
Recording and Using Provenance in a Protein Compressibility Experiment

Paul Groth, Simon Miles, Weijian Fang, Sylvia C. Wong, Klaus-Peter Zauner and Luc Moreau
School of Electronics and Computer Science

University of Southampton
Southampton, SO17 1BJ, UK

Tel: +44 23 8059 4487
Contact: pg03r@ecs.soton.ac.uk

Abstract

Very large scale computations are now becoming rou-
tinely used as a methodology to undertake scientific re-
search. In this context, ‘provenance systems’ are regarded
as the equivalent of the scientist’s logbook for in silico ex-
perimentation: provenance captures the documentation of
the process that led to some result. Using a protein com-
pressibility analysis application, we derive a set of generic
use cases for a provenance system. In order to support
these, we address the following fundamental questions:
what is provenance? how to record it? what is the per-
formance impact for grid execution? what is the perfor-
mance of reasoning? In doing so, we define a technology-
independent notion of provenance that captures interactions
between components, internal component information and
grouping of interactions, so as to allow us to analyse and
reason about the execution of scientific processes. In or-
der to support persistent provenance in heterogeneous ap-
plications, we introduce a separate provenance store, in
which provenance documentation can be stored, archived
and queried independently of the technology used to run the
application. Through a series of practical tests, we evalu-
ate the performance impact of such a provenance system. In
summary, we demonstrate that provenance recording over-
head of our prototype system remains under 10% of execu-
tion time, and we show that the recorded information suc-
cessfully supports our use cases in a performant manner.

1 Introduction

Very large scale computations are now becoming
routinely used as a methodology to undertake scien-
tific research: success stories abound in many do-
mains, including physics (www.griphyn.org), bioinformat-
ics (www.mygrid.org.uk), engineering (www.geodise.org)

and geographical sciences (www.earthsystemgrid.org). In
this context, ‘provenance systems’ are being regarded as the
equivalent of the scientist’s logbook for in silico experimen-
tation. Provenance, which captures the documentation of
the process that led to some data, is necessary to allow users
to verify how results were achieved or to reproduce them:
this is particularly crucial when results can be obtained only
by in silico means and no other validation in the physical
world is possible. Furthermore, as we design systems with
provenance, new opportunities arise, in which added value
is provided by provenance, for instance, to analyse and rea-
son over previous experiments.

Specifically, we consider here a protein compressibility
analysis application, which uses a mix of brute force com-
putation, statistical methods, and guess work, in order to
study the structure of protein sequences. Given its charac-
teristics, such an application is an ideal candidate for use
of Grid technology [4]. While studying this application, we
have elicited several use cases for provenance (which have
been compiled as part of a complete survey [11]). For in-
stance, provenance is crucial to decide if two results were
obtained by the same scientific process; to verify if seman-
tically valid operations were performed; or to decide if a
specific data item was used as input to a computation.

As far as provenance is concerned, the challenges are
manifold. (i) From a conceptual viewpoint, the principled
design of a notion of provenance must be related to execu-
tion in a meaningful manner and must contain sufficient in-
formation to satisfy the different use cases. (ii) From an en-
gineering viewpoint, systems are becoming more and more
complex and are typically assembled from multiple hetero-
geneous systems, each of them addressing specific parts of
the computation. For instance, in the LCG Atlas experiment
(atlas.web.cern.ch), Athena and VDT coexist, each capa-
ble, in their own way, of specifying components, compo-
sitions and their execution; likewise, applications, like the
one studied in this paper, can consist of a mix of VDL work-
flows [5], shell scripts, and Web Services. Hence, the ques-

tion of inter-operability arises: how can we ensure that each
sub-system can individually provide provenance data that
can seamlessly be used to support use cases. Thus, proto-
cols are necessary for provenance data to be recorded and
to be retrieved. (iii) From a practical viewpoint, while it
is expected that provenance recording may introduce some
overhead, it should not hinder the progress of execution in
any unacceptable way.

In summary, we are confronted with the following ques-
tions: what is provenance? how to record it? what is the
performance impact for grid execution? what is the perfor-
mance of reasoning? These are the questions that we ad-
dress in this paper by presenting our preliminary evaluation
of a practical deployment of a provenance architecture into
a protein compressibility bioinformatics application. In an-
swering these questions, our specific contributions are the
following:

1. We define a notion of provenance that it is technology
independent, but allows us to capture, in a systematic
and structured manner, information about the scientific
process that is being executed.

