
ADVANCED DESIGN AND VERIFICATION ENVIRONMENT  
FOR CYBER-PHYSICAL SYSTEM ENGINEERING 
www.adv ance-ict .eu  

 

  

 

DELIVERABLE D1.2 – WORK PACKAGE 1 

PROOF OF CONCEPT APPLICATION IN 

RAILWAY DOMAIN 
ADVANCE  
 

 

Grant Agreement: 287563 

Date: March 21
st
 2013 

Author: 

 

 

 

Pages: 

 

Fernando Mejia, Alstom; Damien Ledoux, Systerel 

31 

 
Status: 

 

Final version 

Reviewer: 

 

Michael Butler, University of Southampton 

 Reference: 

 

D1.2 

 Issue: 2 

Partners / Clients: 

 

  

FP7 Framework Programme European Union 

Consortium Members: 

 

 
 

 
  

University of 

Southampton 

Critical Software 

Technologies 
Alstom Transport Systerel 

Heinrich Heine 

Universität Düsseldorf 



ADVANCE  − 2 − 

Work Package: 1 − Deliverable: D1.2  03/21/12 

Contents 

1. Introduction ............................................................................................................................3 

2. Interlocking Dynamic Controller ..............................................................................................3 

3. Requirements Definition .........................................................................................................4 

3.1 ADVANCE Concepts or Tools Applied ...................................................................................4 

3.2 Feedback on Requirements Definition .................................................................................4 

4. Modelling and Animation ........................................................................................................8 

4.1 ADVANCE Concepts or Tools Applied ...................................................................................8 

4.2 Feedback on Modelling and Animation ................................................................................9 

4.2.1 Event-B Modelling ........................................................................................................9 

4.2.2 Animation with ProB ................................................................................................... 13 

5. Transition from Event-B to B ................................................................................................. 17 

5.1 ADVANCE Concepts or Tools Applied ................................................................................. 17 

5.2 Feedback on Transition from Event-B to B ......................................................................... 17 

6. Feedback on ADVANCE Tools................................................................................................. 18 

7. Future Work in WP1 .............................................................................................................. 19 

7.1 Safety Analysis ................................................................................................................... 19 

7.2 Refinement Plan ................................................................................................................ 20 

8. References ............................................................................................................................ 20 



ADVANCE  − 3 − 

Work Package: 1 − Deliverable: D1.2  03/21/12 

1. Introduction 

This deliverable reports on the proof of concept application of ADVANCE methods and tools to the 

railway domain case study.  The objective of the proof of concept phase of WP1 was twofold: 

 to assess the suitability of Event-B for modelling and verifying of system-level safety 

properties of a generic railway interlocking system; 

 to assess the existing ADVANCE tools for their suitability and to identify gaps in the existing 

tools. 

In summary, as elaborated in this deliverable, our conclusion from the proof of concept phase is that 

Event-B is suited to modelling and verification of system-level safety properties of a generic railway 

interlocking system.  The existing Rodin-based ADVANCE tools provide good support for modelling 

and verification of system-level safety properties but, through the proof of concept work, we 

identified some gaps in the tool chain leading.  These tooling requirements are outlined and are 

being addressed by WP3-WP5 of ADVANCE. 

The full development of the railway domain case study has been decomposed in five tasks: 

1. Requirements definition 

2. Modelling and animation 

3. Refinement plan 

4. Safety analysis 

5. Transition from Event-B to B  

In the proof of concept phase we focused on the first two steps but also draw some initial 

observations about the remaining tasks.   

The deliverable is organised as follows. The second section of the deliverable presents briefly the 

object of the case study, the interlocking dynamic controller. The remaining sections of the 

deliverable present the previously mentioned tasks: its purpose, its inputs and outputs, the relevant 

ADVANCE methods and tools applied to achieve it and, for those tasks that have been carried out, 

the feedback of the application of those methods and tools. 

2. Interlocking Dynamic Controller 

Although interlocking systems have been designed to meet the system safety requirements (i.e. no 

collision of trains, no injury of passengers or maintenance staff), it is very difficult, if not impossible in 

many cases, to prove formally that they effectively do it because this results from the execution of 

independent basic actions whose effect on the system is hard to formalise. 

To overcome this situation we propose to create a new interlocking component, less complex than 

the interlocking system itself, whose purpose is explicitly to ensure that safety requirements are met. 

This new component, called an interlocking dynamic controller, will ensure that the interlocking 

system manages safely the critical trackside signalling equipment (e.g. points, signals, emergency 

stop plunger, etc.) according to the current state of trackside equipment, the movement of trains 

and the supervision system’s commands. In other words, the dynamic controller system will check 

that the interlocking system commands do not create a dangerous situation in which trains may 

collide or injure passengers or maintenance staff. 



ADVANCE  − 4 − 

Work Package: 1 − Deliverable: D1.2  03/21/12 

3. Requirements Definition 

As said above, our intention is to develop a dynamic controller of an interlocking guaranteeing 

explicitly the system’s safety requirements regardless of the internal behaviour of the interlocking 

system. We shall thus analyse the behaviour of the dynamic controller at the system level, 

interacting with an interlocking system seen as a black box and with an “environment”, that is to say 

the rest of the signalling system: trains, points, signals, supervision system and so on. 

In this context, requirements definition consists in expressing and allocating the requirements to be 

met by the dynamic controller and the requirements on the interlocking system and on the 

environment on which the dynamic controller relies.  

The inputs of this task are the signalling system specification, the signalling system requirements and 

the interlocking system specification. 

The output of this task is the requirements document for the interlocking dynamic controller. This 

document will also include the simplifying assumptions for the case study.  

