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The statistically independent parent distribution of wind speeds derived by run-of-wind resampling 

Nicholas Cook, Consultant, RWDI 

Wind speeds sampled on an hourly, or 3-hourly basis are strongly correlated between adjacent observations. Harris [1] 

shows that this serial correlation has an integral time scale of T = 22.1 h at Boscombe Down, UK.  It is often assumed that 

observations separated by more than 3T are statistically independent. This is the approach used by Simiu & Heckert [2] 

who used 4-day extremes to deduce the distribution of annual maxima.  The 1982 Method of Independent Storms (MIS) 

[3] identifies individual synoptic events, or “storms”, and extracts the maximum wind speed from each. When the events 

are statistically independent, the distribution of annual maxima, Φ, is related to the distribution of storm maxima, PS, by 

the fundamental statistical relationship: Φ =PS 
r
, where r is the annual rate of events. It is often claimed that the 

distribution of annual maxima can be derived from the distribution of the correlated hourly parent, P, above some 

suitable threshold using the annual rate of independent events, ri, which is less than the rate of all events. But ri will be a 

constant only when the degree of correlation is the same for all wind speeds, otherwise ri will be wind-speed dependent. 
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Figure 1. Method of independent storms operating with 22 h constant time scale filter 

Figure 1 shows eight days of mean wind speeds from Boscombe Down using T = 22.1 h, the value for the integral time 

scale found by Harris [1].  An autoregressive digital filter of the form: yn = (1-a) xn + a yn-1 is used. This is analogous to a 

single-pole R-C filter for a = exp(-2π∆t/T), where ∆t is the time between samples (1 h) and T is the time constant of the 

filter. Applying this filter six times, alternatively forwards and backwards though the data, gives a sharp low pass filter 

with no phase lags. The thin line is the hourly mean data and the thicker curve is the filtered data.  The diamond symbols 

mark the minima of the filtered data which the method uses to denote the start of a new “storm”. The circle symbols 

show the “storm” maxima. Note that here, and elsewhere in the paper, Q = 1 – P, is the probability of exceedence. 
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Figure 2. CDF of n-day maxima on Weibull axes. Figure 3. CDF of time between storm maxima  

When MIS is used to replicate the Simiu and Heckert [2] n-day maxima, we find that n ≈ 2T because there must be a 

minimum between each maximum. Figure 2 shows the CDFs for the hourly parent and the n-day maxima plotted on 

Weibull axes – the hourly parent is a good fit to shape factor w = 1.73, and the n-day maxima diverge progressively 

towards the FT1 asymptote.  Figure 3 shows the corresponding CDFs of time between storm maxima plotted on axes that 

give a straight line with slope T for a Poisson process.  The distributions are curved, indicating the time scale is not 

constant and n-day maxima of wind speeds do not conform to a Poisson process. 
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Figure 4. Ratio r = n/4.04 for each wind 

speed 

 When n-day maxima are independent, the 

CDFs for different n are related by : P2 = P1
r
 

where r = n2/n1, i.e. by the ratio of their 

epochs. Using the 4-day maxima as datum,  

Figure 4 shows the values of r for each 

integer wind speed in the observed range at 

Boscombe Down. It is apparent that r is not 

constant for the hourly parent and that the 

serial correlation between hourly 

observations is stronger at lower wind 

speeds.  For statistical independence, the 

values for each of the n-day maxima should be constant and be a factor of ~2 apart. Instead, the values converge together 

at lower wind speeds, indicating a residual statistical dependence remains in the n-day maxima. 

An important finding from Harris’ study [1] is that the Macrometeorological spectrum of wind speeds exhibits a −5/3 

power law decay range in the same manner as the Micrometeorological spectrum and rough-wall boundary layers, which 

are length-scale dependent.  This implies that the Macrometeorological spectrum is also length scale dependent and that 

the observed wind speed dependence of r is caused by the same correlated “patch” of wind being sampled more 

frequently when it is advected past the observer at low wind speeds than at high wind speeds. It follows that serial 

correlation may be equalised through the wind speed range by resampling the observations at equal intervals of run-of-

wind.  A fixed time constant T gives a fixed coefficient a in the recursive filter – but varying the value of T in inverse 

proportion to the wind speed gives a value a corresponding to a fixed run-of-wind. Figure 5 shows the same eight days of 

wind speeds as Figure 1, but filtered at a fixed run-of-wind that corresponds to a 22h period at the overall mean wind 

speed. The constant run-of-wind results in filtered data that have flatter, U-shaped minima and sharper maxima. This also 

gives storm maxima which are 4 days apart, on average, but is seen to produce fewer maxima at low wind speeds and 

more maxima at higher wind speeds.  
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Figure 5. Method of independent storms operating with 22-h average constant run-of-wind filter 
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Figure 6. CDF of ROW maxima on Weibull axes. Figure 7. CDF of time between ROW maxima  
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Figure 6 shows the CDFs of the hourly parent and n-day run-of-wind maxima on Weibull axes, corresponding to Figure 2.  