2. To promote inter-operability between systems, we in-
troduce a provenance store, in which provenance doc-
umentation can be stored, archived and queried. We
use this store to record provenance documentation that
pertains to the scientific process rather than the execu-
tion environment being used.

3. In a series of practical experimentation, we evaluate
the performance impact of such a provenance archi-
tecture. In summary, we demonstrate that provenance
recording overhead of our prototype architecture can
remain under 10% of execution time, and we show
that the information recorded is sufficient to support
our use case in a performant manner.

In the rest of the paper, we introduce our bioinformatics
Grid application in Section 2 and its use cases for prove-
nance in Section 3. We then discuss shortcomings of exist-
ing provenance systems in Section 4 and define our notion
of provenance and its architectural realisation in Section 5.
This is followed the evaluation of the provenance architec-
ture in Section 6. We then analyse our results and discuss
future work in Section 7 before concluding the paper.

2 Protein Compressibility

In this section, we explain the biology and process of our
bioinformatics case study.

Biology Proteins are the essential functional components
of all known forms of life; they are linear chains of typi-
cally a few hundred building blocks taken since 2 milliards

years from the same set of about 20 different amino acids.
Protein sequences are assembled following a code sequence
represented by another polymer (mature mRNA). This poly-
mer is produced by splicing certain pieces (the exons) of a
molecular copy of the coding region of a gene on the DNA,
while discarding other pieces (the introns) of the copy. Dur-
ing and following the assembly, the protein will curl up un-
der the electrostatic interaction of its thousands of atoms
into a defined but agile shape of typically 5–8 nm size. The
resulting 3D-shape of the protein determines its function.

The linear structure of protein (amino acid) sequences
is of considerable interest for predicting which sections of
the DNA encode for proteins and for predicting and de-
signing the 3D-shape of proteins. For comparative stud-
ies of the structure present in an amino acid sequence, it
is useful to determine the textual compressibility of the se-
quence. Compression exploits context-dependent correla-
tions within the sequence. The fraction of its original length
to which a sequence can be loss-lessly compressed is an in-
dication of the structure present in the sequence. In general,
no practical compression method can discover all the struc-
ture in a sequence. Actual compression of a sequence can
only yield a lower bound on its compressibility. For the
same reason, the compressibility values are also relative to
the applied compression method [9]. Methods that are good
at discovering structure are computationally expensive; ini-
tial investigations of protein compressibility indicated that it
is indeed difficult to discover structure in protein sequences
[13]; however, recently, progress has been made by group-
ing amino acids [14]: if the compression of the sequences
serves only to quantify structure and decompression is not
intended, the sequences can be recoded with a reduced al-
phabet. In an amino acid sequence, for instance, each amino
acid symbol is replaced by a symbol representing a group of
amino acids. Compression is then applied to the recoded se-
quence. The results of this experiment can, for example, be
used to determine the amino acid groupings that maximise
compressibility.

Workflow To focus the discussion, we consider the main
workflow of the comparative sequence compressibility ex-
periment, shown in Figure 1. It starts with the selection
of a sequence sample, which sample may be composed
from several individual sequences to provide enough data
for the statistical methods employed by the compression al-
gorithms (Collate Sample). This sample is then recoded
with a given group coding (Encode by Groups). The re-
coded sequence is then compressed with compression al-
gorithms, e.g., gzip, bzip2 or ppmz, to obtain the length
of the compressed sequence. Random permutations of the
sequence (Shuffle) are also compressed to provide a stan-
dard for comparison. This standard removes the influence
of two factors from the calculation of compressibility: the

particular data encoding used to represent the groups, and
the non-uniform frequency of groups. From the results, a
compressibility value is obtained for the sample sequence
that is relative to both the compression method and group
coding employed. The variability in the compressed length
of the permuted sequences leads to a distribution of com-
pressibility values (Collate Sizes). The workflow entails a
sufficient number of compressions of permuted sequences
to estimate the standard deviation for the compressibility
(Average).