3.1 ADVANCE Concepts or Tools Applied 

Requirements will be the reference for modelling the properties of data and events of the Event-B 

models of the overall signalling system. Therefore, requirements must be precise, concise and 

expressed at the right level of abstraction. With this purpose in mind we shall define precisely a 

reduced set of concepts with which we shall express requirements rigorously. 

Requirements will neither be arranged nor structured in the requirements document. This will be 

done later, in the subsequent tasks. 

We shall represent the allocation of a requirement to a particular part of the system by a unique tag 

next to the text of the requirement. For instance the requirement below is the first requirement 

allocated to the environment: 

 

 

Requirements and requirements traceability will be managed with the ProR tool developed by the 

University of Düsseldorf [2]. 

3.2 Feedback on Requirements Definition 

As said before, the purpose of this task is to provide the various requirements to be met by the 

components of the system. For this, we must express our needs and its associated constraints. 

It is difficult to write such a document because we do not know what are the concepts that we shall 

have to handle and the constraints that we shall have to express. The aim is to have the least 

concepts and constraints in our specification. Indeed, having the fewest concepts possible while still 

representing the safety requirements adequately is important because the concepts will eventually 

be used in our Event-B model. Moreover, if the model is overly complicated, verification will also be 

difficult. Finally, having the fewest constraints possible is very important; all these constraints must 

be validated, and it is very easy to introduce excessive constraints that do not comply with the actual 

A track network may contain some track 

circuits, points and signals. 
ENV-1 



ADVANCE  − 5 − 

Work Package: 1 − Deliverable: D1.2  03/21/12 

world. For example, in our context, we can introduce a constraint which indicates a train does not 

pass a red signal, but this is false because a train may pass a red signal if it has not the necessary 

distance to stop in front of the signal. This is explained in more detail in the document found in the 

appendix. 

Before writing this document, we have decided to make a preliminary Event-B model to identify the 

different concepts that we shall have to handle (cf. section §4). More specifically, we have taken the 

document describing the hazard tree established by Alstom. This document contains various hazard 

events of system. 

Next, we have selected the main safety properties which our system must meet. These properties 

are: 

 Trains must not derail 

 Trains must not collide into each other 

From these properties, we have tried to express them formally. For that, we had to introduce the 

concept of train, but a train circulates on a path that is composed of points. Moreover, a train is 

allowed to move according to the signal aspect. All these concepts once introduced have begun to 

establish a preliminary Event-B model. Naturally, we had to introduce constraints on the system, for 

example a train cannot split while on track, a train cannot enter or leave in the middle of the track. 

Furthermore, the proof and the animation have allowed us to improve definitions and refine our 

constraints. 

With this preliminary model, we had a better idea of the concepts and constraints that we shall 

manipulate and therefore to introduce into our specification. 

When writing the requirement document, we have decided to use the same format as that defined 

by the example "train system" in [1]. Indeed, we have described our system and our needs and we 

have emphasized the various requirements expressed. This manner allows a quick reading of the 

various requirements. Moreover, the writing of this document, has led us to reflect on the perimeter 

that we would give to our case study. Indeed, we must be careful not to add features that would be 

useless or not bringing new challenges to existing functionality. 

The first draft of the requirement document manipulated trains with and without driver and all the 

complexity it brings. After some consideration, we have decided to treat only driverless trains, 

because these are the trains that will be most common in the future. Indeed, the trains with drivers 

bring complexity in the model that should not be present at this time. The aim of our case study is to 

test the feasibility of our approach. We must be limited to essential features and see if they can 

already satisfy our case study. By considering only driverless trains, this allowed us to simplify the 

management of signals and the signal approach locking areas. Indeed, this information is different 

than it is for a train with or without driver. 

Moreover, we wanted to check that the points were correctly positioned according to the routes 

defined by the technical plan. But, we did not want to handle the route concept in the requirement 

document. So, we identified a property that seemed interesting to treat and will force us to check 

the point position. Indeed, we wanted to check that no collision between a train and a system 

structure occurs. Specifically, a train can collide with the railway tunnel wall when the points are not 



ADVANCE  − 6 − 

Work Package: 1 − Deliverable: D1.2  03/21/12 

correctly positioned, as illustrated in the figure below. In this example, there are two points. These 

points must respect the following positions to prevent an accident: 

 Point “pt1” to the right and point “pt2” to the left 

 Point “pt1” to the left and point “pt2” to the left 

 Point “pt1” to the right and point “pt2” to the right 

In our case, the point “pt1” is positioned to the left and the point “pt2” is positioned to the right. If 

the points are close and the train car is long enough then the train can collide with the railway tunnel 

wall. 

 

This property has been discarded because it is not considered essential, and it is not the 

responsibility of the interlocking. Indeed, this problem should be checked when building tracks and 

installing rails. This means that a track layout like this should never be built. 

Similarly, the property of the rear-end collision has not been retained in our proof of concept case 

study. Indeed, we assume that a rear-end collision does not occur, as illustrated in the figure below. 

We have decided to treat only driverless trains, so in this case rear-end collisions are prevented 

automatically by another subsystem (automatic train control). This risk does not exist in our context. 

 

Nevertheless, one property has been added, which concerns trap points. This property comes from 

Alstom‘s hazard analysis. This property is considered of second order since it avoids a collision if a 

train inadvertently passed a signal leading to the mainline, as illustrated in the figure below. Indeed, 

in our example, the train T2 passed the red signal, and it is stopped. If the train T1 moves forward, 

there will be a fouling collision. A fouling collision takes place when tracks are so close physically that 

if there was a train on both, then a collision would occur (indicated by the double lines). Therefore, if 

the point "pt1" was positioned to the right, the train T2 would not be in the fouling area and no risk 

would be present. 



