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1. Introduction 

The first period of the project (October 2101-September 2012) was devoted to a feasibility study of 
the formal development in Event-B of an interlocking dynamic controller (IXL-DC). That is to say the 
ability to construct with ADVANCE methods and tools an Event-B model of an independent 
component that would control commands of the interlocking system (IXL) in order to ensure 
protection of trains against face-to-face collisions, flank collisions and derailment. Within this period 
we defined the requirements of the IXL-DC, constructed an abstract model of a signalling system 
including a model of the IXL-DC and studied the transition from an Event-B model to a Classic-B 
model for the development of its software. For this study we used methods and tools provided by 
ADVANCE: the Rodin platform and its Theory plug-in to construct the system model and demonstrate 
some of its proof obligations and ProB to ensure by interactive animation that the behaviour of the 
model is indeed the one we imagined. We presented the activities of the first period and their results 
in deliverable D1.2. 

This deliverable presents the activities undertaken during the second period of the project (October 
2012-September 2013). This period was devoted to demonstrate the validity of the IXL-DC model 
constructed within the previous period and to define a system development process involving 
development of formal models and compliant with applicable certification standards in railway 
domain. 

Sections 2 and 3 of the deliverable describe the validation of the IXL-DC model. Section 2 describes 
the steps followed to proof the mathematical correctness of the model. Their purpose it to control 
the number and the complexity of proof obligations by means of stepwise enrichment of a fairly 
abstract initial model. This method is the one promoted by ADVANCE and has already demonstrated 
its effectiveness. Section 3 describes the process followed to test the behavioural correctness of the 
IXL-DC model. The purpose is to verify under realistic operating conditions that IXL-DC is neither too 
permissive nor too restrictive. The process includes the generation of a compiled executable version 
of the IXL-DC model and the reuse of factory acceptance tests of an actual signalling system. 

In section 4 of the deliverable we give an intermediate assessment of the methods and tools used so 
far for our case study. For each of them we analyse its ability to be adopted by industry according to 
technical, maintenance and sustainability criteria.  

The fifth and final section of the deliverable presents the system development process including 
development of formal models with ADVANCE methods and tools that Alstom might adopt. The first 
part of the section presents the regulatory framework, that is to say, the requirements on the system 
development process made by the European CENELEC certification standards and applicable to the 
railway industry. The second part of the section presents the steps of the process and explains how 
the activities related to the development of formal models with ADVANCE methods and tools 
contribute to meet the requirements of certification standards. 

2. Proof of the IXL-DC Event-B model 

The proof of an Event-B model is considerably easier if the model is constructed by successive 
refinements that enrich progressively an abstract initial model. The first step of this process consists 
of creating a refinement plan that defines and explains the number, the nature and the purpose of 
the refinements that will be done. 

This section presents the refinement plan for the Event-B model of the IXL-DC. The objective of this 
plan is to define the refinement steps in such a way that the last refinement is equivalent to the IXL-
DC model created in the first period. 

Event-B model 

The model must incorporate certain IXL principles, the environment and IXL-DC. The abstract level 
describes a high-level view of the whole system. As the refinement goes further, closer views of the 
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system are given. The IXL-DC plays the role of a filter to IXL commands, including commands of signal 
aspects, of point movement, of directions on blocks and commands of overlap locked signals. 

The model must take into account the changes of the environment status. These changes are 
modelled by events including those of train movement (train advancing, train entering or leaving the 
considered track network, train turnaround), of train shunting on track circuit, of point movement 
and of signal aspect changes. 

Modelling context: the model is based on a general configuration of track network and related 
devices. These data consist of disposition of blocks, points and signals, the definition of timers and 
secondary detection devices (SDD). The correctness of these data is out of the scope of our modelling 
activity. Formalised assumptions on these data are used as entry elements of the model.  

The initial model: 

Modelling rationale: The previous deliverable D1.2 has presented an initial model of the IXL-DC 
system and the usage of the Theory plug-in. In this first model, trains on the track network are 
modelled by chains of oriented blocks and the non-collision properties are expressed by the 
compatibility of these areas: 

  

  

The above two properties can be expressed within a block chaining structure and operators 
chain_on_graph and is_ch_compatible) defined by using the Theory plug-in. For example, let 
v_next_blocks be the dynamic track network,  

 -  

  

Modelling context data: This initial model uses the following data of track network configuration: 

  

 

 

  

Events: 

Events Description Guards and actions 

train_front_move Train front advances one block Guard: the block added to the train front 
must be compatible with other train chains. 

Action: update train chaining. 

train_rear_move Train rear advances one block Action: update train chaining. 

train_turnaround Train turns around Guard: train must be in the turnaround 
block zone; and blocks in the turnaround 
block chain must be compatible with other 
train chains. 

Action: update train chaining. 

train_leave_area Train leaves the considered 
network area. 

Action: update train on the network area. 

train_enter_into_area Train enters into the network 
area. 

Guard: extremity blocks where trains enter 
must be compatible with other train chains. 

Action: update train chaining. 

signal_permissive_aspect  Guard: the signal must be in restrictive 
aspect. 

Action: update signal aspect. 
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signal_restrictive_aspect  Guard: the signal must be in permissive 
aspect. 

Action: update signal aspect. 

point_move_to_unknown Point moves from left or right 
position to unknown position. 

Guard: The point must not be under any 
train. 

Action: update point position. 

point_move_to_right Point moves from unknown 
position to right position. 

Action: update point position. 

point_move_to_left Point moves from unknown 
position to left position. 

Action: update point position. 

 

First refinement: 

Refinement rationale: In this refinement, protected areas are introduced. The notion of protected 
area is more general than that of train movement authorization zone: a protected area is not 
necessarily assigned to a train. Protected areas must ensure non-collision and non-derailment of 
trains.  Safety properties can be expressed as follows: 

  

  

  

The property (1_1) is a link property. As trains are covered by protected area, properties (0_1) and 
(0_2) in the abstract machine can be refined into the properties (1_2) and (1_3). In other words, the 
abstract properties hold whenever the concrete properties hold.  

Protected areas can be implemented by chains of oriented blocks on the dynamic track network.  

Modelling context data: this refinement uses the same modelling context data as that of its abstract 
level. 

Events: Events and their abstract events are listed in the following table. Bold events are those that 
are first introduced in this refinement; underlined events are those that have guard strengthened or 
actions added/modified: 

Events Description Guards and actions 

train_front_move 

abstract : train_front_move 

Cf. abstract Guard: the block added to the train 
front must be in the train protected 
area. 

 

train_rear_move Cf. abstract  

train_turnaround 

abstract: train_turnaround 

Cf. abstract Guard: protected area of train must 
be in the turnaround block zone. 

train_leave_area Cf. abstract  

train_enter_into_area 

abstract: train_enter_into_area 

Cf. abstract Action: create a protected area 
covering the train. 

signal_permissive_aspect Cf. abstract  

signal_restrictive_aspect Cf. abstract  

point_move_to_unknown 

abstract: point_move_to_unknown 

Cf. abstract Guard: The point must not be in a 
protected area. 
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point_move_to_right Cf. abstract  

point_move_to_left Cf. abstract  

reduce_rear_protected_area Reduce rear of a protected area Guard: rear of the protected area 
must not be in a train chaining. 

Actions: update protected areas. 

reduce_front_protected_area Reduce front of a protected area Guard: front of the protected area 
must not be in a train chaining. 

Actions: update protected areas. 

remove_protected_area Remove a protected area Guard: protected area reduced to a 
block and this block must not be in a 
train chaining. 

Actions: update protected areas. 

extend_protected_area Extend a protected area by a set 
of blocks. 

Guard: the extended blocks must be 
compatible with other protected 
areas. 

Actions: update protected areas. 

split_protected_area Split a protected area at a given 
block into two protected areas not 
containing the splitting block. 

Guard: The given block must not be 
in a train chaining and must be 
neither the rear nor the front of the 
protected area. 

Actions: update protected areas. 

 

Second refinement: 

Refinement rationale: This refinement introduces the filtered commands of points into the model 
and refines the movement of points. The movement of a point from left (right) position to unknown 
position implies that its conjugated points are also moved to unknown position.  A point is in moving 
from unknown to left (right) position implies that its conjugated points are in moving from unknown 
position to their corresponding positions. A point is moved from unknown position to left (right) if it 
was moving to left (right). A point moves only when commanded. Safety properties are refined as 
follows: 

 

 

  

When the properties 2_0 and 2_1 are verified, properties 1_2 and 1_3 are also verified. 