Sequences

Collate
Sample

Encode by
Groups

Sample

ShuffleMeasure

MeasureMeasureMeasure

Collate
Sizes

Average

Encoded Sample

Permutation 1 Permutation 2 Permutation 3 Permutation NSizes

Sizes Sizes Sizes Sizes

Sizes Table

Results

Sample Size

Number of Permutations
(N)

Permutation Set Size

Amino Acid Groupings

Granularity Partitioning

Figure 1. Compressibility Workflow

The Measure sub-workflow, shown in Figure 2, is com-
prised of the following steps. gzip/ppmz Compression:
The input sample is compressed using the gzip or ppmz
algorithm. Measure Size: The sample and its two com-
pressed forms are measured to determine their respective
sizes. Collate Sizes: The size data output from all Measure
Size steps are collated into a single table.

3 Provenance Use Cases

In this section, we introduce some use cases that we have
identified for the Protein Compressibility Experiment. For
a more complete survey of provenance use cases and tech-
nical requirements, we refer the reader to [11].

Use case 1 A bioinformatician, B, downloads sequence
data of microbial proteins from the database RefSeq and

Sample

gzip
Compression

ppmz
Compression

Measure Size Measure Size Measure Size

Collate
Sizes

Size Size Size

Sizes Table

Compressed
Sample

Compressed
Sample

Figure 2. Measure Workflow

runs the compressibility experiment. B later performs the
same experiment on the same sequence data, again down-
loaded from RefSeq. B compares the two experiment results
and notices a difference. B determines whether the differ-
ence was caused by the algorithms used to process the se-
quence data having been changed. 2

For instance, with use case 1, B could observe that the
compression algorithms used in the compressibility work-
flow were configured differently in two runs of the experi-
ment, and so produced differing results.

Use case 2 A bioinformatician, B, performs an experiment
on a FASTA sequence encoding a protein. A reviewer, R,
later determines whether or not the sequence was in fact
processed by a service that meaningfully processes protein
sequences only. 2

The principle of amino acid group encoding described
in Section 2 also applies to other types of sequences; for
instance, in a nucleotide sequence, each codon triplet can
replaced with a symbol representing a group of codons.
A fundamental part of the experiment presented here is
for symbols for the amino acids making up a protein se-
quence to be replaced by symbols for the groups to which
they belong (i.e., the Encode by Groups activity in Fig-
ure 1). If a nucleotide sequence was accidentally used at
this stage rather than an amino acid sequence, there would
be no error in running the workflow because the symbols
used for nucleotides are a subset of those used for amino
acids. However, the experiment results would not be mean-
ingful, because the groups used and workflow results com-
pared against would all be particular to amino acids. In this
case, we can say that, while the workflow is syntactically
correct, it is semantically incorrect, which is what use case
2 aims to discover.

In order to support such use cases, a provenance system
needs to provide the following features. It needs not only
to identify which scripts are being invoked at every step of
the execution, but also to make a copy of these, so as to be
able to detect changes in their content from one execution to
the other. It needs to identify scripts to sufficient detail that
their intended semantics can be retrieved and compared. Fi-
nally, it needs to maintain a link between the inputs and
the outputs of each workflow run in an accurate manner: it
should be possible to determine which inputs were used to
produce which output unambiguously from the provenance
documentation, even if multiple workflows were run simul-
taneously.

4 The Challenge of Recording Provenance

In this section, we describe the approach adopted to im-
plement the protein complexity workflow. We then discuss
the challenges that such an application presents for integrat-
ing a provenance system: in particular, we analyse limita-
tions of existing provenance systems.

This workflow offers great potential for massive paral-
lelism given the vast number of input sequences and the
large number of permutations to be considered. Thus,
we have decided to adopt VDT (the Virtual Data Toolkit,
www.cs.wisc.edu/vdt), which offers good possibility of
scheduling over the Grid through the use of Condor. How-
ever, very quickly, our application has turned out to be a het-
erogeneous system, involving multiple technologies to run
and compose applications (or services), as we now explain.