ADVANCE  − 7 − 

Work Package: 1 − Deliverable: D1.2  03/21/12 

 

Furthermore, consideration of trailable points has not been retained. Indeed, these points can 

change position during the passage of a train, as illustrated in the figure below. In this example, the 

point is right before train passage, and then train changes the position of the point to the left. 

 

This type of point is not in accordance with the requirement which indicates that a train cannot move 

a point. We have decided not to consider these points because the test track does not have these 

points. Indeed, before starting our case study, Alstom has chosen a test track "Parc des Expositions" 

in Paris. This track will allow us to test our approach and verify its feasibility on a concrete example. 

Finally, during our rereading, we have also identified features that could complicate the model. For 

these, we have decided to introduce them later. These features are:  

 The stabling tracks. They allow trains to park after the service for example. The difficulty is 

when a train has to resume service. It is useful to treat this feature because it will allow us to 

observe the transition from a degraded to a nominal mode. 

 Cancellations areas and cancellations of point position control. They can unlock the system 

when a sensor is defective. Indeed, safety ensures that if a track circuit sensor fails the track 

circuit is seen as occupied or when a point position sensor fails the point is not seen as 

positioned. In these cases, the system can deadlock. Therefore, cancellations have been 

added to bypass sensor failures. They involve agents who ensure that no-risk is possible. 

As we mentioned above, requirements will be represented in the B model with varying degrees of 

ease. Indeed, a requirement could be expressed directly by an invariant, by an event guard, by an 

axiom, by many events, etc... It is important to check that all requirements defined in the document 

are accurately defined in the model. For this, we must establish traceability between the model and 

requirements document. To facilitate this, it would be interesting to use ProR [2], which seems to 

help this activity. 

It is important to note that the requirements document was written quite easily because Alstom and 

Systerel have significant experience in railway signaling and especially on interlocking. Therefore, our 



ADVANCE  − 8 − 

Work Package: 1 − Deliverable: D1.2  03/21/12 

experiments allowed us to directly manipulate the most important concepts. Nevertheless, each 

system has these features, so we lean on the principles defined by the interlocking product. 

Writing such a document is essential. Indeed, it helps to clarify ideas and to delimit the system 

perimeter. Moreover, we know beforehand that the requirement document will be changed because 

some requirements must be added or the description of some concepts refined. Finally, we were 

careful not to over-constrain the system by not explaining how we would realize our dynamic 

controller. The purpose was not to give a solution but to express our need. 

4. Modelling and Animation 

The development of a preliminary model, in parallel with the requirements definition task, will help 

us to identify the appropriate concepts for the definition of requirements and to find best ways to 

model the dynamic controller. Moreover, it will allow us also to manipulate Event-B and the tools 

promoted by ADVANCE: Rodin and its plug-ins that we shall use to create and prove the preliminary 

Event-B model and ProB that we shall use to analyse the dynamic behaviour of the model. 

The inputs of the task are the requirements documents and the refinement plan. 

The outputs of the task are the Event-B models of the signalling system and the feedback on this 

task. 

4.1 ADVANCE Concepts or Tools Applied 

Relevance, provability, readability, maintainability and traceability are the criteria that determine the 

quality of a formal model. 

A model is relevant if its behaviour meets the user needs in all operational situations. Relevance is 

obtained notably by the possibility of analysing statically and dynamically the behaviour of the model 

in different operational situations. 

A model is provable if it can be proved formally and completely at a reasonable cost. Provability 

depends very much on the concepts chosen to describe the system and on the simplicity of their 

formalisation. Relevance and provability ensure the appropriateness and the correctness of the 

model regarding the requirements of the system. 

Readability facilitates the understanding and the analysis of the model by peers. Like provability, 

readability depends on the concepts chosen to describe the system and on the simplicity of their 

formalisation. 

Maintainability reduces as much as possible the impact of the modification of one part of the model 

on the other parts of the model. Modularity of the model is critical for its maintainability. 

Traceability means that every feature of the system can be related to pieces of the model and that 

every piece of the model can be related with a feature of the system. At the first step of 

development traceability depends on the concordance between the concepts used to describe the 

system informally and the concepts used to describe the system formally. At later steps of 

development, traceability is ensured by formal refinement.  



ADVANCE  − 9 − 

Work Package: 1 − Deliverable: D1.2  03/21/12 

4.2 Feedback on Modelling and Animation 

4.2.1 Event-B Modelling 

As said in the previous section, we have developed a preliminary model to put us in context and to 

manipulate ADVANCE tools (ie. Rodin, its plug-ins and ProB). This phase has been important because 

it allowed us to see the main concepts that we had to handle in our model. This was very helpful 

when writing the requirements document. Indeed, it helped us to avoid introducing unnecessary 

concepts. 

Initially, we were inspired by the example "train system" in [1]. In particular, the approach to 

separate the front and rear of the train during his progress is interesting because it helps to have a 

model with an indefinite train length and to simplify the train movement. 

Moreover, this model has allowed us to introduce a set of hypotheses which were reused in the 

requirements document.  

To finish, we have also expressed safety properties in the model and we realized they were 

complicated to read and prove with the Rodin tool, as illustrated by the property below. This 

property checks that the points are correctly positioned under and ahead of the train to the next 

signal. 

 

We have decided to use the Theory plug-in of Rodin to introduce new mathematical operators 

allowing us to simplify the expression of this property and its proof. 

For modelling, we were realized that a train corresponded to a chain moving on a track network. So 

we decided to create new mathematical operators to manipulate chains on a graph. Indeed, a track 

network can be represented by a graph. For this, we have used the definition of a chain proposed in 

the chapter "Finite Lists" from [1]. Moreover, we have defined several operators to manipulate these 

chains and thus to move the trains. 

