
ADVANCED DESIGN AND VERIFICATION ENVIRONMENT

FOR CYBER-PHYSICAL SYSTEM ENGINEERING

www.advance- ict.eu

DELIVERABLE D1.3 – WORK PACKAGE 1

INTERMEDIATE REPORT ON APPLICATION ON

RAILWAY DOMAIN
ADVANCE

Grant Agreement: 287563

Date: October 21
st
 2013

Author:

Pages:

Fernando Mejia, Alstom; Minh-Thang Khuu, Systerel

Status:

Reviewer: M. Leuschel; M. Butler

Reference: D1.3

Issue: 1

Partners / Clients:

FP7 Framework Programme European Union

Consortium Members:

University of

Southampton

Critical Software

Technologies
Alstom Transport Systerel

Heinrich Heine

Universität Düsseldorf

ADVANCE − 2 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

Contents
1. Introduction ..4

2. Proof of the IXL-DC Event-B model ..4

3. Testing of the IXL-DC Event-B model .. 16

4. Intermediate assessment of ADVANCE tools .. 18

4.1 Event-B .. 19

4.2 Rodin ... 19

4.2.1 Theory plug-in .. 20

4.3 ProB .. 20

4.4 Co-simulation .. 21

5. Contribution of ADVANCE Methods and Tools to Alstom’s certification process 21

5.1 Certification framework ... 21

5.1.1 CENELEC standard EN 50126 .. 21

5.1.2 CENELEC standard EN 50129 .. 23

5.2 Introduction of ADVANCE Methods and Tools in Alstom’s system development process ... 28

5.2.1 System Definition ... 28

5.2.2 Preliminary Hazard Analysis ... 28

5.2.3 Requirements Specification .. 29

5.2.4 Requirements Verification .. 30

5.2.5 System Hazard Analysis .. 31

5.2.6 Architecture Specification .. 31

5.2.7 Architecture verification ... 32

5.2.8 Interface Hazard analysis .. 32

5.2.9 Sub-systems development ... 32

5.2.10 Sub-system safety cases consolidation ... 33

5.2.11 System integration ... 34

5.2.12 Safety integration verification .. 34

5.2.13 System validation ... 34

5.2.14 System safety case consolidation ... 34

5.2.15 System acceptance ... 34

6. Concluding .. 35

References .. 36

ADVANCE − 3 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

 List of figures
Figure 3.1. Envisioned IXL-DC code generation process and test environment architecture 16

Figure 3.2. Implemented IXL-DC code generation process and test environment architecture 18

Table 5.1. Safety Tasks for each phase defined in EN50126 ... 23

Figure 5.2. Example of design and validation life-cycle defined in EN50129 25

Figure 5.3. Alstom’s system development process compliant with EN50129 28

Figure 5.4. Requirements Specification formal model development process 30

Figure 5.5. Architecture Specification formal model development process .. 32

Figure 5.6. Alstom’s Software development process with Classical-B .. 33

ADVANCE − 4 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

1. Introduction

The first period of the project (October 2101-September 2012) was devoted to a feasibility study of
the formal development in Event-B of an interlocking dynamic controller (IXL-DC). That is to say the
ability to construct with ADVANCE methods and tools an Event-B model of an independent
component that would control commands of the interlocking system (IXL) in order to ensure
protection of trains against face-to-face collisions, flank collisions and derailment. Within this period
we defined the requirements of the IXL-DC, constructed an abstract model of a signalling system
including a model of the IXL-DC and studied the transition from an Event-B model to a Classic-B
model for the development of its software. For this study we used methods and tools provided by
ADVANCE: the Rodin platform and its Theory plug-in to construct the system model and demonstrate
some of its proof obligations and ProB to ensure by interactive animation that the behaviour of the
model is indeed the one we imagined. We presented the activities of the first period and their results
in deliverable D1.2.

This deliverable presents the activities undertaken during the second period of the project (October
2012-September 2013). This period was devoted to demonstrate the validity of the IXL-DC model
constructed within the previous period and to define a system development process involving
development of formal models and compliant with applicable certification standards in railway
domain.

Sections 2 and 3 of the deliverable describe the validation of the IXL-DC model. Section 2 describes
the steps followed to proof the mathematical correctness of the model. Their purpose it to control
the number and the complexity of proof obligations by means of stepwise enrichment of a fairly
abstract initial model. This method is the one promoted by ADVANCE and has already demonstrated
its effectiveness. Section 3 describes the process followed to test the behavioural correctness of the
IXL-DC model. The purpose is to verify under realistic operating conditions that IXL-DC is neither too
permissive nor too restrictive. The process includes the generation of a compiled executable version
of the IXL-DC model and the reuse of factory acceptance tests of an actual signalling system.

In section 4 of the deliverable we give an intermediate assessment of the methods and tools used so
far for our case study. For each of them we analyse its ability to be adopted by industry according to
technical, maintenance and sustainability criteria.

The fifth and final section of the deliverable presents the system development process including
development of formal models with ADVANCE methods and tools that Alstom might adopt. The first
part of the section presents the regulatory framework, that is to say, the requirements on the system
development process made by the European CENELEC certification standards and applicable to the
railway industry. The second part of the section presents the steps of the process and explains how
the activities related to the development of formal models with ADVANCE methods and tools
contribute to meet the requirements of certification standards.

2. Proof of the IXL-DC Event-B model

The proof of an Event-B model is considerably easier if the model is constructed by successive
refinements that enrich progressively an abstract initial model. The first step of this process consists
of creating a refinement plan that defines and explains the number, the nature and the purpose of
the refinements that will be done.

This section presents the refinement plan for the Event-B model of the IXL-DC. The objective of this
plan is to define the refinement steps in such a way that the last refinement is equivalent to the IXL-
DC model created in the first period.

Event-B model

The model must incorporate certain IXL principles, the environment and IXL-DC. The abstract level
describes a high-level view of the whole system. As the refinement goes further, closer views of the

ADVANCE − 5 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

system are given. The IXL-DC plays the role of a filter to IXL commands, including commands of signal
aspects, of point movement, of directions on blocks and commands of overlap locked signals.

The model must take into account the changes of the environment status. These changes are
modelled by events including those of train movement (train advancing, train entering or leaving the
considered track network, train turnaround), of train shunting on track circuit, of point movement
and of signal aspect changes.

Modelling context: the model is based on a general configuration of track network and related
devices. These data consist of disposition of blocks, points and signals, the definition of timers and
secondary detection devices (SDD). The correctness of these data is out of the scope of our modelling
activity. Formalised assumptions on these data are used as entry elements of the model.