Modelling context data: In addition to context data used in the abstract level, this refinement uses 
the following context data: 

  

Events: Events and their abstract events are listed in the following table. Bold events are those that 
are first introduced in this refinement; underlined events are those that have guard strengthened or 
actions added: 

Events Description Guards and actions 

train_front_move cf. abstract  

train_rear_move cf. abstract  

train_turnaround cf. abstract  

train_leave_area cf. abstract  

train_enter_into_area cf. abstract Guard: In IXL data configuration, there is 
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no point on extremity blocks. Thus 
extremity blocks contain no point in point 
command set. 

signal_permissive_aspect cf. abstract  

signal_restrictive_aspect cf. abstract  

reduce_rear_protected_area cf. abstract  

reduce_front_protected_area cf. abstract  

remove_protected_area cf. abstract  

split_protected_area cf. abstract  

extend_protected_area 

(abstract: 
extend_protected_area) 

cf. abstract Guard: extended blocks must not contain 
any point which is in the point commands 
or in the conjugated point set of a 
commanded point. 

point_move_to_unknown 

(abstract: 
point_move_to_unknown) 

cf. abstract Guard: point must not belong to any 
protected area; and there is a point 
command to the opposite position. 

point_move_to_right 

(abstract: point_move_to_right) 

cf. abstract Guard: point is moving to right and there is 
a point command to right position. 

Actions: update point position (right). 

point_move_to_left 

(abstract: point_move_to_left) 

cf. abstract Guard: point was moving to left and there 
is a point command to left position. 

Actions: update point position (left). 

point_is_moving_to_right Point is moving from unknown to 
right position. 

Guard: point is unknown and there is a 
point command to right position. 

Actions: update point is moving. 

point_is_moving_to_left Point is moving from unknown to 
left position. 

Guard: point is unknown and there is a 
point command to left position. 

Actions: update point is moving. 

cmd_point_to_right Send a point command. Guard: point and its conjugated points 
must not belong to any protected area. 

Actions: add point command. 

cmd_point_to_letf Send a point command. Guard: point and its conjugated points 
must not belong to any protected area. 

Actions: add point command. 

no_cmd_point Remove a point command. Actions: remove a point command. 

 

Third refinement: 

Refinement rationale: This refinement introduces traffic direction commands and all booked blocks. 
All booked blocks include booked blocks and overlap booked blocks. A traffic direction can be set on 
a block, only if the block was already booked and had no direction. In our model, we examine booked 
blocks from the moment directions have first been set on them. Therefore points in point commands 
or in their conjugated points have no underlying booked blocks. The refinement is based on the 
following safety properties:  

  

  

  

  

The properties (2_0) and (2_1) hold when (3_2), (3_3) and (3_4) hold. 
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Modelling context data: this refinement uses the same modelling context data as that of its abstract 
level. 

Events: Events and their abstract events are listed in the following table. Bold events are those that 
are first introduced in this refinement; underlined events are those that have guard strengthened or 
actions added: 

Events Description Guards and actions 

train_front_move cf. abstract  

train_rear_move cf. abstract  

train_turnaround 

(abstract: train_turnaround) 

cf. abstract Guard: there are traffic direction 
commands on turnaround blocks. 

train_leave_area cf. abstract  

train_enter_into_area cf. abstract Guard: the extremity block must be 
compatible with other booked blocks. 

Action: add the extremity block to booked 
blocks and set the traffic direction on it. 

signal_permissive_aspect cf. abstract  

signal_restrictive_aspect cf. abstract  

reduce_rear_protected_area cf. abstract Action: release booked block. 

reduce_front_protected_area cf. abstract Action: release booked block. 

remove_protected_area cf. abstract Action: release booked block. 

split_protected_area cf. abstract Action: release booked block. 

extend_protected_area cf. abstract  

point_move_to_unknown 

(abstract: 
point_move_to_unknown) 

cf. abstract Guard: point and its conjugated point must 
not belong to any booked blocks. 

point_move_to_right cf. abstract  

point_move_to_left cf. abstract  

point_is_moving_to_right cf. abstract  

point_is_moving_to_left cf. abstract  

cmd_point_to_right 

(abstract: cmd_point_to_right) 

cf. abstract Guard: point and its conjugated point must 
not belong to any booked blocks. 

cmd_point_to_letf 

(abstract:cmd_point_to_letf) 

cf. abstract Guard: point and its conjugated point must 
not belong to any booked blocks. 

no_cmd_point cf. abstract  
 

 
Set a traffic direction on a block. Guard: There is a traffic direction 

command on the block and, the block 
must either have been booked or be 
compatible with all other booked blocks. 

Action: update the booked blocks and 
traffic directions on blocks. 

 Release the traffic direction of a 
block. 

Action: release the traffic direction of the 
block. 

 Set a traffic direction command. Action: update the traffic direction 
commands. 

 Set traffic direction on blocks. Guard: there is a traffic direction 
command on the block and, the block 
must have no traffic direction and their 
opposite blocks must have been booked. 
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Action: update the traffic direction on 
blocks and booked blocks. 

no_cmd_traffic_direction Unset a traffic direction 
command. 

Action: update the traffic direction 
commands. 

cmd_overlap_booked_block Book overlap blocks. Guard: the blocks must be compatible with 
all other booked blocks. 

Action: update the overlap booked blocks. 

 

Fourth refinement: 

Refinement rationale: this refinement introduces track circuits in order to strengthen guards of 
events. The controller does not know anymore the position of trains, but has a fuzzier picture based 
on track circuits that are shunted by trains. 

Modelling context data: In addition to context data used in the abstract level, this refinement uses 
the following context data: 

  

Events: Events and their abstract events are listed in the following table. Underlined events are those 
that have guard strengthened or actions added: 

Events Description Guards and actions 

train_front_move 

(abstract: train_front_move) 

cf. abstract Action: update train shunt status. 

train_rear_move 

(abstract: train_rear_move) 

cf. abstract Action: update train shunt status. 

train_turnaround 

(abstract: train_turnaround) 

cf. abstract Action: update train shunt status. 

train_leave_area 

(abstract: train_leave_area) 

cf. abstract Action: update train shunt status. 

train_enter_into_area 

(abstract: 
train_enter_into_area) 

cf. abstract Action: update train shunt status. 

signal_permissive_aspect cf. abstract  

signal_restrictive_aspect cf. abstract  

reduce_rear_protected_area cf. abstract Guard: Underlying SDD of the block must 
be clear. 

reduce_front_protected_area cf. abstract Guard: Underlying SDD of the block must 
be clear. 

remove_protected_area cf. abstract Guard: Underlying SDD of the block must 
be clear. 

split_protected_area cf. abstract Guard: Underlying SDD of the block must 
be clear. 

extend_protected_area cf. abstract  

point_move_to_unknown cf. abstract  

point_move_to_right cf. abstract  

point_move_to_left cf. abstract  

point_is_moving_to_right cf. abstract  

point_is_moving_to_left cf. abstract  

cmd_point_to_right cf. abstract  
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cmd_point_to_letf cf. abstract  

no_cmd_point cf. abstract  

 
 

 

cf. abstract Guard: underlying SDD of blocks must be 
clear. 

 cf. abstract  
 

 
cf. abstract  

 

 

cf. abstract Guard: underlying SDD of blocks must be 
occupied. 

no_cmd_traffic_direction cf. abstract  

cmd_overlap_booked_block cf. abstract  

 

Fifth refinement: 

Refinement rationale: This refinement introduces signals and related timers. In this machine, 
protected area formation is defined: when a signal turns to permissive aspect, a protected area is 
extended from the downstream block of the signal until the upstream block of the next signal or 
possibly sliding blocks of the next signal. Protected blocks are removed when blocks are un-booked. 

Modelling context data: In addition to context data used in the abstract level, this refinement uses 
the following context data: 

  

  

  

  

  

Events: Events and their abstract events are listed in the following table. Bold events are those that 
are first introduced in this refinement; underlined events are those that have guard strengthened or 
actions added: 

Events Description Guards and actions 

train_front_move cf. abstract  

train_rear_move cf. abstract  

train_turnaround cf. abstract  

train_leave_area cf. abstract  

train_enter_into_area cf. abstract  

signal_permissive_aspect 

(abstract: 
signal_permissive_aspect) 

cf. abstract Guard: there is a command of signal to 
permissive aspect. 

signal_restrictive_aspect 

(abstract: 
signal_restrictive_aspect) 

cf. abstract Guard: there is a command of signal to 
restrictive aspect. 

release_signal_ instantaneously 

(abstract: 
reduce_rear_protected_area, 

remove_protected_area) 

cf. abstract Guard: the block is the downstream block 
of the signal. Underlying SDD of approach 
section of the signal must be clear. 

release_block cf. abstract Guard: the block is NOT the downstream 
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(abstract: 
reduce_rear_protected_area, 

remove_protected_area) 

block of the signal. 

release_overlap_block 

(abstract: 
reduce_rear_protected_area, 

remove_protected_area) 

cf. abstract Guard: the block belongs to the sliding 
section of the signal and its previous block 
is not booked. 