By reducing the serial correlation at low wind speeds, the ROW resampled n-day maxima diverge towards the FT1 

asymptote more quickly. The additional curve, marked “ROW” is the corresponding ROW parent CDF of wind speeds, 

derived later.  Figure 7 shows the CDF of time between ROW maxima on Poisson axes, corresponding to Figure 3 – the 

distributions are straightened, indicating that a consistent time scale has been obtained.   

Figure 8. Ratio r = n/3.81 for each wind 

speed, run-of-wind resampled 

Figure 8 shows value of r for each integer 

wind speed, corresponding to Figure 4 after 

run-of-wind resampling. There are small 

differences in the equivalent values of n, 

here based on the overall mean wind speed. 

For the n-day maxima, r is much more 

consistent within the expected experimental 

variation, and no longer converges at low 

wind speeds. Values for the hourly parent 

are the same as Figure 4, except normalised 

by the new datum n = 3.81.  The additional 

set of data, marked “ROW”, are the values for the ROW parent mean wind speeds, described later. Note that these values 

lie horizontal and parallel to the values for the n-day maxima, as is required if statistically independent.    

Serial correlation in the hourly parent contributes too many observations at lower wind speeds, compared with higher 

wind speeds, in the frequency table for the integer wind speed ranges.  This is corrected by factoring the count in each 

wind speed bin by V/L, where V is the wind speed of the bin and L is the desired run-of-wind.  For example: if the wind 

speed is V = 10 kt and the run of wind is L = 100 NM, the same run of wind is sampled 10 times by hourly data, so the 

count must be factored by 10/100 = 0.1 for each run-of-wind to contribute just once. The parent distribution of 

statistically independent wind speeds is therefore obtained by posing the question “what run-of-wind is required to 

relate the CDF of this parent to the CDF of the datum n-day maxima using a single constant value of r?”  A good starting 

point for L is given by the product of the overall mean wind seed and Harris’ value for the integral time scale: for 

Boscombe Down V = 9.3 kt and T = 22.1 h, giving L = 205 NM.  The optimum value of L was obtained by minimising the 

error in ln (-ln(Q)), i.e. in the fit on Weibull axes, using the Excel “Solver” non-linear optimiser. For Boscombe Down, this 

yields L = 143.8 NM, corresponding to an annual rate of independent events ri = 572.  The “ROW” data in Figures 6 and 8 

are the results of this optimisation. 

Figure 9.  The parent distribution of 

statistically dependent wind speeds for 

Boscombe Down, UK, on Weibull axes 

Figure 9 shows the CFD of this “ROW” 

parent plotted on standard Weibull axes, 

with the hourly parent for comparison. The 

ROW data exhibit more of a curve than 

does the hourly parent. The corresponding 

straight-line fit gives Weibull parameters w 

= 1.97 and C = 13.6 kt. 

Cook and Harris [4] previously found that 

the observations for Boscombe Down 

fitted a disjoint Weibull model when the wind speeds has been separated synoptically into cyclonic and anti-cyclonic sets 

using the Jenkinson-Lamb index of weather types.   Here the disjoint fit was made without prior separation and is shown 

by the solid line curve in Figure 9, corresponding to the parameters in Table 1, below.  Mechanism 1 is dominant in the 

upper tail and the values correspond well with the previous analysis of the cyclonic component [4].  Mechanism 2 is 
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dominant in the lower tail, provides the curve in the body of the distribution, and acts as a guarding degree of freedom in 

the fit for Mechanism 1.   

Table 1. Weibull parameters for disjoint fit to statistically independent parent wind speeds at Boscombe Down 

Parameter Mechanism 1 (Cyclonic) Mechanism 2 (Anti-cyclonic) 

Disjoint frequency, f 0.229 0.771 

Shape parameter, w 2.00 2.35 

Scale parameter, C 15.59 kt 13.46 kt 

Annual rate, r 131.1 440.8 

 

The relevance of the parent distribution of statistically independent wind speeds is that it permits the direct estimation of 

extremes, including the distribution of annual maxima, without recourse to any extreme value theory, because the 

annual rate of each mechanism is known.  The fundamental relationship Φ =P 
r
 can be used directly, or else the Poisson 

model is appropriate, Φ = exp(-rQ), because the rate parameter is large. Figure 10 shows the CDF of the annual maximum 

mean wind speed for Boscombe Down, comparing the observations with the two Weibull fits.   
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Figure 10.  CDF of annual maximum wind speed for Boscombe Down directly from the statistically independent parent 
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