The initial model:

Modelling rationale: The previous deliverable D1.2 has presented an initial model of the IXL-DC
system and the usage of the Theory plug-in. In this first model, trains on the track network are
modelled by chains of oriented blocks and the non-collision properties are expressed by the
compatibility of these areas:

The above two properties can be expressed within a block chaining structure and operators
chain_on_graph and is_ch_compatible) defined by using the Theory plug-in. For example, let
v_next_blocks be the dynamic track network,

 -

Modelling context data: This initial model uses the following data of track network configuration:

Events:

Events Description Guards and actions

train_front_move Train front advances one block Guard: the block added to the train front
must be compatible with other train chains.

Action: update train chaining.

train_rear_move Train rear advances one block Action: update train chaining.

train_turnaround Train turns around Guard: train must be in the turnaround
block zone; and blocks in the turnaround
block chain must be compatible with other
train chains.

Action: update train chaining.

train_leave_area Train leaves the considered
network area.

Action: update train on the network area.

train_enter_into_area Train enters into the network
area.

Guard: extremity blocks where trains enter
must be compatible with other train chains.

Action: update train chaining.

signal_permissive_aspect Guard: the signal must be in restrictive
aspect.

Action: update signal aspect.

ADVANCE − 6 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

signal_restrictive_aspect Guard: the signal must be in permissive
aspect.

Action: update signal aspect.

point_move_to_unknown Point moves from left or right
position to unknown position.

Guard: The point must not be under any
train.

Action: update point position.

point_move_to_right Point moves from unknown
position to right position.

Action: update point position.

point_move_to_left Point moves from unknown
position to left position.

Action: update point position.

First refinement:

Refinement rationale: In this refinement, protected areas are introduced. The notion of protected
area is more general than that of train movement authorization zone: a protected area is not
necessarily assigned to a train. Protected areas must ensure non-collision and non-derailment of
trains. Safety properties can be expressed as follows:

The property (1_1) is a link property. As trains are covered by protected area, properties (0_1) and
(0_2) in the abstract machine can be refined into the properties (1_2) and (1_3). In other words, the
abstract properties hold whenever the concrete properties hold.

Protected areas can be implemented by chains of oriented blocks on the dynamic track network.

Modelling context data: this refinement uses the same modelling context data as that of its abstract
level.

Events: Events and their abstract events are listed in the following table. Bold events are those that
are first introduced in this refinement; underlined events are those that have guard strengthened or
actions added/modified:

Events Description Guards and actions

train_front_move

abstract : train_front_move

Cf. abstract Guard: the block added to the train
front must be in the train protected
area.

train_rear_move Cf. abstract

train_turnaround

abstract: train_turnaround

Cf. abstract Guard: protected area of train must
be in the turnaround block zone.

train_leave_area Cf. abstract

train_enter_into_area

abstract: train_enter_into_area

Cf. abstract Action: create a protected area
covering the train.

signal_permissive_aspect Cf. abstract

signal_restrictive_aspect Cf. abstract

point_move_to_unknown

abstract: point_move_to_unknown

Cf. abstract Guard: The point must not be in a
protected area.

ADVANCE − 7 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

point_move_to_right Cf. abstract

point_move_to_left Cf. abstract

reduce_rear_protected_area Reduce rear of a protected area Guard: rear of the protected area
must not be in a train chaining.

Actions: update protected areas.

reduce_front_protected_area Reduce front of a protected area Guard: front of the protected area
must not be in a train chaining.

Actions: update protected areas.

remove_protected_area Remove a protected area Guard: protected area reduced to a
block and this block must not be in a
train chaining.

Actions: update protected areas.

extend_protected_area Extend a protected area by a set
of blocks.

Guard: the extended blocks must be
compatible with other protected
areas.

Actions: update protected areas.

split_protected_area Split a protected area at a given
block into two protected areas not
containing the splitting block.

Guard: The given block must not be
in a train chaining and must be
neither the rear nor the front of the
protected area.

Actions: update protected areas.

Second refinement:

Refinement rationale: This refinement introduces the filtered commands of points into the model
and refines the movement of points. The movement of a point from left (right) position to unknown
position implies that its conjugated points are also moved to unknown position. A point is in moving
from unknown to left (right) position implies that its conjugated points are in moving from unknown
position to their corresponding positions. A point is moved from unknown position to left (right) if it
was moving to left (right). A point moves only when commanded. Safety properties are refined as
follows:

When the properties 2_0 and 2_1 are verified, properties 1_2 and 1_3 are also verified.

Modelling context data: In addition to context data used in the abstract level, this refinement uses
the following context data:

Events: Events and their abstract events are listed in the following table. Bold events are those that
are first introduced in this refinement; underlined events are those that have guard strengthened or
actions added:

Events Description Guards and actions

train_front_move cf. abstract

train_rear_move cf. abstract

train_turnaround cf. abstract

train_leave_area cf. abstract

train_enter_into_area cf. abstract Guard: In IXL data configuration, there is

ADVANCE − 8 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

no point on extremity blocks. Thus
extremity blocks contain no point in point
command set.

signal_permissive_aspect cf. abstract

signal_restrictive_aspect cf. abstract

reduce_rear_protected_area cf. abstract

reduce_front_protected_area cf. abstract

remove_protected_area cf. abstract

split_protected_area cf. abstract

extend_protected_area

(abstract:
extend_protected_area)

cf. abstract Guard: extended blocks must not contain
any point which is in the point commands
or in the conjugated point set of a
commanded point.

point_move_to_unknown

(abstract:
point_move_to_unknown)

cf. abstract Guard: point must not belong to any
protected area; and there is a point
command to the opposite position.

point_move_to_right

(abstract: point_move_to_right)

cf. abstract Guard: point is moving to right and there is
a point command to right position.

Actions: update point position (right).

point_move_to_left

(abstract: point_move_to_left)

cf. abstract Guard: point was moving to left and there
is a point command to left position.

Actions: update point position (left).

point_is_moving_to_right Point is moving from unknown to
right position.

Guard: point is unknown and there is a
point command to right position.

Actions: update point is moving.

point_is_moving_to_left Point is moving from unknown to
left position.

Guard: point is unknown and there is a
point command to left position.

Actions: update point is moving.

cmd_point_to_right Send a point command. Guard: point and its conjugated points
must not belong to any protected area.

Actions: add point command.

cmd_point_to_letf Send a point command. Guard: point and its conjugated points
must not belong to any protected area.

Actions: add point command.

no_cmd_point Remove a point command. Actions: remove a point command.

Third refinement:

Refinement rationale: This refinement introduces traffic direction commands and all booked blocks.
All booked blocks include booked blocks and overlap booked blocks. A traffic direction can be set on
a block, only if the block was already booked and had no direction. In our model, we examine booked
blocks from the moment directions have first been set on them. Therefore points in point commands
or in their conjugated points have no underlying booked blocks. The refinement is based on the
following safety properties:

The properties (2_0) and (2_1) hold when (3_2), (3_3) and (3_4) hold.