Action: update overlap locked command 
on the signal. 

release_signal_by_timer_on_ov
erlap 

(abstract: 
reduce_front_protected_area, 

split_protected_area) 

cf. abstract Guard: the block is the downstream block 
of the signal. The underlying SDD of 
upstream block of the signal is occupied. 
The signal timer has expired. 

Action: update overlap locked command 
on the signal. 

release_signal_by_sequence_T
ORA 

First step of the sequence of 
signal release. 

Guard: the block is a downstream block of 
signal. The underlying SDD of the block is 
clear, and the SDD of the previous block is 
occupied. The signal is permissive. 

Action: Signal sequence is set to seq_1. 

release_signal_by_sequence_T
ORB 

Second step of the sequence of 
signal release. 

Guard: the block is a downstream block of 
signal. The underlying SDDs of the block 
and of the previous block are occupied, 
and the underlying SDD of the next block is 
clear. Signal sequence is seq_1. The signal 
is restrictive. 

Action: Signal sequence is set to seq_2. 

release_signal_by_sequence_TO
RC 

(abstract: 
reduce_rear_protected_area) 

Last step of the sequence of signal 
release. 

Guard: the block is a downstream block of 
signal. The underlying SDD of the block is 
clear, and the SDD of the next block is 
occupied. Signal sequence is seq_2. The 
signal is restrictive. 

Action: Signal sequence is set to seq_0. 
 

(abstract: 
extend_protected_area) 

 Guard: the given blocks must be between 
two signals and there is no other signal 
between these two signals. The given 
blocks can eventually include sliding blocks 
of the second signal. All these blocks must 
have been booked. If there are turnaround 
blocks of the signal in the given blocks, all 
trains in the turnaround area must be 
stopped in the exit direction. 

Action: add signal permissive command 
and extend protected area. 

 

(abstract: 
extend_protected_area) 

 Guard: the given blocks must be between 
the signal and the discrimination area; and 
there is no signal between the signal and 
the discrimination area. All these blocks 
must have been booked. Underlying SDD 
of discrimination area is clear. 

Action: add signal permissive command 
and extend protected area. 

 Command of restrictive aspect on 
a signal 

Action: add signal restrictive command. 

point_move_to_unknown cf. abstract  

point_move_to_right cf. abstract  

point_move_to_left cf. abstract  
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point_is_moving_to_right cf. abstract  

point_is_moving_to_left cf. abstract  

cmd_point_to_right cf. abstract  

cmd_point_to_left cf. abstract  

no_cmd_point cf. abstract  

 cf. abstract  
 cf. abstract  

 cf. abstract  
 cf. abstract  

no_cmd_traffic_direction cf. abstract  

cmd_overlap_locked 

(abstract: 
cmd_overlap_booked_block) 

cf. abstract Guard: the given blocks must be the sliding 
blocks of the signal. 

 

 

Sixth refinement: 

Refinement rationale: This refinement introduces IXL commands. Therefore, guards of previous 
filtered commands are strengthened by the presence of IXL commands. 

Modelling context data: this refinement uses the same modelling context data as that of its abstract 
level. 

Events: Events and their abstract events are listed in the following table. Bold events are those that 
are first introduced in this refinement; underlined events are those that have guard strengthened or 
actions added: 

Events Description Guards and actions 

train_front_move cf. abstract  

train_rear_move cf. abstract  

train_turnaround cf. abstract  

train_leave_area cf. abstract  

train_enter_into_area cf. abstract  

signal_permissive_aspect cf. abstract  

signal_restrictive_aspect cf. abstract  

release_signal_ instantaneously cf. abstract  

release_block cf. abstract  

release_overlap_block 

(abstract: 
release_overlap_block) 

cf. abstract Guard: there is no IXL overlap locked 
command on the signal. 

release_signal_by_timer_on_ov
erlap 

cf. abstract  

release_signal_by_sequence_TO
RA 

cf. abstract  

release_signal_by_sequence_TO
RB 

cf. abstract  

release_signal_by_sequence_TO
RC 

cf. abstract  

 

(abstract: 
cmd_signal_permissive_aspect) 

cf. abstract Guard: there is an IXL signal permissive 
command. 

cf. abstract Guard: there is an IXL signal permissive 
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(abstract: 
cmd_signal_permissive_aspect_
toward_discrimination_area) 

command. 

 

 

 

cf. abstract Guard: there is an IXL signal restrictive 
command. 

point_move_to_unknown cf. abstract  

point_move_to_right cf. abstract  

point_move_to_left cf. abstract  

point_is_moving_to_right cf. abstract  

point_is_moving_to_left cf. abstract  

cmd_point_to_right 

(abstract: cmd_point_to_right) 

cf. abstract Guard: there is an IXL point command to 
right. 

cmd_point_to_left 

(abstract: cmd_point_to_left) 

cf. abstract Guard: there is an IXL point command to 
left. 

no_cmd_point 

(abstract: no_cmd_point) 

cf. abstract Guard: there is no IXL point command on 
the considered point. 

 cf. abstract  

 cf. abstract  
 

 
cf. abstract Guard: there is an IXL traffic direction 

command. 

 cf. abstract  

no_cmd_traffic_direction 

(abstract: 
no_cmd_traffic_direction) 

cf. abstract Guard: there is no IXL traffic direction 
command on the considered block. 

cmd_overlap_locked 

(abstract: cmd_overlap_locked) 

cf. abstract Guard: there is an IXL command of overlap 
locked on a signal. 

IXL_command_signal An IXL signal command 
(permissive or restrictive) 

Guard: the signal is not commanded on 
this aspect. 

Action: Update IXL signal commands. 

IXL_command_point An IXL point command (left or 
right) 

Guard: there is no point command on the 
considered point. 

Action: Update IXL point commands. 

IXL_no_command_point Remove an IXL point command 
(left or right) 

Guard: there is a point command on the 
considered point. 

Action: Update IXL point commands. 

IXL_command_traffic direction An IXL traffic direction command Guard: there is no traffic direction 
command on the considered block. 

Action: Update IXL traffic commands. 

IXL_no_command_traffic 
direction 

Remove an traffic direction 
command 

Guard: there is a traffic direction 
command on the considered block. 

Action: Update IXL traffic commands. 

IXL_command_overlap_locked An IXL overlap locked command 
on a signal 

Guard: there is no overlap locked 
command on the considered signal. 

Action: Update IXL traffic commands. 

IXL_no_command_ 
overlap_locked 

Remove an IXL overlap locked 
command on a signal 

Guard: there is an overlap locked 
command on the considered signal. 

Action: Update IXL overlap locked 
commands. 
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Relationship between notions 

All booked blocks include booked blocks and overlap booked blocks. Traffic directions may be set or 
unset on booked blocks. Protected area blocks  are established on booked blocks and overlap booked 
blocks when there is a permissive signal command. Blocks are still in protected areas when traffic 
directions are unset on them. When a block is un-booked, it is also removed from the protected area. 
The following figure illustrates these notions. Note that traffic directions are set on blocks from the 
signal S3 to S6, but the signal S3 has not changed to permissive aspect. Thus protected areas do not 
cover these blocks. Protected areas cover blocks between the signals S4 and S5 in spite of the fact 
that there is no traffic direction on these blocks. 

Let B, B1 and B2 denote the set of all booked blocks, that of booked blocks and that of overlap 
booked blocks. Let T denote the set of blocks on which traffic directions are defined, and let P denote 
the set of blocks in protected areas. The following predicates and explications give an overview on 
the relations between these sets:  

  

  

  

  

 

 

 

 

 

 

Blocks in all booked blocks are compatible and they are not blocks of points belonging to 
commanded points or conjugated points thereof. 

S1 S2 S3 

S4 S5 S6 S7 

Booked blocks 

Overlap booked blocks 

Traffic direction blocks 

Protected areas 

Trains 

Turn around blocks 
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3. Testing of the IXL-DC Event-B model 

Our experience in development of formal models of software has shown that a model cannot be 
considered adequate or valid as long as the corresponding software has not been tested. There is no 
reason why the situation should be different at system level. This is why we planned in our case 
study to test the IXL-DC under realistic operating conditions. 