While compression methods such as gzip or ppmz can
run directly from the command line, other advanced com-
pression methods may be available as Web Services. Like-
wise, sequences provided as inputs are typically obtained by
some form of remote procedure call to a remote database.
Given that for a typical sample, compression takes of the
order of 100ms, we have partitioned the processing of per-
mutations into scripts that provided a sufficient granularity
of computation (the order of 15 minutes) in order to offset
the overhead of grid scheduling and file transfer (cf. the
dashed box in Figure 1). Consequently, this specific appli-
cation relies on a variety of methods to run and compose
computations: binary executables, shell scripts, Web Ser-
vices and VDT/Dagman workflows.

Heterogeneity is not specific to this application but is
also present, e.g., in the LCG Atlas experiment, in which
Athena and VDT coexist, or in myGrid, in which Web Ser-
vices based workflows, plans for distributed queries and
high-throughput cluster-based bioinformatics services are
all seamlessly integrated. Such heterogeneity presents a
number of challenges for recording provenance. A number
of bespoke provenance systems have been designed for spe-
cific applications, but their lack of open-ness prevents the

plugging of external execution environments. For instance,
some application specific provenance support is provided
for Geographical Information Systems [10]. In database
systems, provenance study has focused on the data lineage
problem [2], which determines the source data used to pro-
duce a data item. Buneman et al. [1] refine the concept of
data lineage into “why” and “where” -provenance for which
they derive a formal model they apply to both relational and
XML databases. In our case, data is not necessarily con-
tained in databases, and processing over such data is not
necessarily expressed as database queries.

Given that multiple parts of our application can run un-
der the control of different runtime systems, at separate lo-
cations, some mechanism is required for all these parts to
contribute provenance data, so that it can be used seamlessly
by programs that support use cases. However, no system
supports such open-ness. For instance, while Chimera [5]
provides for domain-independant provenance recording for
VDL scripts, it offers no mechanism for submitting prove-
nance information, which would have not been produced
under the control of VDT. Likewise, provenance generated
by myGrid is directly generated by the Taverna/Freefluo en-
actment engine, but no provision exists for other entities to
submit provenance data [6]. Additionally, while Chimera
and myGrid provide for provenance recording of activi-
ties they regard as atomic, finer grained recording may be
required to follow the actual scientific process being exe-
cuted.

Arbitrary pieces of data (such as scripts themselves)
may have to be submitted to support use cases of section
3. Chimera records information that is useful for debug-
ging (such as invoked commands, inputs and outputs), but
does not allow arbitrary data to be submitted; alternatively,
Chimera’s virtual data catalog could be used to store arbi-
trary metadata stored, but it offers no generic mechanism for
submitting metadata about a specific command execution.
Likewise, myGrid allows metadata to be added to prove-
nance traces, since they are encoded in RDF, but, again, no
open mechanism is readily available to submit such meta-
data.

Finally, the different activities in a workflow should typi-
cally be grouped in different ways, with each grouping pro-
viding a well understood semantics. For instance, a work-
flow run is usually referred to as a “session”, while a se-
quential succession of activities as a “thread”. Such group-
ings are essential to analyse dependencies of activities while
reasoning over provenance.

5 Provenance Architecture

In this section, we overview our proposed architecture
for a provenance system. We take the broad view that grids
are typically designed using a service-oriented approach; by

service, we do not intend to restrict ourself to a specific ser-
vice technology (e.g, Web Services), but we rather mean to
refer to components that take some inputs and return some
outputs. Such services are brought together, usually via a
workflow definition, to solve a given problem: hence, with
such a broad definition, we see that BPEL, WSFL, VDL,
Dagman’s DAGs or Gaudi are all workflow frameworks ca-
pable of expressing the composition of services.

Based on this widespread design pattern, we have de-
veloped a categorisation of provenance for service-oriented
architectures (SOA). In SOAs, a service is typically invoked
by clients, but these may themselves act as services for other
clients; hence, we will use the term actor to denote either
a client or a service in a SOA. In general, the provenance
of some data is the documentation of the process that led
to the data. We refer to a given element of the documenta-
tion of process as a p-assertion [An asseration, by an actor,
pertaining to the provenance of some data.].