ADVANCE − 9 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

Modelling context data: this refinement uses the same modelling context data as that of its abstract
level.

Events: Events and their abstract events are listed in the following table. Bold events are those that
are first introduced in this refinement; underlined events are those that have guard strengthened or
actions added:

Events Description Guards and actions

train_front_move cf. abstract

train_rear_move cf. abstract

train_turnaround

(abstract: train_turnaround)

cf. abstract Guard: there are traffic direction
commands on turnaround blocks.

train_leave_area cf. abstract

train_enter_into_area cf. abstract Guard: the extremity block must be
compatible with other booked blocks.

Action: add the extremity block to booked
blocks and set the traffic direction on it.

signal_permissive_aspect cf. abstract

signal_restrictive_aspect cf. abstract

reduce_rear_protected_area cf. abstract Action: release booked block.

reduce_front_protected_area cf. abstract Action: release booked block.

remove_protected_area cf. abstract Action: release booked block.

split_protected_area cf. abstract Action: release booked block.

extend_protected_area cf. abstract

point_move_to_unknown

(abstract:
point_move_to_unknown)

cf. abstract Guard: point and its conjugated point must
not belong to any booked blocks.

point_move_to_right cf. abstract

point_move_to_left cf. abstract

point_is_moving_to_right cf. abstract

point_is_moving_to_left cf. abstract

cmd_point_to_right

(abstract: cmd_point_to_right)

cf. abstract Guard: point and its conjugated point must
not belong to any booked blocks.

cmd_point_to_letf

(abstract:cmd_point_to_letf)

cf. abstract Guard: point and its conjugated point must
not belong to any booked blocks.

no_cmd_point cf. abstract

Set a traffic direction on a block. Guard: There is a traffic direction

command on the block and, the block
must either have been booked or be
compatible with all other booked blocks.

Action: update the booked blocks and
traffic directions on blocks.

 Release the traffic direction of a
block.

Action: release the traffic direction of the
block.

 Set a traffic direction command. Action: update the traffic direction
commands.

 Set traffic direction on blocks. Guard: there is a traffic direction
command on the block and, the block
must have no traffic direction and their
opposite blocks must have been booked.

ADVANCE − 10 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

Action: update the traffic direction on
blocks and booked blocks.

no_cmd_traffic_direction Unset a traffic direction
command.

Action: update the traffic direction
commands.

cmd_overlap_booked_block Book overlap blocks. Guard: the blocks must be compatible with
all other booked blocks.

Action: update the overlap booked blocks.

Fourth refinement:

Refinement rationale: this refinement introduces track circuits in order to strengthen guards of
events. The controller does not know anymore the position of trains, but has a fuzzier picture based
on track circuits that are shunted by trains.

Modelling context data: In addition to context data used in the abstract level, this refinement uses
the following context data:

Events: Events and their abstract events are listed in the following table. Underlined events are those
that have guard strengthened or actions added:

Events Description Guards and actions

train_front_move

(abstract: train_front_move)

cf. abstract Action: update train shunt status.

train_rear_move

(abstract: train_rear_move)

cf. abstract Action: update train shunt status.

train_turnaround

(abstract: train_turnaround)

cf. abstract Action: update train shunt status.

train_leave_area

(abstract: train_leave_area)

cf. abstract Action: update train shunt status.

train_enter_into_area

(abstract:
train_enter_into_area)

cf. abstract Action: update train shunt status.

signal_permissive_aspect cf. abstract

signal_restrictive_aspect cf. abstract

reduce_rear_protected_area cf. abstract Guard: Underlying SDD of the block must
be clear.

reduce_front_protected_area cf. abstract Guard: Underlying SDD of the block must
be clear.

remove_protected_area cf. abstract Guard: Underlying SDD of the block must
be clear.

split_protected_area cf. abstract Guard: Underlying SDD of the block must
be clear.

extend_protected_area cf. abstract

point_move_to_unknown cf. abstract

point_move_to_right cf. abstract

point_move_to_left cf. abstract

point_is_moving_to_right cf. abstract

point_is_moving_to_left cf. abstract

cmd_point_to_right cf. abstract

ADVANCE − 11 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

cmd_point_to_letf cf. abstract

no_cmd_point cf. abstract

cf. abstract Guard: underlying SDD of blocks must be
clear.

 cf. abstract

cf. abstract

cf. abstract Guard: underlying SDD of blocks must be
occupied.

no_cmd_traffic_direction cf. abstract

cmd_overlap_booked_block cf. abstract

Fifth refinement:

Refinement rationale: This refinement introduces signals and related timers. In this machine,
protected area formation is defined: when a signal turns to permissive aspect, a protected area is
extended from the downstream block of the signal until the upstream block of the next signal or
possibly sliding blocks of the next signal. Protected blocks are removed when blocks are un-booked.

Modelling context data: In addition to context data used in the abstract level, this refinement uses
the following context data:

Events: Events and their abstract events are listed in the following table. Bold events are those that
are first introduced in this refinement; underlined events are those that have guard strengthened or
actions added:

Events Description Guards and actions

train_front_move cf. abstract

train_rear_move cf. abstract

train_turnaround cf. abstract

train_leave_area cf. abstract

train_enter_into_area cf. abstract

signal_permissive_aspect

(abstract:
signal_permissive_aspect)

cf. abstract Guard: there is a command of signal to
permissive aspect.

signal_restrictive_aspect

(abstract:
signal_restrictive_aspect)

cf. abstract Guard: there is a command of signal to
restrictive aspect.

release_signal_ instantaneously

(abstract:
reduce_rear_protected_area,

remove_protected_area)

cf. abstract Guard: the block is the downstream block
of the signal. Underlying SDD of approach
section of the signal must be clear.

release_block cf. abstract Guard: the block is NOT the downstream

ADVANCE − 12 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

(abstract:
reduce_rear_protected_area,

remove_protected_area)

block of the signal.

release_overlap_block

(abstract:
reduce_rear_protected_area,

remove_protected_area)

cf. abstract Guard: the block belongs to the sliding
section of the signal and its previous block
is not booked.

Action: update overlap locked command
on the signal.

release_signal_by_timer_on_ov
erlap

(abstract:
reduce_front_protected_area,

split_protected_area)

cf. abstract Guard: the block is the downstream block
of the signal. The underlying SDD of
upstream block of the signal is occupied.
The signal timer has expired.

Action: update overlap locked command
on the signal.

release_signal_by_sequence_T
ORA

First step of the sequence of
signal release.

Guard: the block is a downstream block of
signal. The underlying SDD of the block is
clear, and the SDD of the previous block is
occupied. The signal is permissive.

Action: Signal sequence is set to seq_1.

release_signal_by_sequence_T
ORB

Second step of the sequence of
signal release.