With that purpose in mind, our initial intention was to develop manually a Classical-B model of the 
IXL-DC software starting from the IXL-DC Event-B model, then to develop manually the corresponding 
B01 model and the runtime environment (I/O procedures, scheduler, etc.), then to translate 
automatically this B0 model into an Ada program, then to generate automatically the corresponding 
executable code and finally to plug this code in Alstom’s Factory Integration & Validation Platform 
(FIVP) where signalling systems are tested under conditions close to real operating conditions. 

The figure below illustrates the envisioned code generation process and architecture of the test 
environment. 

 
Figure 3.1. Envisioned IXL-DC code generation process and test environment architecture 

                                                             

 
1
 B0 is the subset of Classic-B that involves only the data types and instructions available in imperative 

programming languages like Ada or C. 
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In the previous figure, boxes ATS, ATC and IXL represent the actual sub-systems (hardware and 
embedded executable code); box IXL-DC represents only the executable code of IXL-DC; box LAC 
represents the Logic Communication Analyser, a probe that scrutinises all the messages exchanged 
between the components of the test environment and logs them in a file; and box FIVP represents 
the Factory Integration and Validation Platform mentioned above. 

FIVP provides interfaces enabling the tester to play the Train Driver role (if the train control system is 
not fully automatic) and displays the cabin information according to the system state. FIVP simulates 
trains according to mathematical continuous models of kinetics and their physical characteristics of 
trains, and wayside devices (points, signals, track circuits, etc.). 

We started to implement this process, but we realized after writing some Classic-B software 
components that it would take too long given the project deadlines and, in addition, that it would 
bring us no real methodological lesson given that we have long experience developing Classical-B 
models of software.  

We therefore imagined a simpler and quicker to implement process. 

First we abandoned the idea to plug the IXL-DC software in the FIVP because this requires non trivial 
developments. We decided instead to exploit the messages logged by the logic analyser of 
communications during tests as this log contains all the information required by the IXL-DC to control 
the IXL and is easily achievable. 

Second, drawing inspiration from ProB and other interpreters of the B language, we created a 
module in Ocaml language providing a set of functions and iterators enabling straightforward 
translation of Event-B models in Ocaml language and generation of compiled executable code. 

Third, in order to exploit test logs and visualise the IXL-DC behaviour, we created the Ocaml modules 
that schedule events, that read test logs and that visualise graphically the state of IXL-DC. 

And fourth, we created data representing the track of the line used for testing. This test line is a real 
commercial line with 263 blocks, 112 track circuits, 40 points and 85 signals. 

The figure below illustrates the implemented code generation process and the test environment of 
IXL-DC. This shows that the IXL-DC implementation can be run side-by-side with the standard test 
environment, driven by communications coming from the other components via the log 

This test environment architecture allows realistic and reasonably efficient testing of the IXL-DC 
model. Indeed, the tested executable code of IXL-DC is close to the Event-B model; the test line is a 
real commercial line; the controlled IXL system is the actual IXL system operating with the actual ATS 
and ATC systems and with trains and wayside equipment modelled by mathematical continuous 
models developed with the MATLAB toolbox. 

We have just begun testing with logs provided by the validation team of the signalling system 
developed for the test line used. The first positive results are that the run tests revealed gaps in data 
representing the line and that after some few adjustments they execute completely. That is to say 
that although the model has not been fully proved yet it is relatively sound (i.e. no unexpected 
abortions due, for instance, by division by 0). We shall now start the analysis of the tests results and 
this will lead certainly to modifications of the model. 

We do not consider testing as a substitute for animation but rather as a complement. Animation is an 
essential step to develop models using representative but not necessarily industrial size cases and to 
ensure that their behaviour is effectively the envisioned behaviour. Animation permits an interactive 
analysis of properties of constants, variables and events. Testing on his side ensures that the 
behaviour of the model meets the needs for which the system was designed. Moreover, testing is 
done on an almost operating environment and deals with industrial size cases hardly compatible, at 
least with the current technology, with animation conditions. 

Investigation: OCaml hand-translation compared to ProB 

In a side experiment we have tried to perform the testing conducted using the OCaml hand-
translated model using the ProB tool to run the original model, but reading in the log-data using 
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newly developed external I/O functions (external functions were added previously to ProB, and allow 
to link external Prolog code to B models). The results were very encouraging: we managed to replay 
the original log files about 2.5 times faster than the hand-translated OCaml code. We will analyse 
whether it is feasible to integrate ProB directly into the test-environment architecture (skipping the 
hand-translation process). 

 
Figure 3.2. Implemented IXL-DC code generation process and test environment architecture 

4. Intermediate assessment of ADVANCE tools 

Within the first period of ADVANCE we defined requirements on the IXL-DC, created an Event-B 
model of it, proved some of its parts and validated its behaviour relatively to the behaviour we had in 
mind. We had some difficulties using the Theory plug-in of Rodin to prove the theories involved in 
the model and using ProB to animate the Event-B model involving theories. To overcome these 
problems we translated the Event-B model into Classical-B and animated that model with ProB. We 
reported these activities and difficulties in deliverable D1.2 ([6]). 
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During the second period of ADVANCE we concentrate on two activities. First, we undertook the 
exhaustive formal verification, through proof and model-checking, of the Event-B model of IXL-DC. 
For proof we used the refinement technique, Rodin’s theorem provers and the improved Theory 
plug-in; for model checking we used ProB. Second, we undertook the validation of the model of IXL-
DC using system tests involving indirectly an actual signalling system and a continuous model of a 
train. 

In this section we present an assessment of the methods and tools provided by ADVANCE that we 
have used so far in our case study and on the tools that we would like ADVANCE to provide. This 
assessment is obviously not definitive since the methods and tools will evolve as a result of on-going 
improvements and of the needs identified by the cases studies.  

We start assessing Event-B and the modelling approach based on refinement regarding its usability 
for modelling industrial sized systems. 

4.1 Event-B 

The Event-B language has two qualities: simplicity and “openness”. For simplicity we mean that Even-
B is based on a reduced set of simple concepts which facilitates learning and practice by non-formal 
methods experts and decreases the cost of formal proof. And for openness we mean that Event-B is 
not determined once for all, the user is able to extend the language according to its needs as long as 
it complies with some fundamental rules. Moreover, the development method based on refinement 
allows progressive enrichment of the model and facilitates proof. 

However, these qualities create obstacles in an industrial environment if users do not find or are not 
able to develop easily the concepts that they needs for their particular application. Typically, regular 
“classic” formal methods practitioners, which are good candidates to use Event-B, might be confused 
by the absence of some basic data operators and structures (transitive closures, sequences), 
substitutions (IF THEN ELSE) and component composition/decomposition primitives (INCLUDES). It is 
therefore paramount that the basic platform provides a set of libraries and plug-in sufficiently rich to 
overcome this drawback. 

A similar situation occurs with refinement. Refinement is one of the most effective techniques to 
reduce the number and complexity of proof obligations during the construction of Event-B models. 
However, the creation of a too large number of refinements renders the maintenance of the 
complete model impractical in an industrial context because the modification of an intermediate 
refinement can have a significant impact on the previous and subsequent refinements. The difficulty 
in this case is that no tool can assist the user in choosing the appropriate refinements; only expertise 
on refinement allows avoiding this pitfall. It is therefore paramount that the platform provides 
adequate user manuals and guides of refinement. 

4.2 Rodin 

Rodin is the platform supporting the construction, proof and validation of Event-B models. Rodin is 
based on an “open” architecture and is developed according to the “open” model on the principle of 
voluntary.  Roughly speaking, Rodin is made of two parts: a core part providing all the necessary tools 
to construct, prove and maintain the consistency of raw Event-B models; and of a set of plug-ins 
extending the language or providing additional tools like text editors, model animators and 
requirements managers. The core part is developed and maintained essentially by Systerel and the 
plug-ins are essentially developed by academia (principally Southampton and Düsseldorf) or by 
regular users. 

Unquestionably, the 'open' development model encourages innovation and apportions costs of 
development and maintenance of Rodin between several entities but, at the same time, it may be an 
obstacle to the adoption of the platform in the industry. The difficulties encountered during the first 
period of the project illustrate some dysfunctions that may compromise the industrial use of Rodin: 

 Difficulty for some partners to commit on development or maintenance delays as they do not 
have stable development teams. 
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 Lack of synchronization between development teams makes that incompatible tools coexist in the 
same release of the platform. 

 Absence of contractual guarantees. 

ADVANCE must find a development model with the advantages of the "open" development model 
while giving to industry the guarantees of quality, predictability and sustainability it expects from 
methods and tool providers. 