∀tr·(tr∈ dom(v_trains) ⇒ 
(∀tr_p·(tr_p ∈ t_block×t_traffic_direction ∧ 

  tr_p ∈ v_trains(tr) ⇒ 
  (∃nn,track·(nn ∈ ℕ1 ∧ 

   track ∈ ((1 ‥ nn) → (t_block × t_traffic_direction)) ∧ 

   track ≠ ∅ ∧ 
   track(1) = tr_p ∧ 

   (∀ii·(ii ∈ 1‥card(dom(track))−1 ⇒ (track(ii) ∈ dom(v_next_block)))) ∧ 

   (∀ii·(ii ∈ 1‥card(dom(track))−1 ⇒ (v_next_block(track(ii)) = track(ii+1)))) ∧ 

   (track(nn) ∈ dom(v_next_block) ⇒  
                      (track(nn)↦v_next_block(track(nn))) ∈ ran((c_upstream_block_of_signal⊗ 
                                                                                                                                                                                          

c_downstream_block_of_signal))) ∧ 
   (track(nn) ∈ dom(v_next_block) ⇒  
                      (v_trains_status(tr)((c_upstream_block_of_signal⊗ 
                                              c_downstream_block_of_signal)∼ 
                                                                                                                            (track(nn)↦v_next_block(track(nn))))=c_train_stop)) 

∧ 
   (track(nn) ∉ dom(v_next_block) ⇒ track(nn) ∈ c_extremity_blocks) 
  ))))) 



ADVANCE  − 10 − 

Work Package: 1 − Deliverable: D1.2  03/21/12 

The main improvement of the model has been to use the Theory plug-in. Indeed, it allows us to 

express the operators, theorems, rules, allowing us to simplify the model and proof. 

We have decided to model trains by chains and we have introduced operations to manipulate these 

chains. They allow us to move forward or backward a train, making a turnaround. These operations 

were thereafter used in the model, making it much more readable. Moreover, rules have been added 

for performing the proof of our model. They allow us to guarantee that each operation maintains the 

chain characteristics. This means that a train is always a train.  

These new operators have allowed us to express our properties differently. Indeed, now we check 

that all trains correspond to a chain on dynamic network, as illustrated by the property below. If this 

is true, this means that the points are correctly positioned under the train. This property replaces the 

previous one.  

 

During the rewriting of the model with the new operators we have abstracted concepts to try to 

keep handling of them to a minimum. The aim is to have the simplest possible model. For example, 

we merged the risk of fouling collision and face-to-face collision in the same property. 

Initially, we defined the risk of face-to-face with the following property. We check that two different 

trains do not intersect. This means in our case, that there is no collision between two trains. Note 

that the rear-end collision can also be verified by this property. However, we are in a context with 

driverless trains. Therefore, the construction of our model is that there will be never a rear-end 

collision. 

 

This property ensures against the risk of face to face, like illustrated by the figure below: 

 

Furthermore, another property modelling the risk of fouling collision had been defined as below. We 

check that two different trains do not intersect in a fooling area. 

 

This property is illustrated by the figure below : 

ADVANCE  − 10 − 

Work Package: 1 − Deliverable: D1.2  20/08/12 

driverless trains. Therefore, the construction of our model is that there will be never a rear-end 

collision. 

 

This property ensures against the risk of face to face, like illustrated by the figure below: 

 

Furthermore, another property modelling the risk of fouling collision had been defined as below. We 

check that two different trains do not intersect in a fooling area. 

 

This property is illustrated by the figure below : 

 

These two properties have been merged into a single property that corresponds to the 

incompatibility between the blocks, as defined by the property below. We check that two different 

trains do not intersect in an incompatible area. This area includes the fooling area and the face to 

face area.  

 

As you can see, the Theory plug-in has allowed us to simplify the modelling by introducing new 

operators. The advantage of using this plug-in is that we are able to express rules or theorems on 

these new operators which will be applied during the proofs. Therefore, the proof will be simplified. 

While we realize that we have several times the same goal, it is interesting to add a rule that we shall 

prove independently and apply it thereafter to discharge the goal. A rule is defined by hypotheses 

∀tr1, tr2· (tr1 ∈ dom(v_trains) ∧ tr2 ∈ dom(v_trains) ∖ {tr1} 
            ⇒  
             (v_trains(tr1)  ∩

 

 v_

t

rains(tr2))  =   ∅) 

∀tr1, tr2· (tr1 ∈ dom(v_trains) ∧ tr2 ∈ dom(v_trains) ∖ {tr1} 
            ⇒ 
             ((dom(v_trains(tr1))×dom(v_trains(tr2)))  ∩

 

 c_

f

ouling_blocks)  =   ∅) 

∀tr1, tr2· (tr1 ∈ dom(v_trains) ∧ tr2 ∈ dom(v_trains) ∖ {tr1} 
  ⇒ 
  ((get_blocks(v_trains(tr1)) × 
  get_blocks(v_trains(tr2)))  ∩

 

 c_

i

ncompatible_blocks)  =   ∅) 

ADVANCE  − 10 − 

Work Package: 1 − Deliverable: D1.2  20/08/12 

driverless trains. Therefore, the construction of our model is that there will be never a rear-end 

collision. 

 

This property ensures against the risk of face to face, like illustrated by the figure below: 

 

Furthermore, another property modelling the risk of fouling collision had been defined as below. We 

check that two different trains do not intersect in a fooling area. 

 

This property is illustrated by the figure below : 

 

These two properties have been merged into a single property that corresponds to the 

incompatibility between the blocks, as defined by the property below. We check that two different 

trains do not intersect in an incompatible area. This area includes the fooling area and the face to 

face area.  