Guard: the block is a downstream block of
signal. The underlying SDDs of the block
and of the previous block are occupied,
and the underlying SDD of the next block is
clear. Signal sequence is seq_1. The signal
is restrictive.

Action: Signal sequence is set to seq_2.

release_signal_by_sequence_TO
RC

(abstract:
reduce_rear_protected_area)

Last step of the sequence of signal
release.

Guard: the block is a downstream block of
signal. The underlying SDD of the block is
clear, and the SDD of the next block is
occupied. Signal sequence is seq_2. The
signal is restrictive.

Action: Signal sequence is set to seq_0.

(abstract:
extend_protected_area)

 Guard: the given blocks must be between
two signals and there is no other signal
between these two signals. The given
blocks can eventually include sliding blocks
of the second signal. All these blocks must
have been booked. If there are turnaround
blocks of the signal in the given blocks, all
trains in the turnaround area must be
stopped in the exit direction.

Action: add signal permissive command
and extend protected area.

(abstract:
extend_protected_area)

 Guard: the given blocks must be between
the signal and the discrimination area; and
there is no signal between the signal and
the discrimination area. All these blocks
must have been booked. Underlying SDD
of discrimination area is clear.

Action: add signal permissive command
and extend protected area.

 Command of restrictive aspect on
a signal

Action: add signal restrictive command.

point_move_to_unknown cf. abstract

point_move_to_right cf. abstract

point_move_to_left cf. abstract

ADVANCE − 13 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

point_is_moving_to_right cf. abstract

point_is_moving_to_left cf. abstract

cmd_point_to_right cf. abstract

cmd_point_to_left cf. abstract

no_cmd_point cf. abstract

 cf. abstract
 cf. abstract

 cf. abstract
 cf. abstract

no_cmd_traffic_direction cf. abstract

cmd_overlap_locked

(abstract:
cmd_overlap_booked_block)

cf. abstract Guard: the given blocks must be the sliding
blocks of the signal.

Sixth refinement:

Refinement rationale: This refinement introduces IXL commands. Therefore, guards of previous
filtered commands are strengthened by the presence of IXL commands.

Modelling context data: this refinement uses the same modelling context data as that of its abstract
level.

Events: Events and their abstract events are listed in the following table. Bold events are those that
are first introduced in this refinement; underlined events are those that have guard strengthened or
actions added:

Events Description Guards and actions

train_front_move cf. abstract

train_rear_move cf. abstract

train_turnaround cf. abstract

train_leave_area cf. abstract

train_enter_into_area cf. abstract

signal_permissive_aspect cf. abstract

signal_restrictive_aspect cf. abstract

release_signal_ instantaneously cf. abstract

release_block cf. abstract

release_overlap_block

(abstract:
release_overlap_block)

cf. abstract Guard: there is no IXL overlap locked
command on the signal.

release_signal_by_timer_on_ov
erlap

cf. abstract

release_signal_by_sequence_TO
RA

cf. abstract

release_signal_by_sequence_TO
RB

cf. abstract

release_signal_by_sequence_TO
RC

cf. abstract

(abstract:
cmd_signal_permissive_aspect)

cf. abstract Guard: there is an IXL signal permissive
command.

cf. abstract Guard: there is an IXL signal permissive

ADVANCE − 14 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

(abstract:
cmd_signal_permissive_aspect_
toward_discrimination_area)

command.

cf. abstract Guard: there is an IXL signal restrictive
command.

point_move_to_unknown cf. abstract

point_move_to_right cf. abstract

point_move_to_left cf. abstract

point_is_moving_to_right cf. abstract

point_is_moving_to_left cf. abstract

cmd_point_to_right

(abstract: cmd_point_to_right)

cf. abstract Guard: there is an IXL point command to
right.

cmd_point_to_left

(abstract: cmd_point_to_left)

cf. abstract Guard: there is an IXL point command to
left.

no_cmd_point

(abstract: no_cmd_point)

cf. abstract Guard: there is no IXL point command on
the considered point.

 cf. abstract

 cf. abstract

cf. abstract Guard: there is an IXL traffic direction

command.

 cf. abstract

no_cmd_traffic_direction

(abstract:
no_cmd_traffic_direction)

cf. abstract Guard: there is no IXL traffic direction
command on the considered block.

cmd_overlap_locked

(abstract: cmd_overlap_locked)

cf. abstract Guard: there is an IXL command of overlap
locked on a signal.

IXL_command_signal An IXL signal command
(permissive or restrictive)

Guard: the signal is not commanded on
this aspect.

Action: Update IXL signal commands.

IXL_command_point An IXL point command (left or
right)

Guard: there is no point command on the
considered point.

Action: Update IXL point commands.

IXL_no_command_point Remove an IXL point command
(left or right)

Guard: there is a point command on the
considered point.

Action: Update IXL point commands.

IXL_command_traffic direction An IXL traffic direction command Guard: there is no traffic direction
command on the considered block.

Action: Update IXL traffic commands.

IXL_no_command_traffic
direction

Remove an traffic direction
command

Guard: there is a traffic direction
command on the considered block.

Action: Update IXL traffic commands.

IXL_command_overlap_locked An IXL overlap locked command
on a signal

Guard: there is no overlap locked
command on the considered signal.

Action: Update IXL traffic commands.

IXL_no_command_
overlap_locked

Remove an IXL overlap locked
command on a signal

Guard: there is an overlap locked
command on the considered signal.

Action: Update IXL overlap locked
commands.

ADVANCE − 15 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

Relationship between notions

All booked blocks include booked blocks and overlap booked blocks. Traffic directions may be set or
unset on booked blocks. Protected area blocks are established on booked blocks and overlap booked
blocks when there is a permissive signal command. Blocks are still in protected areas when traffic
directions are unset on them. When a block is un-booked, it is also removed from the protected area.
The following figure illustrates these notions. Note that traffic directions are set on blocks from the
signal S3 to S6, but the signal S3 has not changed to permissive aspect. Thus protected areas do not
cover these blocks. Protected areas cover blocks between the signals S4 and S5 in spite of the fact
that there is no traffic direction on these blocks.

Let B, B1 and B2 denote the set of all booked blocks, that of booked blocks and that of overlap
booked blocks. Let T denote the set of blocks on which traffic directions are defined, and let P denote
the set of blocks in protected areas. The following predicates and explications give an overview on
the relations between these sets:

Blocks in all booked blocks are compatible and they are not blocks of points belonging to
commanded points or conjugated points thereof.