4.2.1 Theory plug-in 

In the beginning of the second period, the Theory plug-in was quite difficult to use and had a lot of 
bugs that needed to be worked around.  These bugs have been fixed since and the tools have 
become more and more usable. 

There are nevertheless two annoyances left that should be fixed to bring the tool to industrial level: 

1. When renaming a project, the proof file .bpr does not take into account the name changing. 

Status of proof obligations is not impacted by the project name changing, but references of 

proof obligations (in .bpr file) become incorrect. To overcome this inconvenience, one must 

modify manually the references to the project name in the .bpr file. 

 
2. Most of the proofs that use rules provided by the Theory plug-in must be performed 

manually, although they could be automated if the Theory plug-in was supporting a 

mechanism of “trigger” for automatic rules. 

Such a mechanism would apply automatically a rule only when some hypothesis is present. It 
would allow automating some rules that are currently manual, thus increasing proof 
productivity. 
Moreover, such a mechanism would allow propagating sub-expressions matched in a 
required hypothesis to a sub-goal that is produced by the rule. For instance, one could write 
rules such as the following one (which is envisioned to be applied in backward style, where 
the starred antecedent is a required hypothesis): 

(f : A --> B)* & x : A 

x : dom(f) 

4.3 ProB 

During the first period of the project we used ProB to ensure, by interactive animation of a signalling 
system model involving the IXL-DC that the behaviour of the latter corresponds with the behaviour 
we had in mind. Due to the problems reported in the deliverable D1.2, we didn’t use the ProB plug-in 
of Rodin which accepts Event-B models but instead its standalone Tcl/Tk version which accepts 
Classical-B models. This didn’t change fundamentally our experience with ProB, except that we 
couldn’t use BMotion Studio, the graphical editor integrated with Rodin and ProB that enables 
developers to create easily graphical visualization of animations, but the less user-friendly facility of 
the Tcl/Tk version of ProB enabling graphical animation. 

During the second period of the project we used ProB to model-check the signalling system model 
involving the IXL-DC and to verify properties of the data describing the test line used in tests of the 
IXL-DC model (cf. section §3). 

In all these uses ProB was quite effective. Graphical animation helped us to clarify and develop the 
behaviour of the IXL-DC. Model-checking, although it did not analyse the complete space, disclosed 
an erroneous traffic direction release done by the zone controller model. Data verification disclosed 
errors in the relation between blocks (virtual segments of track) and underlying track circuits 
(physical portions of track devoted to train detection) and in the relation between signals and 
turnaround blocks (segments of track were trains can change travel direction). 
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It would be worth however improving the user-unfriendly interactive B-expressions interpreter and 
providing an interface enabling to call ProB (or at least its B-interpreter) from external programs. We 
hope that this be done in ProB 2.0, which is being developed within the Advance project. 

Also, we were very pleased with the responsiveness of the development team of ProB which 
developed or corrected the tools we needed to analyse animations. Moreover, the fact that a 
corporation, FormalMind, was created to develop and maintain ProB increases industrial confidence 
on the sustainability of this tool.  

4.4 Co-simulation 

Although we haven’t used the co-simulation tools provided by ADVANCE we exploit co-simulation 
indirectly. Indeed, the FIVP used for testing Alstom’s signalling systems and that produces the logs 
we use for testing the IXL-DC model simulates trains on the basis of a continuous mathematical 
model of kinetics and of trains’ physical characteristics. Co-simulation is used also to predict and 
analyse the performance of a signalling system for a particular line in terms of maximum number of 
trains in operation, minimum travel time, minimum time between two trains, energy consumption 
and so on. The co-simulation platform involves the simulator of trains of FIVP and the MATLAB model 
several components of the signalling system. 

That is to say that co-simulation is an important topic for Alstom and that it is of great interest that 
ADVANCE provides a co-simulation platform allowing to plug components developed with different 
formalisms : Event-B, Classic-B, Java, C and so on. 

5. Contribution of ADVANCE Methods and Tools to Alstom’s certification 
process 

5.1 Certification framework 

According to the French Standardization Organization (AFNOR) “Certification is a business process 
through which a recognized body acting independently with no ties to the parties involved gives 
written assurance that an organization, a process, a service, a product or a set of professional skills 
meets the baseline requirements set out in a reference standard.” 

Certification of a complete railway signalling system involves certification of many of the above-
mentioned entities regarding requirements defined in many reference standards. In this section we 
shall concentrate on the certification of Alstom’s safety critical railway systems regarding 
requirements defined in the CENELEC (European Committee for Electrotechnical Standardization) 
standards EN 50126 [1], EN 50128 [2] and EN 50129 [3] applicable to railway systems. 

Thus, in our framework, certification is the process of achieving and obtaining acceptance of the 
proof of safety assurance through the activities of approval, assessment and cross acceptance.  

To point out the certification activities prescribed by CENELEC standards to which ADVANCE methods 
and tools contribute we present in the following sections standards EN 50126 and EN 50129. We do 

not present standard EN 50128, although software assessment is a very important part of 

certification activities, because ADVANCE methods concern essentially system activities.  

Almost all the text of this section is taken either from the standard themselves or from deliverable 
D.1.1 of OPENCOSS project [4]. 

5.1.1 CENELEC standard EN 50126 

This standard provides a process which enables the implementation of a consistent approach to the 
management of reliability, availability, maintainability and safety (denoted by the acronym RAMS) of 
total railway systems (including but not restricted to signalling). This Standard: 

– Defines RAMS in terms of reliability, availability, maintainability and safety and their 
interaction; 

– Defines a process, based on the system life-cycle and tasks within it, for managing RAMS; 
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– Enables conflicts between RAMS elements to be controlled and managed effectively; 

– Defines a systematic process for specifying requirements for RAMS and demonstrating that 
these requirements are achieved. 

The system life-cycle defined in EN 50126 involves fourteen phases and for each of them the 
Standard defines the objectives, the inputs, the requirements on the results and the deliverables 
regarding RAMS. 

The system life-cycle phases and the related safety tasks are presented in the table below: 

 Life-cycle phase  Phase related safety tasks 

1. Concept  Review Previously Achieved Safety Performance 

 Consider Safety Implications of Project 

 Review Safety Policy & Safety Targets 

2. System definition and application 
conditions 

 Evaluate Past Experience Data for Safety 

 Perform Preliminary Hazard Analysis 

 Establish Safety Plan (Overall) 

 Define Tolerability of Risk Criteria 

 Identify Influence on Safety of Existing Infrastructure 
Constraints 

3. Risk analysis  Perform System Hazard & Safety Risk Analysis 

 Set-Up Hazard Log 

 Perform Risk Assessment 

4. System requirements  Specify System Safety Requirements (Overall) 

 Define Safety Acceptance Criteria (Overall) 

 Define Safety Related Functional Requirements 

 Establish Safety Management 

5. Apportionment of system 
requirements 

 Apportion System Safety Targets & Requirements 

– Specify Sub-System & Component Safety Requirements 

– Define Sub-System & Component Safety Acceptance 
Criteria 

 Update System Safety Plan 

6. Design and implementation Implement  Safety Plan  by Review, Analysis, Testing and Data 
Assessment, addressing: 

 Hazard Log 

 Hazard Analysis & Risk Assessment 

 Justify Safety Related Design Decisions 

 Undertake Programme Control, covering: 

– Safety  Management 

– Control of Sub-Contractors & Suppliers 

 Prepare Generic Safety Case 

 Prepare (if appropriate) Generic Application Safety Case 

7. Manufacturing  Implement Safety Plan by: Review, Analysis, Testing & Data 
Assessment 

 Use Hazard Log 
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 Life-cycle phase  Phase related safety tasks 

8. Installation  Establish Installation Programme 

 Implement Installation Programme 

9. System validation (including 
safety acceptance and 
commissioning) 

 Establish Commissioning Programme 

 Implement Commissioning Programme  

 Prepare Application Specific Safety Case 

10. System acceptance  Assess Application Specific Safety Case 

11. Operation and maintenance  Undertake On Going Safety Centred Maintenance 

 Perform On Going Safety Performance Monitoring and Hazard 
Log Maintenance 

12. Performance monitoring  Collect, Analyse, Evaluate and Use  Performance & Safety 
Statistics 

13. Modification and retrofit  Consider Safety Implications for Modification & Retrofit 

14. Decommissioning and disposal  Establish Safety Plan 

 Perform Hazard Analysis & Risk Assessment 

 Implement Safety Plan 

Table 5.1. Safety Tasks for each phase defined in EN50126 

5.1.2 CENELEC standard EN 50129 

This standard provides a set of requirements that shall be satisfied in order that a safety critical 
railway system/sub-system/equipment can be accepted as adequately safe for its envisioned 
application. The requirements are presented under three headings: 

– Evidence of quality management; 

– Evidence of safety management; 

– Evidence of functional and technical safety. 