We define two types of p-assertions interaction p-
assertions and actor state p-assertions. In a SOA, interac-
tions are, fundamentally, a client invoking a service. These
interactions can be documented by recording interaction p-
assertions about the inputs and outputs of the various ser-
vices involved in generating a result. The second type of
p-assertion we have identified is an actor state p-assertion,
which is the documentation provided by an actor about its
internal state in the context of a specific interaction. Ac-
tor state documentation is extremely varied: it can include
anything from the workflow that is being executed to the
amount of disk and CPU a service used in a computation.
We note that both interaction p-assertions and actor state p-
assertions are independent of the actual service technology
used to run the application.

Provenance Architecture In order to support the capture
and querying of provenance, we have specified a prove-
nance architecture that takes into account a broad range
of use cases [11]. Central to this architecture is the no-
tion of a provenance store, which is designed to store and
maintain provenance beyond the life of a Grid application.
To allow distributed application parts to record provenance
documentation in a store, we introduce PReP, the Prove-
nance Recording Protocol, which specifies the messages
that actors can asynchronously exchange with the prove-
nance store in order to record their interaction and actor
state p-assertions [7]. Beyond just preserving provenance,
stores can also be queried to retrieve stored documentation,
to be processed and reasoned over. A crucial aspect of this
architecture is the clear organisation of the stored docu-
mentation around the fundamental categorisation of inter-
action and actor state p-assertions. In order to further struc-
ture these p-assertions in a manner that relates to execution,
PReP and the underpinning provenance model also support

a notion of group, which identifies well-specified associa-
tions of interactions such as sessions or threads.

While PReP identifies how the documentation of pro-
cess should be recorded, it lets the implementor decide
when to do so. This flexibility allows implementors to cus-
tomise recording according to the application’s needs: when
the application requires provenance to be used immediately
as execution occurs, p-assertions may be submitted syn-
chronously with execution; alternatively, when provenance
is used after application completion, then p-assertions may
be recorded asynchronously so as to reduce recording over-
head. We exploit the latter strategy in our implementation
of the protein compressibility experiment.

PReServ Provenance Recording for Services (PReServ)
is an Open Source Java based Web Services implementation
of PReP, available for download from www.pasoa.org.
The package includes a provenance store, client APIs and
XML schemas for storing data in and retrieving data from
the store implemented as a Web Service. PReServ runs as a
servlet inside a Java Servlet container. For the evaluations,
Apache Tomcat 5.0 was used.

Figure 3 shows the layered design of the PReServ store.
Normally, a SOAP message is sent to PReServ to either
record or query provenance. Based on the port that the mes-
sage was sent to, the SOAP Message Translator strips off
the HTTP and SOAP Headers and passes the contents of the
SOAP body to an appropriate PlugIn, which must conform
to the schemas distributed with PReServ. For example, the
Store PlugIn handles messages in order to record data in the
provenance store. The selected PlugIn then makes calls on
the backend data store to generate an appropriate response
for the received message. Currently, PReServ comes with
in-memory, file system and database backends. Each of
these backends implements the same API, the Provenance
Store Interface. This abstraction makes it easy to integrate
new backend stores without having to change already devel-
oped PlugIns and provides an API that maps directly to the
PReP protocol specification. We note that all evaluations
make use of a database backend based on the Berkeley DB
Java Edition (www.sleepycat.com) as the database.

Provenance Store Interface

Database File System Memory …

Store Plug In Basic Query Plug In …

SOAP Message Translator

SOAP Msg SOAP Msg

Figure 3. PReServ Layers

6 Evaluation

In this section, we present our preliminary evaluation of
the PReServ-based provenance architecture. For this, we
analyse the performance of the protein compressibility ap-
plication with and without recording and of the different use
cases.

Beforehand, we examine benchmarks of the PReServ
Web Service itself, while running on a Windows XP PC
with a Pentium P4, 2.8 Ghz, 1.5 GB RAM. It takes approx-
imately 18 ms round trip to record one pre-generated mes-
sage in PReServ. These tests were conducted with both the
client and server running on the same host.

For our preliminary evaluation, we deployed VDT on a
Redhat Linux 9.1, running under a VMWare virtual ma-
chine, itself running on a Windows XP PC with a Pentium
P4, 2.8 Ghz, 1.5 GB RAM. The Provenance Store PReServ
was deployed on a separate Windows XP PC, with the same
hardware. PCs were connected by a 100Mb local ethernet.
In the following section, we discuss this preliminary testing
configuration and the significance of our results.