 

As you can see, the Theory plug-in has allowed us to simplify the modelling by introducing new 

operators. The advantage of using this plug-in is that we are able to express rules or theorems on 

these new operators which will be applied during the proofs. Therefore, the proof will be simplified. 

While we realize that we have several times the same goal, it is interesting to add a rule that we shall 

prove independently and apply it thereafter to discharge the goal. A rule is defined by hypotheses 

∀tr1, tr2· (tr1 ∈ dom(v_trains) ∧ tr2 ∈ dom(v_trains) ∖ {tr1} 
            ⇒  
             (v_trains(tr1)  ∩

 

 v_

t

rains(tr2))  =   ∅) 

∀tr1, tr2· (tr1 ∈ dom(v_trains) ∧ tr2 ∈ dom(v_trains) ∖ {tr1} 
            ⇒ 
             ((dom(v_trains(tr1))×dom(v_trains(tr2)))  ∩

 

 c_

f

ouling_blocks)  =   ∅) 

∀tr1, tr2· (tr1 ∈ dom(v_trains) ∧ tr2 ∈ dom(v_trains) ∖ {tr1} 
  ⇒ 
  ((get_blocks(v_trains(tr1)) × 
  get_blocks(v_trains(tr2)))  ∩

 

 c_

i

ncompatible_blocks)  =   ∅) 

v_trains ∈ t_train ⇸ chain_on_graph(v_next_block) 



ADVANCE  − 11 − 

Work Package: 1 − Deliverable: D1.2  03/21/12 

 

These two properties have been merged into a single property that corresponds to the 

incompatibility between the blocks, as defined by the property below. We check that two different 

trains do not intersect in an incompatible area. This area includes the fooling area and the face to 

face area.  

 

As can be seen, the Theory plug-in has allowed us to simplify the modelling by introducing new 

operators. The advantage of using this plug-in is that we are able to express rules or theorems on 

these new operators which will be applied during the proofs. Therefore, the proof will be simplified. 

While we realize that we have several times the same goal, it is interesting to add a rule that we shall 

prove independently and apply it thereafter to discharge the goal. A rule is defined by hypotheses 

and by a goal. These rules handle meta-variables that will be replaced automatically during the proof 

according to context.  

Nevertheless, we have been faced with two main problems.  

The first concerns the management of new operators defined in a theory by the Atelier B [4] proof 

plug-in for Rodin. Indeed, these engines are considered as the most effective and can discharge a 

large number of proof obligations. When sending the proof obligation to the engine, the hypotheses 

involving new operators will be translated by "TRUE" and if the goal involves a new operator, it will 

be translated by "FALSE". This translation may result in that proof obligation not being proved.  

Therefore, the plug-in did not simplify the level of automation in the proof activity. It is important to 

note that work is underway to improve this aspect. We shall illustrate this problem by the example 

below: 

We have a proof obligation that manipulates a new operator “Operation”. 

 

ADVANCE  − 10 − 

Work Package: 1 − Deliverable: D1.2  20/08/12 

driverless trains. Therefore, the construction of our model is that there will be never a rear-end 

collision. 

 

This property ensures against the risk of face to face, like illustrated by the figure below: 

 

Furthermore, another property modelling the risk of fouling collision had been defined as below. We 

check that two different trains do not intersect in a fooling area. 

 

This property is illustrated by the figure below : 

 

These two properties have been merged into a single property that corresponds to the 

incompatibility between the blocks, as defined by the property below. We check that two different 

trains do not intersect in an incompatible area. This area includes the fooling area and the face to 

face area.  

 

As you can see, the Theory plug-in has allowed us to simplify the modelling by introducing new 

operators. The advantage of using this plug-in is that we are able to express rules or theorems on 

these new operators which will be applied during the proofs. Therefore, the proof will be simplified. 

While we realize that we have several times the same goal, it is interesting to add a rule that we shall 

prove independently and apply it thereafter to discharge the goal. A rule is defined by hypotheses 

∀tr1, tr2· (tr1 ∈ dom(v_trains) ∧ tr2 ∈ dom(v_trains) ∖ {tr1} 
            ⇒  
             (v_trains(tr1)  ∩

 

 v_

t

rains(tr2))  =   ∅) 

∀tr1, tr2· (tr1 ∈ dom(v_trains) ∧ tr2 ∈ dom(v_trains) ∖ {tr1} 
            ⇒ 
             ((dom(v_trains(tr1))×dom(v_trains(tr2)))  ∩

 

 c_

f

ouling_blocks)  =   ∅) 

∀tr1, tr2· (tr1 ∈ dom(v_trains) ∧ tr2 ∈ dom(v_trains) ∖ {tr1} 
  ⇒ 
  ((get_blocks(v_trains(tr1)) × 
  get_blocks(v_trains(tr2)))  ∩

 

 c_

i

ncompatible_blocks)  =   ∅) 

ADVANCE  − 11 − 

Work Package: 1 − Deliverable: D1.2  20/08/12 

and by a goal. These rules handle meta-variables that will be replaced automatically during the proof 

according to context.  

Nevertheless, we have been faced with two main problems.  

The first concerns the management of new operators defined in a theory by the Atelier B [4] proof 

plug-in for Rodin. Indeed, these engines are considered as the most effective and can discharge a 

large number of proof obligations. When sending the proof obligation to the engine, the hypotheses 

involving new operators will be translated by "TRUE" and if the goal involves a new operator, it will 

be translated by "FALSE". This translation may result in that proof obligation not being proved.  

Therefore, the plug-in did not simplify the level of automation in the proof activity. It is important to 

note that work is underway to improve this aspect. We shall illustrate this problem by the example 

below: 

We have a proof obligation that manipulates a new operator “Operation”. 