All of these conditions shall be satisfied, at equipment, sub-system and system levels, before the 
safety related system can be accepted as adequately safe. 

The documentary evidence that these conditions have been satisfied shall be included in a structured 
safety justification document, known as the Safety Case. The Safety Case forms part of the overall 
documentary evidence to be submitted to the relevant safety authority in order to obtain safety 
approval for a generic product, a class of application or a specific application.  

The Safety Case contains the documented safety evidence for the system/sub-system/equipment, 
and shall be structured as follows: 

Part 1 Definition of System (or sub-system/equipment): This shall precisely define or reference 
the system/sub-system/equipment to which the Safety Case refers, including version numbers 
and modification status of all requirements, design and application documentation. 

Part 2 Quality Management Report: This shall contain the evidence of quality management, as 
specified in 5.2 of this standard. 

Part 3 Safety Management Report: This shall contain the evidence of safety management, as 
specified in 5.3 of this standard. 

Part 4 Technical Safety Report: This shall contain the evidence of functional and technical 
Safety, as specified in 5.4 of this standard. 
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Part 5 Related Safety Cases: This shall contain references to the Safety Cases of any sub-systems 
or equipment on which the main Safety Case depends. 

It shall also demonstrate that all the safety-related application conditions specified in each of 
the related sub-system/equipment Safety Cases are either fulfilled in the main Safety Case, or 
carried forward into the safety-related application conditions of the main Safety Case. 

Part 6 Conclusion: This shall summarise the evidence presented in the previous parts of the 
Safety Case, and argue that the relevant system/sub-system/equipment is adequately safe, 
subject to compliance with the specified application conditions. 

5.1.2.1 Evidence of quality management 

The first condition for safety acceptance that shall be satisfied is that the quality of the system, sub-
system or equipment has been, and shall continue to be, controlled by an effective quality 
management system throughout its life-cycle. Documentary evidence to demonstrate this shall be 
provided in the Quality Management Report, which forms Part 2 of the Safety Case. 

5.1.2.2 Evidence of safety management 

The second condition for safety acceptance which shall be satisfied is that the safety of the system, 
sub-system or equipment has been, and shall continue to be, managed by means of an effective 
safety management process, which should be consistent with the management process for RAMS 
described in EN 50126. The purpose of this process is to further reduce the incidence of safety-
related human errors throughout the life-cycle, and thus minimise the residual risk of safety-related 
systematic faults. 

5.1.2.2.1 Safety life-cycle 

The safety management process consists of a number of phases and activities, which are linked to 
form a safety life-cycle consistent with the system life-cycle defined in EN 50126. The life-cycle as 
modelled is a typical development V cycle, with the requirement specification, architecture and 
detailed design and development phases as top-down phases and the integration and validation 
phases as bottom-up phases.  

 



ADVANCE  − 25 − 

 

Work Package: 1 − Deliverable: D1.3  21/10/2013 

Figure 5.2. Example of design and validation life-cycle defined in EN50129 

5.1.2.2.2 Safety plan 

A Safety Plan shall be drawn up at the start of the life-cycle. This plan shall identify the safety 
management structure, safety-related activities and approval mile-stones throughout the life-cycle, 
and shall include the requirements for review of the Safety Plan at appropriate intervals. The Safety 
Plan shall be updated and reviewed if subsequent alterations or additions are made to the original 
system/sub-system/equipment. If any such change is made, the effect on safety shall be assessed, 
starting at the appropriate point in the life-cycle. 

The Safety Plan shall deal with all aspects of the system/sub-system/equipment, including both 
hardware and software. EN 50128 shall be referenced for Software aspects. 

The Safety Plan should include a Safety Case Plan, which identifies the envisioned structure and 
principal components of the final Safety Case. 

5.1.2.2.3 Hazard log 

A Hazard Log shall be created and maintained throughout the safety life-cycle, as explained in EN 
50126. 

It shall include a list of identified hazards, together with associated risk classification and risk control 
information for each hazard. The Hazard Log shall be updated if any modification or alteration is 
made to the system, sub-system or equipment. 

5.1.2.2.4 Safety requirements specification 

The specific safety requirements for each system/sub-system/equipment, including safety functions 
and safety integrity, shall be identified and documented in the Safety Requirements Specification. 
This shall be achieved by means of - Hazard Identification and Analysis, 

– Risk Assessment and Classification, 

– allocation of Safety Integrity Levels, 

as explained in EN 50126. Some information concerning Safety Integrity Levels for railway electronic 
systems is contained in Annex A. 

NOTE The Safety Requirements Specification may be included in the system/sub-system/equipment 
Functional Requirements Specification or may be written as a separate document.  

5.1.2.2.5 System/sub-system/equipment design 

This phase of the life-cycle shall create a design which fulfils the specified operational and safety 
requirements. A top-down, structured design methodology shall be used, with rigorously controlled 
and reviewed documentation. In particular, the relationship between hardware and software, as 
represented by the Software Requirements Specification and software/hardware integration, shall be 
strictly managed, and the standard EN 50128 shall be adhered to.  

5.1.2.2.6 Safety reviews 

Safety reviews shall be carried out at appropriate stages in the life-cycle. Such reviews shall be 
specified in the Safety Plan, and their results fully documented. Any alteration or extension to the 
system, sub-system or equipment shall also be subject to review. 

5.1.2.2.7 Safety verification and validation 

The Safety Plan shall include or reference plans for verifying that each phase of the life-cycle satisfies 
the specific safety requirements identified in the previous phase, and for validating the completed 
system/sub-system/equipment against its original Safety Requirements Specification. 
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These activities shall be carried out and fully documented, including appropriate testing and safety 
analyses. They shall be repeated as appropriate in the event of any subsequent modification or 
addition to the system/sub-system/equipment. 

The degree of independence necessary for the verifier and the validator shall be in accordance with 
the Safety Integrity Level of the system/sub-system/equipment under scrutiny.  

At the discretion of the safety authority, the assessor may be part of the supplier's organisation or of 
the customer's organisation but, in such cases, the assessor shall 

– be authorised by the safety authority, 

– be totally independent from the project team, 

– report directly to the safety authority. 

5.1.2.2.8 Safety justification 

The evidence that the system/sub-system/equipment meets the defined conditions for safety 
acceptance shall be presented in a structured safety justification document known as the Safety 
Case, as explained in 5.1 of this standard. 

5.1.2.2.9 System/sub-system/equipment handover 

Prior to handover of the system/sub-system/equipment to a railway authority, the conditions for 
safety acceptance and safety approval defined in 5.5 shall be satisfied, including submission of the 
Safety Case and the Safety Assessment Report. 

5.1.2.2.10 Operation and maintenance 

Following handover, the procedures, support systems and safety monitoring defined in the Safety 
Plan and in Section 5 of the Technical Safety Report (part of the Safety Case) shall be adhered to. 
During the operational life of a system, change requests may be raised for a variety of reasons, not all 
of which will be safety-related. Each change request shall be assessed for its impact on safety, by 
reference to the relevant portion of the safety documentation. Where a change request results in a 
modification which could affect the safety of the system, or associated systems, or the environment, 
the appropriate portion of the safety life-cycle shall be repeated to ensure that the implemented 
modification does not unacceptably reduce the level of safety. Table E.10 gives guidance on 
Application, Operation and Maintenance for each Safety Integrity Level. 

5.1.2.2.11 Decommissioning and disposal 

At the end of the operational life of a system, its decommissioning and disposal shall be carried out in 
accordance with the measures defined in the Safety Plan and in Section 5 of the Technical Safety 
Report (part of the Safety Case). 

5.1.2.3 Evidence of functional and technical safety 

In addition to the evidence of quality and safety management, there is a third condition that must be 
satisfied before a system/sub-system/equipment can be accepted as adequately safe for its 
envisioned application. This consists of technical evidence for the safety of the design, which shall be 
documented in the Technical Safety Report. 

The Technical Safety Report shall be arranged under the following headings: 

Section 1 Introduction:  This section shall provide an overview description of the design, 
including a summary of the technical safety principles that are relied on for safety and the 
extent to which the system/sub-system/equipment is claimed to be safe in accordance with this 
standard. 

Section 2 Assurance of correct functional operation: This section shall contain all the evidence 
necessary to demonstrate correct operation of the system/sub-system/ equipment under fault-
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free normal conditions (that is, with no faults in existence), in accordance with the specified 
operational and safety requirements. 