S1 S2 S3

S4 S5 S6 S7

Booked blocks

Overlap booked blocks

Traffic direction blocks

Protected areas

Trains

Turn around blocks

ADVANCE − 16 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

3. Testing of the IXL-DC Event-B model

Our experience in development of formal models of software has shown that a model cannot be
considered adequate or valid as long as the corresponding software has not been tested. There is no
reason why the situation should be different at system level. This is why we planned in our case
study to test the IXL-DC under realistic operating conditions.

With that purpose in mind, our initial intention was to develop manually a Classical-B model of the
IXL-DC software starting from the IXL-DC Event-B model, then to develop manually the corresponding
B01 model and the runtime environment (I/O procedures, scheduler, etc.), then to translate
automatically this B0 model into an Ada program, then to generate automatically the corresponding
executable code and finally to plug this code in Alstom’s Factory Integration & Validation Platform
(FIVP) where signalling systems are tested under conditions close to real operating conditions.

The figure below illustrates the envisioned code generation process and architecture of the test
environment.

Figure 3.1. Envisioned IXL-DC code generation process and test environment architecture

1
 B0 is the subset of Classic-B that involves only the data types and instructions available in imperative

programming languages like Ada or C.

IXL-DC Event-
B model

IXL-DC
Classical-B

model

IXL-DC B0
model

IXL-DC Ada
code

IXL IXL-DC

ATS

LAC

ATC

Test parameters

Log

Automatic

Automatic

 Ada runtime
environment

Manual

Manual

Manual

Supervision panel

Train command panel

 STOP

ON

MM

OFF

AM EB

ACC BRK

Cabin information panel

XXX

YYY

ZZZ Speed

Traffic command
panel

AAA

BBB

CCC

DDD

EEE

FFF

FIVP

FIVP communication network

ADVANCE − 17 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

In the previous figure, boxes ATS, ATC and IXL represent the actual sub-systems (hardware and
embedded executable code); box IXL-DC represents only the executable code of IXL-DC; box LAC
represents the Logic Communication Analyser, a probe that scrutinises all the messages exchanged
between the components of the test environment and logs them in a file; and box FIVP represents
the Factory Integration and Validation Platform mentioned above.

FIVP provides interfaces enabling the tester to play the Train Driver role (if the train control system is
not fully automatic) and displays the cabin information according to the system state. FIVP simulates
trains according to mathematical continuous models of kinetics and their physical characteristics of
trains, and wayside devices (points, signals, track circuits, etc.).

We started to implement this process, but we realized after writing some Classic-B software
components that it would take too long given the project deadlines and, in addition, that it would
bring us no real methodological lesson given that we have long experience developing Classical-B
models of software.

We therefore imagined a simpler and quicker to implement process.

First we abandoned the idea to plug the IXL-DC software in the FIVP because this requires non trivial
developments. We decided instead to exploit the messages logged by the logic analyser of
communications during tests as this log contains all the information required by the IXL-DC to control
the IXL and is easily achievable.

Second, drawing inspiration from ProB and other interpreters of the B language, we created a
module in Ocaml language providing a set of functions and iterators enabling straightforward
translation of Event-B models in Ocaml language and generation of compiled executable code.

Third, in order to exploit test logs and visualise the IXL-DC behaviour, we created the Ocaml modules
that schedule events, that read test logs and that visualise graphically the state of IXL-DC.

And fourth, we created data representing the track of the line used for testing. This test line is a real
commercial line with 263 blocks, 112 track circuits, 40 points and 85 signals.

The figure below illustrates the implemented code generation process and the test environment of
IXL-DC. This shows that the IXL-DC implementation can be run side-by-side with the standard test
environment, driven by communications coming from the other components via the log

This test environment architecture allows realistic and reasonably efficient testing of the IXL-DC
model. Indeed, the tested executable code of IXL-DC is close to the Event-B model; the test line is a
real commercial line; the controlled IXL system is the actual IXL system operating with the actual ATS
and ATC systems and with trains and wayside equipment modelled by mathematical continuous
models developed with the MATLAB toolbox.

We have just begun testing with logs provided by the validation team of the signalling system
developed for the test line used. The first positive results are that the run tests revealed gaps in data
representing the line and that after some few adjustments they execute completely. That is to say
that although the model has not been fully proved yet it is relatively sound (i.e. no unexpected
abortions due, for instance, by division by 0). We shall now start the analysis of the tests results and
this will lead certainly to modifications of the model.

We do not consider testing as a substitute for animation but rather as a complement. Animation is an
essential step to develop models using representative but not necessarily industrial size cases and to
ensure that their behaviour is effectively the envisioned behaviour. Animation permits an interactive
analysis of properties of constants, variables and events. Testing on his side ensures that the
behaviour of the model meets the needs for which the system was designed. Moreover, testing is
done on an almost operating environment and deals with industrial size cases hardly compatible, at
least with the current technology, with animation conditions.

Investigation: OCaml hand-translation compared to ProB

In a side experiment we have tried to perform the testing conducted using the OCaml hand-
translated model using the ProB tool to run the original model, but reading in the log-data using

ADVANCE − 18 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

newly developed external I/O functions (external functions were added previously to ProB, and allow
to link external Prolog code to B models). The results were very encouraging: we managed to replay
the original log files about 2.5 times faster than the hand-translated OCaml code. We will analyse
whether it is feasible to integrate ProB directly into the test-environment architecture (skipping the
hand-translation process).

Figure 3.2. Implemented IXL-DC code generation process and test environment architecture

4. Intermediate assessment of ADVANCE tools

Within the first period of ADVANCE we defined requirements on the IXL-DC, created an Event-B
model of it, proved some of its parts and validated its behaviour relatively to the behaviour we had in
mind. We had some difficulties using the Theory plug-in of Rodin to prove the theories involved in
the model and using ProB to animate the Event-B model involving theories. To overcome these
problems we translated the Event-B model into Classical-B and animated that model with ProB. We
reported these activities and difficulties in deliverable D1.2 ([6]).

FIVP

ATS

IXL

ATC

Test parameters

Log

Supervision panel

Train command panel

 STOP

ON

MM

OFF

AM EB

ACC BRK

Cabin information panel

XXX

YYY

ZZZ Speed

AAA

BBB

CCC

DDD

EEE

FFF

LAC

FIVP communication network

Traffic command
panel

IXL-DC

IXL-DC Event-B
model

IXL-DC Ocaml
code

Manual

Automatic

Ocaml runtime
environment

Manual

Log'

ADVANCE − 19 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

During the second period of ADVANCE we concentrate on two activities. First, we undertook the
exhaustive formal verification, through proof and model-checking, of the Event-B model of IXL-DC.
For proof we used the refinement technique, Rodin’s theorem provers and the improved Theory
plug-in; for model checking we used ProB. Second, we undertook the validation of the model of IXL-
DC using system tests involving indirectly an actual signalling system and a continuous model of a
train.