 

This proof obligation will be translated before being sent to the proof engine. In our example, our 

proof obligation is translated as follows: 

 

As you can see this proof obligation becomes false. Therefore, this proof obligation will not be 

proven. 

The second problem concerns the rules application. Indeed, when we express a rule, we handle 

meta-variables that will be replaced during the rule application according to context. These meta-

variables are replaced either with the goal or with the hypotheses. Therefore, if a meta-variable is 

handled only in the hypotheses, this rule cannot be applied in backward mode. We shall illustrate 

this problem by the example below. 

We have written the following rule: 

 

During the proof, we have the following context, and we want to apply the above rule. 

Operation(F) ∧ 

F ⊆ G   

⇒   

Operation(G) 

TRUE ∧ 

F ⊆ G   

⇒   

FALSE 

  

F ⊆ G  

⇒   

ran(a ◁ f) ⊆ G 



ADVANCE  − 12 − 

Work Package: 1 − Deliverable: D1.2  03/21/12 

This proof obligation will be translated before being sent to the proof engine. In our example, our 

proof obligation is translated as follows: 

 

As you can see this proof obligation becomes false. Therefore, this proof obligation will not be 

proven. 

The second problem concerns the rules application. Indeed, when we express a rule, we handle 

meta-variables that will be replaced during the rule application according to context. These meta-

variables are replaced either with the goal or with the hypotheses. Therefore, if a meta-variable is 

handled only in the hypotheses, this rule cannot be applied in backward mode. We shall illustrate 

this problem by the example below. 

We have written the following rule: 

 

During the proof, we have the following context, and we want to apply the above rule. 

 

We note that the first hypothesis and the goal of the rule are in the proof context. Therefore, all 

meta-variables can be instantiated. Moreover, the second hypothesis is not present in the proof 

context, it must be proven. For this, a new sub goal must be generated automatically. Currently, the 

rule application does not correctly instantiate meta-variables. Nevertheless, work is underway to 

improve this aspect. With this feature, the rules will be more powerful and proofs will be easier. 

This preliminary model is composed of a context, a machine and a theory. The machine includes 14 

events, the context includes 25 axioms and the theory includes 11 operations, 5 theorems and 7 

rules. This model generates 113 proof obligations, 29 of which are discharged automatically. This low 

rate of automatic proof is related to integration problems of Theory plug-in and with the Atelier B 

proof engines. 

TRUE ∧ 

F ⊆ G   

⇒  

FALSE 

  

F ⊆ G  

⇒  

ran (a ◁ f) ⊆ G 

E ⊆ ℤ 

F = 1 .. x 

f ∈ E ⇸ F 

n ∈ ℕ 

G = 1 .. y 

x ≤ y  

⊢ 

ran ((1..n) ◁ f) ⊆ G 



ADVANCE  − 13 − 

Work Package: 1 − Deliverable: D1.2  03/21/12 

This model has allowed us to test the Theory plug-in and see its possibilities. Moreover, we have 

begun to create new mathematical operators that we shall use during the modeling. Furthermore, 

we have begun to identify the appropriate concepts we shall use in our next model. Finally, it has 

been very helpful to identify the various requirements. 

4.2.2 Animation with ProB 

As said in the section §4.1, to obtain a relevant model it is important to check that its dynamic 

behaviour meets the expected needs. ProB [3] supports doing that check by animation of Event-B 

and B models. So we tried to animate with ProB the Event-B model presented above but we failed 

because this tool does not support yet the Theory facility that authorises to define and instantiate 

generic sets and generic operators on these sets. Evolutions of ProB are underway to support the 

Theory facility.  

Thus we rewrote the Event-B model into a classical B model and generate data representing the 

RER B’s “Parc des Expositions” station near Paris in order to animate this model with ProB. The 

animation of the model disclosed that two axioms were not well defined. However, these two axioms 

do not have a significant impact on the proof. 

We improved this first model and produce a more relevant, realistic, one. The new model 

distinguishes the dynamic controller, the interlocking system and the environment (cf. section §3) 

and takes into account possible failures of trackside equipment and asynchrony between the actual 

state of trackside equipment and the state of the dynamic controller. 

The model of the environment involves invariants formalising the safety requirements presented 

above (cf. section §4.2.1) and events controlling the forward and backward movements of trains 

(with possible sliding and abnormal shunting of track sections), the movements of points, the aspect 

of signals and failure and repair of sensors. The model of the interlocking system only involves events 

corresponding to signal and point commands. The model of the dynamic controller involves the 

events reacting to changes of the state of trackside sensors and to interlocking commands. 

ProB allows the user to display a graphical representation of the state of the animated model. The 

user can therefore visualise graphically the evolution of the state of its model during an animation 

session. The graphical representation is a matrix of graphical icons controlled by the value of the 

state of the model and displayed in a separate window. 

The figure below shows the graphical representation of the state of the complete model and more 

precisely of a particular situation (selected by the person animating the model) at the start-up of the 

system. 

We notice three graphs representing a track involving two mainlines, one crossover made of six 

points allowing trains going from one mainline to the other and extremity route signals. 

The graph at the top represents the actual state of the track. The graph in the middle represents the 

state of the sensors of the track sections and the points. The graph at the bottom represents the 

state of the track as seen by both the dynamic controller and the interlocking system. 



ADVANCE  − 14 − 

Work Package: 1 − Deliverable: D1.2  03/21/12 

 

A point is represented by a single line section followed by two divergent line sections that represent 

the two branches of the point. A light yellow line section indicates that branch is not accessible i.e. 

that the point is not in that position. Thus, an uncontrolled point is represented by a single line 

section followed by two diverging light yellow line sections. A green line section indicates that that 

track section is free. A black line section indicates that that track section is occupied. A red line 

section (not present in the above figure) indicates that the track section is booked for a train. 