The following aspects shall be included: 

2.1 System architecture description; 

2.2 Definition of interfaces; 

2.3 Fulfilment of System Requirements Specification; 

2.4 Fulfilment of Safety Requirements Specification; 

2.5 Assurance of correct hardware functionality; 

2.6 Assurance of correct software functionality. 

Section 3 Effects of faults: This section shall demonstrate that the system/sub-
system/equipment continues to meet its specified safety requirements, including the quantified 
safety target, in the event of random hardware faults. In addition, a systematic fault could still 
exist, despite the quality and safety management processes defined in 5.2 and 5.3 of this 
standard. This section shall demonstrate which technical measures have been taken to reduce 
the consequent risk to an acceptable level. 

This section shall also include demonstration that faults in any system/sub-system/equipment 
having a Safety Integrity Level lower than that of the overall system, including Level 0, cannot 
reduce the safety of the overall system. 

The following headings shall be used in this section. 

3.1 Effects of single faults; 

3.2 Independence of items; 

3.3 Detection of single faults; 

3.4 Action following detection (including retention of safe state); 

3.5 Effects of multiple faults; 

3.6 Defence against systematic faults. 

Section 4 Operation with external influences: This section shall demonstrate that when 
subjected to the external influences defined in the System Requirements Specification, the 
system/sub-system/equipment - continues to fulfil its specified operational requirements,- 
continues to fulfil its specified safety requirements (including fault conditions). 

The Safety Case is therefore valid only within the specified range of external influences, as 
defined in the System Requirements Specification. Safety is not assured outside these limits, 
unless additional special measures are provided. 

The methods used to withstand the specified external influences shall be fully explained and 
justified. 

Section 5 Safety-related application conditions: This section shall specify (or reference) the 
rules, conditions and constraints which shall be observed in the application of the system/sub-
system/equipment. This shall include the application conditions contained in the Safety Case of 
any related sub-system or equipment. 

Section 6 Safety Qualification Tests: This section shall contain evidence to demonstrate 
successful completion, under operational conditions, of the Safety Qualification Tests.  
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5.2 Introduction of ADVANCE Methods and Tools in Alstom’s system development process 

The figure below illustrates the system development process of Alstom and the activities related to 
safety (in red) and to verification and validation (in green). This process has been assessed compliant 
with CENELEC EN 50129 standard by independent safety assessors and our intention is to insert in it 
the activities, methods and tools developed in the ADVANCE project without disrupting its structure 
and balance. 

 

 
Figure 5.3. Alstom’s system development process compliant with EN50129 

In the sequel we present the contribution of ADVANCE to the achievement of the activities of each of 
the phases of the Alstom process. 

5.2.1 System Definition 

The purpose of this phase is to: 

 Establish system mission profile, 

 Prepare system description, 

 Identify operation and maintenance strategies, 

 Identify operating conditions, 

 Identify maintenance conditions, 

 Identify Influence of existing infrastructure constraints. 

5.2.1.1 Contribution of ADVANCE 

None of the activities, methods and tools of ADVANCE contributes to the achievement of the 
previous tasks. 

5.2.2 Preliminary Hazard Analysis 

Starting from the operational context/procedures and the defined system, this analysis aims at:  

 identifying the hazards at the boundary of the system under consideration (resulting from the use 
of the system in a specified context, as defined in the system definition);  

 classifying the consequences (possible accidents) of these hazards;  
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 identifying the necessary mitigations for the system or the elements of the system (including 
preliminary SIL allocation to functions), in order to lower the risk to an acceptable level;  

 (optional) predict Hazardous Failure Rate (HFR) achievable (to be confirmed by Fault Tree Analysis 
or equivalent method after detailed design).  

5.2.2.1 Contribution of ADVANCE 

ADVANCE promotes the use of STAMP and STPA for safety analyses. According to Thomas and 
Leveson [5], STAMP (System’s Theoretic Accident and Models) is a model of accident causation that 
treats safety as a control problem, rather than as a failure problem. 

STAMP is based on the observation that there are four types of hazardous control actions that need 
to be eliminated or controlled to prevent accidents: 

1) A control action required for safety is not provided or is not followed 

2) An unsafe control action is provided that leads to a hazard 

3) A potentially safe control action is provided too late, too early, or out of sequence 

4) A safe control action is stopped too soon or applied too long 

STPA (System’s Theoretic Process Analysis) is a hazard analysis technique built on STAMP. Identifying 
the potentially unsafe control actions for the specific system being considered is the first step in 
STPA. These unsafe control actions are used to create safety requirements and constraints on the 
behaviour of both the system and its components. Additional analysis can then be performed to 
identify the detailed scenarios leading to the violation of the safety constraints. As in any hazard 
analysis, these scenarios are then used to control or mitigate the hazards in the system design. 

Railway industry has a long experience using conventional, well known, safety analysis techniques: 
Fault Trees Analysis, Failure Mode Effect Analysis, etc. and, indeed, these are the only safety 
techniques recommended in CENELEC standards. Therefore, it seems to us unrealistic to propose to 
introduce STAMP and STPA without a very deep and careful examination of their pros and cons. For 
the time being ADVANCE contributes to our introduction to these techniques, to dissemination of 
this knowledge in Alstom and to encourage Alstom to go further in their evaluation. 

5.2.3 Requirements Specification 

The requirements specification phase aims at: 

 Undertake requirements analysis 

 Specify system 

 Specify environment 

 Define system demonstration and acceptance criteria 

 Establish validation plan 

 Establish management, quality and organisation requirements 

 Implement change control procedure 

5.2.3.1 Contribution of ADVANCE 

ADVANCE contributes to achieve the Requirements specification phase by introducing a formal 
model development process made of three activities: modelling, simulation and proof. 

Starting from the informal Requirements Specification document and from the Preliminary Hazard 
Analysis document the modelling activity shall consist in creating with the Rodin tool an Event-B 
model of critical parts of the system and in discharging the proof obligations ensuring that the model 
is sound or well defined (e.g. no division by 0). The Event-B model shall be verified by the verification 
and safety assurance teams regarding compliance with functional and safety requirements.  

The simulation activity shall consist in animating with ProB and/or co-simulating with FMI the Event-
B model created by the modelling activity. The simulation report shall describe the animation/co-
simulation scenarios: their objectives, their steps and the expected behaviour of the model. The 
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relevance of the scenarios regarding the envisioned behaviour of the system shall be verified by the 
verification team. The animation report shall be used by the validation team for the definition of 
system validation tests.  

The proof activity shall consist in discharging the proof obligations of the Event-B model generated 
by Rodin. The proof report shall be verified by the verification team regarding completeness and 
correctness of the proof.  

The figure below illustrates the formal development in the Requirements Specification phase. 

 
Figure 5.4. Requirements Specification formal model development process 

5.2.4 Requirements Verification 

The requirements verification activity aims at verifying completeness and consistency of system 
requirements and external interface description.  

5.2.4.1 Contribution of ADVANCE 

Currently, completeness verification consists of ensuring that system requirements capture all 
system needs identified in the previous step; and consistency verification consists of ensuring that 
requirements define sound, complementary and adequate functions. To achieve completeness 
verification verifiers construct a traceability matrix using standard requirements management tools 
(Doors, Reqtify, etc.). ADVANCE will leave this unchanged. To achieve consistency verification 
verifiers undertake document reviews. ADVANCE will provide rigorous methods and tools to achieve 
this task. 

There will be three verifications related to formal development: the Event-B model verification, the 
simulation verification and the proof verification. 

The Event-B model verification ensures that the model formalises adequately the concepts and 
requirements of the system and therefore that it is a sound basis for further formal development. 
The effectiveness of the verification will be improved because the formal model is rigorous and 
therefore reduces the ambiguities of interpretation. Furthermore, the ProR tool shall help verifiers 
keep track of requirements in the Event-B model and to generate the traceability matrix between 
system requirements and formulae in the Event-B model. The Event-B model verification report shall 
be used for consolidation of the System Safety Case. 

The simulation verification ensures that the simulation scenarios are relevant and that they cover all 
the features of the Event-B model. Model simulation and simulation verification are new activities 
that will improve considerably the confidence on the system being developed. The simulation 
verification report shall be used for consolidation of the System Safety Case. 
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The proof verification ensures completeness and correctness of proofs of proof obligations of the 
Event-B model generated by Rodin. Proof obligations represent the sufficient conditions for the 
model to be consistent. Thus, the verification of completeness and correctness of proofs of proof 
obligations shall ensure consistency of the Event-B model and contribute to check consistency of 
requirements specification. The proof verification report shall contain evidence that the proof rules 
added by the user, if any, are valid mathematical lemmas. The proof verification report shall be used 
for consolidation of the System Safety Case. 