In this section we present an assessment of the methods and tools provided by ADVANCE that we
have used so far in our case study and on the tools that we would like ADVANCE to provide. This
assessment is obviously not definitive since the methods and tools will evolve as a result of on-going
improvements and of the needs identified by the cases studies.

We start assessing Event-B and the modelling approach based on refinement regarding its usability
for modelling industrial sized systems.

4.1 Event-B

The Event-B language has two qualities: simplicity and “openness”. For simplicity we mean that Even-
B is based on a reduced set of simple concepts which facilitates learning and practice by non-formal
methods experts and decreases the cost of formal proof. And for openness we mean that Event-B is
not determined once for all, the user is able to extend the language according to its needs as long as
it complies with some fundamental rules. Moreover, the development method based on refinement
allows progressive enrichment of the model and facilitates proof.

However, these qualities create obstacles in an industrial environment if users do not find or are not
able to develop easily the concepts that they needs for their particular application. Typically, regular
“classic” formal methods practitioners, which are good candidates to use Event-B, might be confused
by the absence of some basic data operators and structures (transitive closures, sequences),
substitutions (IF THEN ELSE) and component composition/decomposition primitives (INCLUDES). It is
therefore paramount that the basic platform provides a set of libraries and plug-in sufficiently rich to
overcome this drawback.

A similar situation occurs with refinement. Refinement is one of the most effective techniques to
reduce the number and complexity of proof obligations during the construction of Event-B models.
However, the creation of a too large number of refinements renders the maintenance of the
complete model impractical in an industrial context because the modification of an intermediate
refinement can have a significant impact on the previous and subsequent refinements. The difficulty
in this case is that no tool can assist the user in choosing the appropriate refinements; only expertise
on refinement allows avoiding this pitfall. It is therefore paramount that the platform provides
adequate user manuals and guides of refinement.

4.2 Rodin

Rodin is the platform supporting the construction, proof and validation of Event-B models. Rodin is
based on an “open” architecture and is developed according to the “open” model on the principle of
voluntary. Roughly speaking, Rodin is made of two parts: a core part providing all the necessary tools
to construct, prove and maintain the consistency of raw Event-B models; and of a set of plug-ins
extending the language or providing additional tools like text editors, model animators and
requirements managers. The core part is developed and maintained essentially by Systerel and the
plug-ins are essentially developed by academia (principally Southampton and Düsseldorf) or by
regular users.

Unquestionably, the 'open' development model encourages innovation and apportions costs of
development and maintenance of Rodin between several entities but, at the same time, it may be an
obstacle to the adoption of the platform in the industry. The difficulties encountered during the first
period of the project illustrate some dysfunctions that may compromise the industrial use of Rodin:

 Difficulty for some partners to commit on development or maintenance delays as they do not
have stable development teams.

ADVANCE − 20 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

 Lack of synchronization between development teams makes that incompatible tools coexist in the
same release of the platform.

 Absence of contractual guarantees.

ADVANCE must find a development model with the advantages of the "open" development model
while giving to industry the guarantees of quality, predictability and sustainability it expects from
methods and tool providers.

4.2.1 Theory plug-in

In the beginning of the second period, the Theory plug-in was quite difficult to use and had a lot of
bugs that needed to be worked around. These bugs have been fixed since and the tools have
become more and more usable.

There are nevertheless two annoyances left that should be fixed to bring the tool to industrial level:

1. When renaming a project, the proof file .bpr does not take into account the name changing.

Status of proof obligations is not impacted by the project name changing, but references of

proof obligations (in .bpr file) become incorrect. To overcome this inconvenience, one must

modify manually the references to the project name in the .bpr file.

2. Most of the proofs that use rules provided by the Theory plug-in must be performed

manually, although they could be automated if the Theory plug-in was supporting a

mechanism of “trigger” for automatic rules.

Such a mechanism would apply automatically a rule only when some hypothesis is present. It
would allow automating some rules that are currently manual, thus increasing proof
productivity.
Moreover, such a mechanism would allow propagating sub-expressions matched in a
required hypothesis to a sub-goal that is produced by the rule. For instance, one could write
rules such as the following one (which is envisioned to be applied in backward style, where
the starred antecedent is a required hypothesis):

(f : A --> B)* & x : A

x : dom(f)

4.3 ProB

During the first period of the project we used ProB to ensure, by interactive animation of a signalling
system model involving the IXL-DC that the behaviour of the latter corresponds with the behaviour
we had in mind. Due to the problems reported in the deliverable D1.2, we didn’t use the ProB plug-in
of Rodin which accepts Event-B models but instead its standalone Tcl/Tk version which accepts
Classical-B models. This didn’t change fundamentally our experience with ProB, except that we
couldn’t use BMotion Studio, the graphical editor integrated with Rodin and ProB that enables
developers to create easily graphical visualization of animations, but the less user-friendly facility of
the Tcl/Tk version of ProB enabling graphical animation.

During the second period of the project we used ProB to model-check the signalling system model
involving the IXL-DC and to verify properties of the data describing the test line used in tests of the
IXL-DC model (cf. section §3).

In all these uses ProB was quite effective. Graphical animation helped us to clarify and develop the
behaviour of the IXL-DC. Model-checking, although it did not analyse the complete space, disclosed
an erroneous traffic direction release done by the zone controller model. Data verification disclosed
errors in the relation between blocks (virtual segments of track) and underlying track circuits
(physical portions of track devoted to train detection) and in the relation between signals and
turnaround blocks (segments of track were trains can change travel direction).

ADVANCE − 21 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

It would be worth however improving the user-unfriendly interactive B-expressions interpreter and
providing an interface enabling to call ProB (or at least its B-interpreter) from external programs. We
hope that this be done in ProB 2.0, which is being developed within the Advance project.

Also, we were very pleased with the responsiveness of the development team of ProB which
developed or corrected the tools we needed to analyse animations. Moreover, the fact that a
corporation, FormalMind, was created to develop and maintain ProB increases industrial confidence
on the sustainability of this tool.

4.4 Co-simulation

Although we haven’t used the co-simulation tools provided by ADVANCE we exploit co-simulation
indirectly. Indeed, the FIVP used for testing Alstom’s signalling systems and that produces the logs
we use for testing the IXL-DC model simulates trains on the basis of a continuous mathematical
model of kinetics and of trains’ physical characteristics. Co-simulation is used also to predict and
analyse the performance of a signalling system for a particular line in terms of maximum number of
trains in operation, minimum travel time, minimum time between two trains, energy consumption
and so on. The co-simulation platform involves the simulator of trains of FIVP and the MATLAB model
several components of the signalling system.

That is to say that co-simulation is an important topic for Alstom and that it is of great interest that
ADVANCE provides a co-simulation platform allowing to plug components developed with different
formalisms : Event-B, Classic-B, Java, C and so on.

