In order for the provenance service to be able
to send asubmission finished acknowledgement, it
must determine when it has a complete record of the
interaction between a client and service. It does this
via thecomplete function defined earlier.

We now show that PReP satisfies the liveness
property. Given that both the client and service will
terminate, both actors will send all their messages
to the provenance service, which, as represented by
the state machine, will fire the appropriate rule cor-
responding to the receipt of each message. These
rules in turn update the state of the record referenced
by an ACTIVITY ID, ai and invoke thenotify rule.
Notify checks for a complete record and, if it exists
for ai, thesubmission finished acknowledgementis
sent.

7 Related Work

Provenance recording also been investigated in the
myGrid (www.mygrid.org.uk) project. The goal of
myGrid is to provide a personalised ”workbench”
for bioinformaticians to performin-silico experi-
ments [5]. Although myGrid allows users to capture
provenance data [8], it does not not address general
architectures or protocols for recording provenance.

Ruthet al. present a system for recording prove-
nance in the context of data sharing by scientists
[6]. Each scientist has an e-notebook which records
and digitally signs any input data or manipulations
of data. When the data is shared via peer-to-peer
communication, a scientist cannot refute the prove-
nance of the data because of the digital signature
process. The goal of the system is to generate a vir-
tual community where scientists are accountable for
their data. [6] focuses mainly on the trust aspect of
the e-notebook system, rather than the protocols for
distributing and storing provenance data.

Some work has focused on data provenance in
databases. In [2], Buneman et al. make the distinc-
tion betweenwhy (which tuples in a database con-
tribute to a result) provenance andwhere (the lo-
cation(s) of the source database that contributed to
a result) provenance. In [1], a precise definition of
provenance is given for both XML hierarchy and re-



Client Transition Key
1. send pro
2. receive positive reply
3. receive negative reply
4. send inv
5. receive res
6. send rec_neg
7. receive rec_neg_ack
8. send rec_inv
9. receive rec_inv_ack
10. send rec_res
11. receive rec_res_ack
12. send sf
13. receive sf_ack
14. send ap & receive ap_ack

Service Transition Key
1. receive pro
2. send positive reply
3. send negative reply
4. receive inv
5. send res
6. send rec_neg
7. receive rec_neg_ack
8. send rec_inv
9. receive rec_inv_ack
10. send rec_res
11. receive rec_res_ack
12. send sf
13. receive sf_ack
14. send ap & receive ap_ack

start state

end state

(1) (2)

(3)

(4) (5)

(6)

(7)

(4)

(10) (11)

(8)

(9)

(12)

(13)

Fig. 5: State transition diagram for the client and service

lational databases.

Szomszor and Moreau in [7] argued for infrastruc-
ture support for recording provenance in Grids and
presented a trial implementation of an architecture
that was used to demonstrate several mechanisms for
handling provenance data after it had been recorded.
Our work extends [7] in several important ways.
First we consider an architecture that allows for
provenance services as well as composite services.
Secondly, we model an implementation-independent
protocol for recording provenance within the context
of a service-oriented architecture, whereas, Szom-
szor and Moreau present an implementation specific
service-oriented architecture.

Conclusion The necessity for storing, maintaining
and tracking provenance is evident in fields rang-
ing from biology to aerospace. As science and
business embrace Grids as a mechanism to achieve
their goals, recording provenance will become an
ever more important factor in the construction of
Grids. The development of common components,
protocols, and standards will make this construction
process faster, easier, and more interoperable. In
this paper, we presented a stepping stone to the de-
velopment of a common provenance recording sys-
tem, namely, an implementation-independent proto-
col for recording provenance, PReP.

AcknowledgementsThis research is funded in part
by EPSRC PASOA project GR/S67623/01.

References
[1] P. Buneman, S. Khanna, and W.-C. Tan. Data prove-

nance: Some basic issues. InFoundations of Software
Technology and Theoretical Computer Science, 2000.

[2] P. Buneman, S. Khanna, and W.-C. Tan. Why and
where: A characterization of data provenance. InInt.
Conf. on Databases Theory (ICDT), 2001.

[3] I. Foster. What is the grid? a three point checklist.,
July 2002.

[4] R. Lawley, K. Decker, M. Luck, T. Payne, and
L. Moreau. Automated negotiation for grid notifi-
cation services. InNinth Int. Europar Conf., vol-
ume 2790 ofLNCS, pages 384–393. Springer-Verlag,
2003.

[5] L. Moreau and et. al. On the use of agents in a bioin-
formatics grid. In S. Lee, S. Sekguchi, S. Matsuoka,
and M. Sato, editors,Proc. of the 3rd IEEE/ACM CC-
GRID’2003 Workshop on Agent Based Cluster and
Grid Computing, pages 653–661, Tokyo, Japan, 2003.

[6] P. Ruth, D. Xu, B. K. Bhargava, and F. Regnier. E-
notebook middleware for acccountability and reputa-
tion based trust in distributed data sharing communi-
ties. In Proc. 2nd Int. Conf. on Trust Management,
Oxford, UK, volume 2995 ofLNCS. Springer, 2004.

[7] M. Szomszor and L. Moreau. Recording and reason-
ing over data provenance in web and grid services. In
Int. Conf. on Ontologies, Databases and Applications
of Semantics, volume 2888 ofLNCS, 2003.

[8] J. Zhao, C. Goble, M. Greenwood, C. Wroe, and
R. Stevens. Annotating, linking and browsing prove-
nance logs for e-science. InProc. of the Workshop
on Semantic Web Technologies for Searching and Re-
trieving Scientific Data, October 2003.