Recording Evaluation The purpose of this evaluation is
to benchmark the overhead of recording p-assertions in a
real scientific application. To this end, we executed the pro-
tein compressibility workflow of Figure 1, with sets of se-
quences, which when collated constituted samples of about
100Kb. For each sample, we considered an increasingly
large number of permutations.

As indicated in Section 4, we grouped the execution of
100 permutations into a single script to increase the granu-
larity of the activities to be scheduled by Condor. In order to
provide provenance for the scientific experiment, both inter-
action and actor state p-assertions were recorded, for every
single activity of the measure workflow (Figure 2), for every
permutation (and not just for every script directly scheduled
par Condor).

Figure 4 plots the overall execution time (measured by
the time difference between the last and first activities in
the protein complexity workflow), for increasing number of
permutations, and for different configurations of p-assertion
recording: (i) without recording p-assertions, (ii) with
asynchronous recording, in which all p-assertions are accu-
mulated locally in a file before being shipped to PReServ
after execution, (iii) with synchronous recording by direct
Web Service invocation of PReServ, and (iv) with syn-
chronous recording with extra information being recorded
as actor state p-assertions (such as script provenance to sup-
port use case 1). Our observations are as follows: (i) over-
all, the different execution times remain linear (each plot
has a correlation coefficient greater than 0.99) with the num-
ber of permutations to be processed; (ii) accumulating p-
assertions to be submitted asynchronously has an overhead

over no provenance recording; (iii) asynchronous recording
has an overhead smaller than synchronous recording; (iv)
overall, the overhead of asynchronous performance record-
ing remains less than 10%.

0

1000

2000

3000

4000

5000

6000

100 200 300 400 500 600 700 800

O
ve

ra
ll

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

Number of permutations

Synchronous recording with extra actor provenance
Synchronous recording

Asynchronous recording
No recording

Figure 4. Recording Provenance

Like a scheduler requires a granularity coarse enough
to offset the overhead of automatic scheduling, automatic
recording of p-assertions has an acceptable cost if the gran-
ularity of activities is coarse enough. In this experiment,
the run of a workflow for one 100Kb sample with 1 per-
mutation takes approximately 4.5s and; each permutation
involves the creation of 6 records and their submission (av-
eraged over a long running workflows).

Execution Comparison In this section, we evaluate the
performance of comparing the provenance of two data re-
sults as described in use case 1. After a set of workflow
runs, each analysing one sample, the provenance store con-
tains records of the service interactions. Each interaction
record is made up of a record of the invocation message
that occurred in the workflow, and actor state p-assertions
containing the script for the service in that interaction. We
categorise the (contents of the) scripts that workflow activ-
ities have used, so that the bioinformatician can determine
whether the results of one workflow run differed from an-
other due to a change in algorithm or configuration. The
script contents are around 100 bytes each and are recorded
in PReServ as actor state p-assertions. Categorisation is per-
formed by querying each activity in the provenance store
for actor state p-assertions containing the script and creat-
ing a mapping from each set of exactly equivalent scripts to
the sessions (groups denoting workflow runs) in which that
script is used for a given service.

As we analyse all activities in the provenance store, the
time taken to perform the categorisation is dependent on the
size of the store. In Figure 5 (which we use to display the

performance of both use cases), we plot the time to query
the store for all relevant actor state p-assertions and perform
a full comparison against the number of interaction records
contained in the store. We observe a linear behaviour (the
plot has a correlation coefficient greater than 0.99) with the
size of the store; on average, it takes about 15ms to retrieve
a script (through one store invocation) and map it.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 500 1000 1500 2000 2500 3000 3500 4000

S
cr

ip
t C

om
pa

ris
on

 O
ve

ra
ll

E
xe

cu
tio

n
T

im
e

(m
ill

is
ec

on
ds

)

S
em

an
tic

 C
he

ck
 O

ve
ra

ll
E

xe
cu

tio
n

T
im

e
(m

ill
is

ec
on

ds
)

Number of Interaction Records

Semantic Validity Check
Script Comparison

Figure 5. Execution Comparison and Seman-
tic Validity

Semantic Validity In this section, we evaluate the perfor-
mance of semantically validating a workflow execution as
described in use case 2. We note that some of this valida-
tion could be performed statically by analysing the work-
flow script. However, this script may not always be avail-
able, or it may be expressed in a language for which we
do not have a static analyser, or it even may not lend itself
to a static analysis because runtime (or post-runtime in this
case) analysis is required.