5. Contribution of ADVANCE Methods and Tools to Alstom’s certification
process

5.1 Certification framework

According to the French Standardization Organization (AFNOR) “Certification is a business process
through which a recognized body acting independently with no ties to the parties involved gives
written assurance that an organization, a process, a service, a product or a set of professional skills
meets the baseline requirements set out in a reference standard.”

Certification of a complete railway signalling system involves certification of many of the above-
mentioned entities regarding requirements defined in many reference standards. In this section we
shall concentrate on the certification of Alstom’s safety critical railway systems regarding
requirements defined in the CENELEC (European Committee for Electrotechnical Standardization)
standards EN 50126 [1], EN 50128 [2] and EN 50129 [3] applicable to railway systems.

Thus, in our framework, certification is the process of achieving and obtaining acceptance of the
proof of safety assurance through the activities of approval, assessment and cross acceptance.

To point out the certification activities prescribed by CENELEC standards to which ADVANCE methods
and tools contribute we present in the following sections standards EN 50126 and EN 50129. We do

not present standard EN 50128, although software assessment is a very important part of

certification activities, because ADVANCE methods concern essentially system activities.

Almost all the text of this section is taken either from the standard themselves or from deliverable
D.1.1 of OPENCOSS project [4].

5.1.1 CENELEC standard EN 50126

This standard provides a process which enables the implementation of a consistent approach to the
management of reliability, availability, maintainability and safety (denoted by the acronym RAMS) of
total railway systems (including but not restricted to signalling). This Standard:

– Defines RAMS in terms of reliability, availability, maintainability and safety and their
interaction;

– Defines a process, based on the system life-cycle and tasks within it, for managing RAMS;

ADVANCE − 22 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

– Enables conflicts between RAMS elements to be controlled and managed effectively;

– Defines a systematic process for specifying requirements for RAMS and demonstrating that
these requirements are achieved.

The system life-cycle defined in EN 50126 involves fourteen phases and for each of them the
Standard defines the objectives, the inputs, the requirements on the results and the deliverables
regarding RAMS.

The system life-cycle phases and the related safety tasks are presented in the table below:

 Life-cycle phase Phase related safety tasks

1. Concept Review Previously Achieved Safety Performance

 Consider Safety Implications of Project

 Review Safety Policy & Safety Targets

2. System definition and application
conditions

 Evaluate Past Experience Data for Safety

 Perform Preliminary Hazard Analysis

 Establish Safety Plan (Overall)

 Define Tolerability of Risk Criteria

 Identify Influence on Safety of Existing Infrastructure
Constraints

3. Risk analysis Perform System Hazard & Safety Risk Analysis

 Set-Up Hazard Log

 Perform Risk Assessment

4. System requirements Specify System Safety Requirements (Overall)

 Define Safety Acceptance Criteria (Overall)

 Define Safety Related Functional Requirements

 Establish Safety Management

5. Apportionment of system
requirements

 Apportion System Safety Targets & Requirements

– Specify Sub-System & Component Safety Requirements

– Define Sub-System & Component Safety Acceptance
Criteria

 Update System Safety Plan

6. Design and implementation Implement Safety Plan by Review, Analysis, Testing and Data
Assessment, addressing:

 Hazard Log

 Hazard Analysis & Risk Assessment

 Justify Safety Related Design Decisions

 Undertake Programme Control, covering:

– Safety Management

– Control of Sub-Contractors & Suppliers

 Prepare Generic Safety Case

 Prepare (if appropriate) Generic Application Safety Case

7. Manufacturing Implement Safety Plan by: Review, Analysis, Testing & Data
Assessment

 Use Hazard Log

ADVANCE − 23 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

 Life-cycle phase Phase related safety tasks

8. Installation Establish Installation Programme

 Implement Installation Programme

9. System validation (including
safety acceptance and
commissioning)

 Establish Commissioning Programme

 Implement Commissioning Programme

 Prepare Application Specific Safety Case

10. System acceptance Assess Application Specific Safety Case

11. Operation and maintenance Undertake On Going Safety Centred Maintenance

 Perform On Going Safety Performance Monitoring and Hazard
Log Maintenance

12. Performance monitoring Collect, Analyse, Evaluate and Use Performance & Safety
Statistics

13. Modification and retrofit Consider Safety Implications for Modification & Retrofit

14. Decommissioning and disposal Establish Safety Plan

 Perform Hazard Analysis & Risk Assessment

 Implement Safety Plan

Table 5.1. Safety Tasks for each phase defined in EN50126

5.1.2 CENELEC standard EN 50129

This standard provides a set of requirements that shall be satisfied in order that a safety critical
railway system/sub-system/equipment can be accepted as adequately safe for its envisioned
application. The requirements are presented under three headings:

– Evidence of quality management;

– Evidence of safety management;

– Evidence of functional and technical safety.

All of these conditions shall be satisfied, at equipment, sub-system and system levels, before the
safety related system can be accepted as adequately safe.

The documentary evidence that these conditions have been satisfied shall be included in a structured
safety justification document, known as the Safety Case. The Safety Case forms part of the overall
documentary evidence to be submitted to the relevant safety authority in order to obtain safety
approval for a generic product, a class of application or a specific application.

The Safety Case contains the documented safety evidence for the system/sub-system/equipment,
and shall be structured as follows:

Part 1 Definition of System (or sub-system/equipment): This shall precisely define or reference
the system/sub-system/equipment to which the Safety Case refers, including version numbers
and modification status of all requirements, design and application documentation.

Part 2 Quality Management Report: This shall contain the evidence of quality management, as
specified in 5.2 of this standard.

Part 3 Safety Management Report: This shall contain the evidence of safety management, as
specified in 5.3 of this standard.

Part 4 Technical Safety Report: This shall contain the evidence of functional and technical
Safety, as specified in 5.4 of this standard.

ADVANCE − 24 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

Part 5 Related Safety Cases: This shall contain references to the Safety Cases of any sub-systems
or equipment on which the main Safety Case depends.

It shall also demonstrate that all the safety-related application conditions specified in each of
the related sub-system/equipment Safety Cases are either fulfilled in the main Safety Case, or
carried forward into the safety-related application conditions of the main Safety Case.

Part 6 Conclusion: This shall summarise the evidence presented in the previous parts of the
Safety Case, and argue that the relevant system/sub-system/equipment is adequately safe,
subject to compliance with the specified application conditions.

5.1.2.1 Evidence of quality management

The first condition for safety acceptance that shall be satisfied is that the quality of the system, sub-
system or equipment has been, and shall continue to be, controlled by an effective quality
management system throughout its life-cycle. Documentary evidence to demonstrate this shall be
provided in the Quality Management Report, which forms Part 2 of the Safety Case.