A red box above a straight line represents a closed (or restrictive) route signal for trains moving from 

right to left (odd direction). A red box beneath a straight line represents a closed route signal for 

trains moving from left to right (even direction). Signals may be also green which indicates they are 

open (or permissive). A red dot between the signal and the line indicates that trains will not pass the 

signal. If the dot is green this indicates that a train may pass the signal even if the signal is restrictive. 

Finally the figure in front of a signal represents the value, in seconds, of a timer counting the duration 

of occupancy of the approach locking area of the signal that commands the release of blocks behind 

the signal. 

Thus, in the figure above the top graph indicates that all points are actually in left position, that no 

track section is actually occupied and that all signals are closed. The middle graph indicates that the 

track section sensors (track circuits) detect the actual state of track sections but that the point 

sensors do not detect the actual position of the points. The bottom graph indicates that the dynamic 

controller considers that all points are uncontrolled, that all track zones are occupied, that all route 

signals are closed and that approach locking areas of signals are occupied. 

The figure below shows the state of the dynamic controller after initialisation and before it has got 

the state of sensors. So the dynamic controller considers all track sections booked, all points 

uncontrolled and all signals closed.  



ADVANCE  − 15 − 

Work Package: 1 − Deliverable: D1.2  03/21/12 

 

The figure below shows the state of the dynamic controller after the point sensors have being fixed 

and the dynamic controller has got the state of the sensors. So the dynamic controller considers all 

track sections free and all points controlled in left position. 

 

The figure below shows that two routes with their overlaps have been booked (red line sections), 

that their entry signals are open (green boxes) and that two trains has entered these routes (black 

line sections). It shows also that the dynamic controller is not aware yet that the trains passed the 

entry signals of the routes. 



ADVANCE  − 16 − 

Work Package: 1 − Deliverable: D1.2  03/21/12 

 

Notice that the black line sections of the top graph are oriented whilst those of the two other graphs 

are not. This is because the environment is aware of the travel direction of the trains whilst the 

dynamic controller knows only the state of the sensors occupied/not occupied. A consequence of 

this, and the fact that there is a single track circuit for a point, is that when a train runs over a point 

the environment will occupy only the track sections of the point effectively covered by the train 

whilst the sensors and the dynamic controller will consider that all linked track sections of the point 

are occupied. As shown in the figure below.  

 

A paramount benefit of the graphical animation of the model is that we can analyse the behaviour of 

the dynamic controller in the presence of failures of trackside equipment or of unexpected behaviour 

of trains. Thus we can analyse the consequences of those failures on the safety of the system. In 

particular, we analysed the consequences of failures of track circuits, point sensors and shunting, on 

booking and releasing track sections, switches and overlaps. We analysed also the consequences of a 

train passing a closed signal. 



ADVANCE  − 17 − 

Work Package: 1 − Deliverable: D1.2  03/21/12 

Through the ProB animation we found errors in the model, and this allowed us to correct it and make 

it more realistic, and more important, in the specification of the release of track sections and 

overlaps that may lead to unsafe situations. 

5. Transition from Event-B to B 

The purpose of this task is to define and experiment with the principles of a proved transition from 

an Event-B system model into sequential programs able to be translated into executable code. We 

also present our initial plans for translating Event-B to Classical-B since this will be important for 

linking the system-level safety analysis using Event-B with the existing software development process 

with Classical-B used by Alstom. 

The input of the task is the system model of the dynamic controller. The outputs of the task are the 

abstract software model of the dynamic controller and a transition guide from an Event-B system 

model to a B software model. 

5.1 ADVANCE Concepts or Tools Applied 

An important aspect of the case study is the definition of a method for the proved transition from an 

Event-B system model into sequential programs able to be translated into executable code. 

J.-R. Abrial presents in [1] an approach of development of sequential programs from Event-B models, 

but it is not yet supported by the Rodin platform. We shall experiment it when it will be supported.  

Instead, we investigated the refinement of an Event-B system model into a B software model able to 

be refined itself into sequential programs. We provide feedback on this work in the following 

sections 

5.2 Feedback on Transition from Event-B to B 

As said before we developed an Event-B machine of the dynamic controller and, for animation 

reasons, we translated that Event-B machine into a classical B machine. An event of the Event-B 

machine of the form: 

  

is kept identical in the classical B machine translation. 

Then we wanted to refine that classical B machine with a classical B implementation involving an 

operation of the form: 

 

ADVANCE  − 18 − 

Work Package: 1 − Deliverable: D1.2  20/08/12 

  

is kept identical in the classical B machine translation. 

Then we wanted to refine that classical B machine with a classical B implementation involving an 

operation of the form: 

 

where T is a sequential program. 

But this cannot be a valid refinement since it is not possible to prove that the refinement operation 

implies the guard G of the abstract operation in all possible cases. 

To do that it would be necessary to introduce in an intermediate refinement an operation with a 

precondition of the form: 

 

where  S’  refines  S. 

But again, this cannot be a valid refinement because it is not possible to prove that the abstract 

operation implies the precondition of the refinement operation. 

So we decided to modify the translation of events of Event-B into operations of classical B by 

translating an event of Event-B of the form presented above by a B operation of the form: 

EV = 

ANY X WHERE 

      G 

THEN 

      S 

END 

EV = 

VAR X IN 

      T 

END  

EV = 

PRE 

    X. G 

THEN 

    S’ 

END 

EV = 

ANY X WHERE 

      G 

THEN 

      S 

END 



ADVANCE  − 18 − 

Work Package: 1 − Deliverable: D1.2  03/21/12 

where T is a sequential program. 

But this cannot be a valid refinement since it is not possible to prove that the refinement operation 

implies the guard G of the abstract operation in all possible cases. 