To support such a use case, we introduce a registry
that contains semantic information for the different work-
flow activities. To this end, we use the Grimoires reg-
istry (www.grimoires.org), an extension of the UDDI reg-
istry, designed to support semantic annotations of service
descriptions [12]. The registry provides an interface that
supports metadata publication and metadata-based service
discovery.

Practically, each workflow activity is described by a
WSDL interface: we use here the abstract part of a WSDL
interface to characterise the type of inputs or outputs taken
by services1. Each message part (whether input or output)
of each service operation is annotated by some metadata

1In this application, we only use an interface for describing a service;
if we were to invoke a service, then a specific binding would be required,
so that command line executables could be invoked by a framework such
as WSIF (ws.apache.org/wsif).

identifying its semantic type, which we have expressed in an
ontology fragment for this specific application. The process
of semantically validating an execution is as follows. Given
a provenance trace for an execution that led to some data,
the semantic type of each service output (obtained from in-
teraction p-assertions and metadata stored in the registry) is
verified to be equal to the semantic type of the service input
it is fed into.

In terms of deployment, the registry, the provenance
store and the semantic validator were all deployed on dif-
ferent PCs (with mentioned hardware characteristics), com-
municating over 100Mb ethernet. Figure 5 plots the overall
execution time for semantic validation against the number
of records in the provenance store. Again, we observe a lin-
ear behaviour (the plot has a correlation coefficient greater
than 0.99), though a much higher time is needed for this
experiment compared to the previous. For each interaction,
we perform one call to PReServ and 10 to Grimoires; as
seen from Figure 5, the slope of the semantic validity plot
is about 11 times higher than the one for script comparison.

7 Discussion and Future Work

Our deployment of the provenance architecture in a
bioinformatics application exhibits interesting properties.
In the most optimised case, p-assertion recording may re-
quire just a few milliseconds to prepare a record to be tem-
porarily stored in a file and submitted asynchronously to
PReServ. Not surprisingly, if such processing is negligible
compared to the average granularity of a workflow activ-
ity, p-assertion recording only brings a small overhead to
overall application performance, which is offset by the very
valuable benefits that it offers. Besides optimising record-
ing, static analysis of workflows would be useful to pre-
package some of the p-assertions to be recorded, leaving
less to perform at runtime.

Virtual machines were adopted for virtualising Grid de-
ployment, which is an approach that has been used by a
number of other authors. [8, 3]. While some application
slowdown was observed by running over VMWare, we note
that p-assertion recording itself also suffers a similar slow-
down. Hence, we conjecture that our results remain valid if
similar benchmarks are run natively on a physical machine.

Our preliminary evaluation of the protein compressibil-
ity experiment was performed on a single machine. Given
that workflows are highly parallel and expressed in VDT,
we anticipate they should run on large scale clusters and
grids. In such a context, PReServ may become a bottleneck
when handling p-assertion submission requests. To combat
such scalability concern, we are undertaking the design of a
distributed version of PReServ, which would allow parallel
submissions into several provenance store instances; addi-
tionally, documentation recorded in different stores should

be cross-linked to allow navigation; a facility is also re-
quired to consolidate data into a single provenance store.

All use cases have to be revisited in the light of a dis-
tributed version of PReServ, since queries potentially need
to be run over multiple distributed stores. Finally, the role of
the provenance store is to record p-assertions data, to sup-
port provenance queries, but also to act as a long term stor-
age for provenance: support for curation of provenance data
is therefore also required.