5.2.5 System Hazard Analysis 

This analysis aims at:  

 identifying the cause and consequences of the failures of the functions and interfaces supported 
by the system on the basis of system requirements specification and external interfaces 
description;  

 identifying the mitigations necessary to control the hazards and to lower the risk at an acceptable 
level;  

 confirming the SIL allocation to the functions and interfaces of the system, 

 recording the hazards identified with their effects and the associated risk mitigation 
recommendations. 

5.2.5.1 Contribution of ADVANCE 

Safety Hazard Analysis shall identify the safety requirements captured in the Event-B model, verify 
that they are correctly formalised and log that information in the Hazard Log (cf. 5.1.2.2.3).  

The motivation for doing this is that if finally the formalisation of a system safety requirement is 
present in the model of the formally developed software of one its sub-systems it will be possible to 
close the related hazard in the Hazard Log through mathematical proof rather than through testing. 
This shall be definitively an improvement in terms of safety evidence and furthermore shall reduce 
the number of tests related to safety. 

5.2.6 Architecture Specification 

This activity aims at: 

 Apportion System Requirements 

 Specify sub-systems and component requirements 

 Define sub-systems and component acceptance criteria 

5.2.6.1 Contribution of ADVANCE 

ADVANCE contributes to achieve this activity by introducing a refinement process involving two 
activities: refinement/decomposition of the system Event-B model and proof. 

The refinement/decomposition activity shall consist in refining the properties and events of the 
Event-B model of the system in order to apportion them between the sub-systems of the system. The 
refinement technique of Event-B and the composition/decomposition plug-in of Rodin shall be used. 
This activity shall produce an Event-B model involving several refinements of the Event-B model of 
the system. This Event-B model shall be verified by the verification and safety assurance teams 
regarding respectively the adequacy and correctness of the models and the formalisation of safety 
requirements. 

The proof activity shall consist in discharging the proof obligations of the Event-B model generated 
by Rodin. The proof report shall be verified by the verification team regarding completeness and 
correctness of the proof.  

The figure bellow illustrates the formal development in the Architecture Specification phase/ 



ADVANCE  − 32 − 

 

Work Package: 1 − Deliverable: D1.3  21/10/2013 

 
Figure 5.5. Architecture Specification formal model development process 

5.2.7 Architecture verification 

This activity aims at verify consistency and completeness of system architecture and internal 
interfaces descriptions. 

5.2.7.1 Contribution of ADVANCE 

The verification of the Event-B model of sub-systems shall contribute to check consistency of this 
model regarding architecture specification. The ProR tool shall assist verifiers to trace system and 
architecture requirements in the Event-B model and to generate the traceability matrix of the 
verification report. The Event-B model verification report shall be used for consolidation of the 
System Safety Case. 

The proof obligations of the Event-B model of sub-systems generated by Rodin represent the 
necessary and sufficient conditions for this model to be consistent and compliant with the Event-B 
model of the system. Therefore, the verification of completeness and correctness of proofs of proof 
obligations shall ensure consistency of the Event-B model of sub-systems and compliance of this 
model with the Event-B model of the system.  The proof verification report shall contain evidence 
that the proof rules added by the user, if any, are valid mathematical lemmas. The proof verification 
report shall be used for consolidation of the System Safety Case. 

5.2.8 Interface Hazard analysis 

This analysis aims at:  

 identifying the cause and consequences of the failures of internal interfaces of the system on the 
basis of system architecture and internal interfaces description;  

 identifying the mitigations necessary to control the hazards and to lower the risk at an acceptable 
level;  

 confirming the SIL allocation to the components of the system, 

 recording the hazards identified with their effects and the associated risk mitigation 
recommendations. 

5.2.8.1 Contribution of ADVANCE 

Interface Hazard Analysis shall identify the safety requirements captured in the Event-B model of 
sub-systems, verify that they are correctly formalised, refined and apportioned and log that 
information in the Hazard Log (cf. 5.1.2.2.3).  

5.2.9 Sub-systems development 

The development process of each sub-system depends on the nature of the sub-system. 

If the sub-system itself is decomposed in sub-systems, like for instance the ATS and ATC sub-systems 
then, except minor details, the process described here shall be followed.  If the sub-system is not 
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decomposed into sub-systems, like for instance the wayside zone controller, then the development 
of its hardware and the development of its software start in parallel.  

5.2.9.1 Contribution of ADVANCE 

When one of the sub-systems to be developed is not decomposed into sub-systems and is safety-
critical its software is developed formally with Classical-B method. In this case, the Event-B model of 
the sub-system shall be used to create the initial Classical-B model of the software. This Classical-B 
model is not a refinement of the Event-B model, in the B sense of the term. Therefore, it will not be 
possible to prove formally compliance of the Classical-B model with the Event-B model. However, the 
former shall be generated systematically from the latter according to a validated predefined schema 
[6] that will ensure compliance. We shall the have a continuous and homogeneous formal process 
from system development to software development. Ensuring the soundness of the translation is a 
topic for future research. 

The figure bellow is an extract of the Software Development Work Method Statement of Alstom 
Transport Information Solutions. It illustrates the development process of safety-critical software 
with Classical-B. 

 
Figure 5.6. Alstom’s Software development process with Classical-B 

It should be noted that in this process component testing is not performed on components 
developed with Classical-B and that integration testing is performed only to test interfaces between 
components developed with Classical-B and components not developed with Classical-B. 

Likewise we shall take advantage of the use of Event-B for system development and of Classical-B for 
software development to reduce system testing activities. 

5.2.10 Sub-system safety cases consolidation 

This activity aims at: 

 assess the Safety Cases of the sub-systems, 
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 identify and record the hazards closed by sub-system development, 

 analyse the consequences on safety of the constraints exported by the sub-systems and, if 
necessary, integrate them into the Hazard Log. 

5.2.10.1 Contribution of ADVANCE 

ADVANCE contributes indirectly to this activity through safety analysis and verifications reports 
produced by the safety and verifications teams during the development of the sub-systems. 

5.2.11 System integration 

This activity aims at: 

 assemble all the sub-systems, 

 test compliance with system architecture and internal interface descriptions. 

5.2.11.1 Contribution of ADVANCE 

Requirements on the interface of a sub-system that have been formalised and proved in an Event-B 
model need not to be tested if the software of the sub-system has been formally developed and if its 
Classical-B model captures these requirements too. 

5.2.12 Safety integration verification  

This activity aims at verify that safety requirements closing hazards related to architecture and 
internal interfaces have been effectively satisfied  either by testing or by formal proof of Event-B and 
Classical-B models. 

5.2.12.1 Contribution of ADVANCE 

ADVANCE contributes indirectly to this activity through safety analysis and verifications reports 
produced by the safety and verifications teams during the development of the sub-systems. 

5.2.13 System validation 

This activity aims at: 

 perform tests ensuring fulfilment of system requirements, 

 analyse system verification and integration reports, 

 analyse sub-system verification and validation reports. 

5.2.13.1 Contribution of ADVANCE 

As for system integration, requirements on the system that have been formalised and proved in an 
Event-B model need not be tested if they have been refined and apportioned between subs-systems 
formally developed and proved. 

5.2.14 System safety case consolidation 

This activity aims at produce a System Safety Case compliant with CENELEC EN 50129 standard as 
described in §5.1.2. 

5.2.14.1 Contribution of ADVANCE 

5.2.15 System acceptance 

This activity aims at: 

 assess that the signalling system meets the customer requirements 

 assess reliability, availability and maintainability demonstration, 

 assess application specific System Safety Case 
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5.2.15.1 Contribution of ADVANCE 

ADVANCE contributes indirectly to this activity through safety analysis and verifications reports 
produced by the safety and verifications teams during the development of the sub-systems. 

6. Concluding 

Considerable advances have been made in WP1 during Period 2 of the project and these are 
documented here. We have demonstrated the feasibility of a refinement based approach to 
modelling, simulation and verification of a complex interlocking system.  We have identified both 
strengths and weaknesses of the existing Rodin tools for Event-B and found that considerable 
improvements have been made to the tools over the last period.  Our experiences with the 
development of a refinement strategy approach will provide important guidance for other systems 
engineers in the future, both within Alstom and externally.  The weaknesses we have identified in 
Rodin is helping the tool developers to prioritise there development plans. We have also developed a 
thorough understanding of where and how the ADVANCE methods and tools will contribute to 
enhancing the Alstom safety development process.  Since the Alstom process id derived from 
processes defined by European standards, we believe many of these insights will be applicable to 
safety development in other domains. 
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