To do that it would be necessary to introduce in an intermediate refinement an operation with a 

precondition of the form: 

 

where S’ refines S. 

But again, this cannot be a valid refinement because it is not possible to prove that the abstract 

operation implies the precondition of the refinement operation. 

So we decided to modify the translation of events of Event-B into operations of classical B by 

translating an event of Event-B of the form presented above by a B operation of the form: 

 

And then it is possible to prove that a classical B implementation like the one presented above 

refines this operation. Furthermore this translation corresponds to our intuitive comprehension of 

the behaviour of an event and to the behaviour of animation implemented by ProB. That is to say, 

that the event can be fired or animated only when there exist values X satisfying the guard G. 

6. Feedback on ADVANCE Tools 

So far we have experienced with several concepts and tools of the ADVANCE project: requirements 

definition following J.-R. Abrial’s recommendations, system modelling and proof with Event-B and 

Rodin, model animation with ProB and transition from system models (Event-B) to software models 

(B). 

As regarding Event-B modelling and proof, this work allowed us to highlight that the theory plug-in is 

essential because it simplifies the model writing and modification and facilitates the proof activity. 

EV = 

PRE 

    X. G 

THEN 

    S’ 

END 



ADVANCE  − 19 − 

Work Package: 1 − Deliverable: D1.2  03/21/12 

We have the same conclusion about the animation with ProB. It disclosed two problems in our model 

and helped us to render it more accurate and relevant. Unfortunately, for the time being, Rodin and 

ProB are not at the same level of development. ProB does not deal with theories and some 

expressions undermine its performances. To bypass the last problem, we rewrote these expressions 

so they can be animated. However, from the beginning of our study we have designed our Event-B 

model to facilitate the proof activity and this rewriting goes against this effort. So, an important step 

forward will be to bring these tools at the same level of development so that it will be possible to 

animate with ProB all Event-B models. To achieve this goal, it may be necessary to introduce some 

guidelines or writing rules or have for example two theories, one for proof and one for animation. 

We have exactly the same concerns with axioms of the Event-B model. 

As regarding the transition from system modelling to software modelling we believe that the schema 

to move from Event-B to B presented above introduces an interesting distinction between the phases 

of specification and implementation of the system. The former aims to enrich gradually an Event-B 

model and define the actual operational events of the system and the latter aims to reify gradually 

the translation to B operations of these operational events until obtaining an executable code. 

Some proof of concept activities could not be completed because of tooling limitations which is 

outside the control of WP1. Work started of using Rodin but then switched to AtelierB because of the 

lack of integration of ProB with the Theory plug-in.  The consequence of this is that other plug-ins of 

Rodin could not be used (e.g., use of ProR for the traceability of the refinement plan, model-based 

testing). These tooling issues are being dealt with by on-going improvements to the tools and in the 

full deployment phase we shall use the latest Rodin and assess the suitability of the new tool 

development from WP3 and WP4 

We shall port to Rodin the B model animated with ProB. This will give us the opportunity to 

experiment with the component composition plug-in of Rodin and the theory plug-ins of Rodin that 

provide data structures and operators available in the B language, and used in our model, that do not 

exist in Event-B (sequence data structure and its related operators and closure relation operator). 

Support for these operators in Rodin is currently being developed through he Theory plug-in and 

through integration of the Theory plug-in with ProB. 

7. Future Work in WP1 

The proof of concept phase of WP1 has demonstrated the feasibility of using Event-B for modelling 

and verification of system-level properties of railway interlocking. The next stages of WP1 will involve 

the development of a strategy for certification using ADVANCE methods and tools together with a 

more complete treatment of the interlocking through refinement and decomposition down to the 

architectural level.  Here we make some initial observations about the safety analysis and the 

refinement plan.   

7.1 Safety Analysis 

The purpose of this task is twofold. First, using fault tree analysis or failure mode effects analysis, 

ensure that all safety requirements have been identified and, if this is not the case, introduce the 

missing ones. Second, arrange safety requirements according to the refinement order of Event-B 

models in order to ensure that the system level requirements have been correctly and completely 

decomposed and allocated to lower level subsystems. 



ADVANCE  − 20 − 

Work Package: 1 − Deliverable: D1.2  03/21/12 

The inputs of this task are the preliminary hazard analysis, the requirements document and the 

refinement plan. The outputs of this task are the set of safety requirements and the coverage by the 

formal model of those requirements. 

The safety analysis will be dealt with by Task 1.3 with the support of an Alstom RAMS expert and 

University of Southampton. As well as using standard safety analysis analysis methods, we will 

explore the use of an approach based on STPA and Event-B being developed in WP5. 

7.2 Refinement Plan 

The purpose of the refinement plan task is to identify the levels of refinement necessary to move 

from an abstract but incomplete model of the dynamic controller to an abstract but complete model. 

The input of this task is the requirements document. The output of this task is the refinement plan 

document which presents and justifies each level of refinement. 

The levels of refinement will be created according to the progressive introduction of concepts and 

the progressive modelling of requirements. However, attention should be paid to create the 

minimum number of levels of refinement in order to facilitate the maintenance of the model. 

Allocation of requirements to refinement levels will be managed with the ProR tool developed by the 

University of Düsseldorf [2]. 

8. References 

[1] Modeling in Event-B – System and Software Engineering. J.-R. Abrial. © Cambridge University 

Press 2010. 

[2] ProR – Requirement Engineering Platform. http://www.eclipse.org/rmf/pror/ 

[3] ProB – The ProB Animator and Model Checker. http://www.stups.uni-duesseldorf.de/ProB  © 

Formal Mind 

[4] AtelierB – http://www.atelierb.eu/en/  © Clearsy 

 

http://www.eclipse.org/rmf/pror/