8 Conclusion

Large scale applications typically make use of multiple
technologies to compose complex computations, which all
have to contribute information about their execution. In
this paper, we have proposed a technology independent way
of characterising provenance, consisting of interactions be-
tween services, internal information about these services,
and interaction groupings reflecting the order of execution.
Additionally, we have introduced the idea of a protocol to
submit p-assertions, allowing the multiple components of
a computation to submit p-assertions, despite being dis-
tributed and possibly relying on different technologies. We
then presented PReServ, a realisation of this protocol as a
Web Service, which offers a persistent storage for prove-
nance, an API to record provenance data and an API to
query it. We have deployed PReServ in a bioinformat-
ics application to study protein compressibility, which we
made run under the Virtual Data Toolkit VDT; this applica-
tion presents interesting use cases for provenance, which we
have shown to be supported by our provenance architecture.
We then studied the performance of provenance recording
and reasoning. Our conclusion is that when an application
is composed of activities with a high enough average gran-
ularity, the cost of recording p-assertions is largely offset by
its benefits.

9 Acknowledgements

This research is funded in part by PASOA project
(EPSRC Grant GR/S67623/01) and EU Provenance (IST
511085). The semantic validity use cases make use of
the Grimoires Registry, funded by the Grimoires (EP-
SRC Grant GR/S90843/01) and myGrid (EPSRC Grant
GR/R67743/01) projects. Thanks to Jens-S. Voeckler for
his support for the VDT system. The Protein Compressibil-
ity Experiment is part of on ongoing investigation into the
complexity of evolved sequences by Stefan Artmann and
one the authors (KPZ).

References

[1] P. Buneman, S. Khanna, K.Tajima, and W. Tan. Archiving
scientific data. In Proc. of the 2002 ACM SIGMOD Inter-
national Conference on Management of Data, pages 1–12.
ACM Press, 2002.

[2] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage
of view data in a warehousing environment. ACM Trans.
Database Syst., 25(2):179–227, 2000.

[3] R. Figueiredo, P. Dinda, and J. Fortes. A case for grid
computing on virtual machines. In Proceedings of the 23rd
Internatinal Conference on Distributed Computing Systems
(ICDCS 2003), 2003.

[4] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufman Publishers,
1998.

[5] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A
virtual data system for representing, querying and automating
data derivation. In Proceedings of the 14th Conference on
Scientific and Statistical Database Management, Edinburgh,
Scotland, July 2002.

[6] M. Greenwood, C. Goble, R. Stevens, J. Zhao, M. Addis,
D. Marvin, L. Moreau, and T. Oinn. Provenance of e-science
experiments - experience from bioinformatics. In Proceed-
ings of the UK OST e-Science second All Hands Meeting
2003 (AHM’03), pages 223–226, Nottingham, UK, Sept.
2003.

[7] P. Groth, M. Luck, and L. Moreau. A protocol for record-
ing provenance in service-oriented grids. In Proceedings of
the 8th International Conference on Principles of Distributed
Systems (OPODIS’04), Grenoble, France, Dec. 2004.

[8] K. Keahey, K. Doering, and I. Foster. From sandbox to play-
ground: Dynamic virtual environments in the grid. In Pro-
ceedings of the 5th International Workshop in Grid Comput-
ing (Grid 2004),, Pittsburgh, PA, Nov. 2004.

[9] K. Lanctot, M. Li, and E. h. Yang. Estimating dna se-
quence entropy. In Proceedings of the Eleventh Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 409–418,
San Francisco, California, Jan. 9–11, 2000. ACM.

[10] D. Lanter. Design of a lineage-based meta-data base for
gis. Cartography and Geographic Information Systems,
18(4):255–261, 1991.

[11] S. Miles, P. Groth, M. Branco, and L. Moreau. The require-
ments of recording and using provenance in e-science exper-
iments. Technical report, University of Southampton, 2005.

[12] S. Miles, J. Papay, T. Payne, M. Luck, and L. Moreau. To-
wards a protocol for the attachment of metadata to service
descriptions and its use in semantic discovery. Scientific Pro-
gramming, pages 201–211, 2005.

[13] C. Nevill-Manning and I. Witten. Protein is incompressible.
In J. Storer and M. Cohn, editors, Proc. Data Compression
Conference, pages 257–266, Los Alamitos, CA, 1999. IEEE
Press.

[14] G. Sampath. A block coding method that leads to sig-
nificantly lower entropy values for the proteins and cod-
ing sections of haemophilus influenzae. In Proceedings of
the Computational Systems Bioinformatics (CSB’03). IEEE
Computer Society, 2003.