5.1.2.2 Evidence of safety management

The second condition for safety acceptance which shall be satisfied is that the safety of the system,
sub-system or equipment has been, and shall continue to be, managed by means of an effective
safety management process, which should be consistent with the management process for RAMS
described in EN 50126. The purpose of this process is to further reduce the incidence of safety-
related human errors throughout the life-cycle, and thus minimise the residual risk of safety-related
systematic faults.

5.1.2.2.1 Safety life-cycle

The safety management process consists of a number of phases and activities, which are linked to
form a safety life-cycle consistent with the system life-cycle defined in EN 50126. The life-cycle as
modelled is a typical development V cycle, with the requirement specification, architecture and
detailed design and development phases as top-down phases and the integration and validation
phases as bottom-up phases.

ADVANCE − 25 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

Figure 5.2. Example of design and validation life-cycle defined in EN50129

5.1.2.2.2 Safety plan

A Safety Plan shall be drawn up at the start of the life-cycle. This plan shall identify the safety
management structure, safety-related activities and approval mile-stones throughout the life-cycle,
and shall include the requirements for review of the Safety Plan at appropriate intervals. The Safety
Plan shall be updated and reviewed if subsequent alterations or additions are made to the original
system/sub-system/equipment. If any such change is made, the effect on safety shall be assessed,
starting at the appropriate point in the life-cycle.

The Safety Plan shall deal with all aspects of the system/sub-system/equipment, including both
hardware and software. EN 50128 shall be referenced for Software aspects.

The Safety Plan should include a Safety Case Plan, which identifies the envisioned structure and
principal components of the final Safety Case.

5.1.2.2.3 Hazard log

A Hazard Log shall be created and maintained throughout the safety life-cycle, as explained in EN
50126.

It shall include a list of identified hazards, together with associated risk classification and risk control
information for each hazard. The Hazard Log shall be updated if any modification or alteration is
made to the system, sub-system or equipment.

5.1.2.2.4 Safety requirements specification

The specific safety requirements for each system/sub-system/equipment, including safety functions
and safety integrity, shall be identified and documented in the Safety Requirements Specification.
This shall be achieved by means of - Hazard Identification and Analysis,

– Risk Assessment and Classification,

– allocation of Safety Integrity Levels,

as explained in EN 50126. Some information concerning Safety Integrity Levels for railway electronic
systems is contained in Annex A.

NOTE The Safety Requirements Specification may be included in the system/sub-system/equipment
Functional Requirements Specification or may be written as a separate document.

5.1.2.2.5 System/sub-system/equipment design

This phase of the life-cycle shall create a design which fulfils the specified operational and safety
requirements. A top-down, structured design methodology shall be used, with rigorously controlled
and reviewed documentation. In particular, the relationship between hardware and software, as
represented by the Software Requirements Specification and software/hardware integration, shall be
strictly managed, and the standard EN 50128 shall be adhered to.

5.1.2.2.6 Safety reviews

Safety reviews shall be carried out at appropriate stages in the life-cycle. Such reviews shall be
specified in the Safety Plan, and their results fully documented. Any alteration or extension to the
system, sub-system or equipment shall also be subject to review.

5.1.2.2.7 Safety verification and validation

The Safety Plan shall include or reference plans for verifying that each phase of the life-cycle satisfies
the specific safety requirements identified in the previous phase, and for validating the completed
system/sub-system/equipment against its original Safety Requirements Specification.

ADVANCE − 26 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

These activities shall be carried out and fully documented, including appropriate testing and safety
analyses. They shall be repeated as appropriate in the event of any subsequent modification or
addition to the system/sub-system/equipment.

The degree of independence necessary for the verifier and the validator shall be in accordance with
the Safety Integrity Level of the system/sub-system/equipment under scrutiny.

At the discretion of the safety authority, the assessor may be part of the supplier's organisation or of
the customer's organisation but, in such cases, the assessor shall

– be authorised by the safety authority,

– be totally independent from the project team,

– report directly to the safety authority.

5.1.2.2.8 Safety justification

The evidence that the system/sub-system/equipment meets the defined conditions for safety
acceptance shall be presented in a structured safety justification document known as the Safety
Case, as explained in 5.1 of this standard.

5.1.2.2.9 System/sub-system/equipment handover

Prior to handover of the system/sub-system/equipment to a railway authority, the conditions for
safety acceptance and safety approval defined in 5.5 shall be satisfied, including submission of the
Safety Case and the Safety Assessment Report.

5.1.2.2.10 Operation and maintenance

Following handover, the procedures, support systems and safety monitoring defined in the Safety
Plan and in Section 5 of the Technical Safety Report (part of the Safety Case) shall be adhered to.
During the operational life of a system, change requests may be raised for a variety of reasons, not all
of which will be safety-related. Each change request shall be assessed for its impact on safety, by
reference to the relevant portion of the safety documentation. Where a change request results in a
modification which could affect the safety of the system, or associated systems, or the environment,
the appropriate portion of the safety life-cycle shall be repeated to ensure that the implemented
modification does not unacceptably reduce the level of safety. Table E.10 gives guidance on
Application, Operation and Maintenance for each Safety Integrity Level.

5.1.2.2.11 Decommissioning and disposal

At the end of the operational life of a system, its decommissioning and disposal shall be carried out in
accordance with the measures defined in the Safety Plan and in Section 5 of the Technical Safety
Report (part of the Safety Case).

5.1.2.3 Evidence of functional and technical safety

In addition to the evidence of quality and safety management, there is a third condition that must be
satisfied before a system/sub-system/equipment can be accepted as adequately safe for its
envisioned application. This consists of technical evidence for the safety of the design, which shall be
documented in the Technical Safety Report.

The Technical Safety Report shall be arranged under the following headings:

Section 1 Introduction: This section shall provide an overview description of the design,
including a summary of the technical safety principles that are relied on for safety and the
extent to which the system/sub-system/equipment is claimed to be safe in accordance with this
standard.

Section 2 Assurance of correct functional operation: This section shall contain all the evidence
necessary to demonstrate correct operation of the system/sub-system/ equipment under fault-

ADVANCE − 27 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

free normal conditions (that is, with no faults in existence), in accordance with the specified
operational and safety requirements.

The following aspects shall be included:

2.1 System architecture description;

2.2 Definition of interfaces;

2.3 Fulfilment of System Requirements Specification;

2.4 Fulfilment of Safety Requirements Specification;

2.5 Assurance of correct hardware functionality;

2.6 Assurance of correct software functionality.

Section 3 Effects of faults: This section shall demonstrate that the system/sub-
system/equipment continues to meet its specified safety requirements, including the quantified
safety target, in the event of random hardware faults. In addition, a systematic fault could still
exist, despite the quality and safety management processes defined in 5.2 and 5.3 of this
standard. This section shall demonstrate which technical measures have been taken to reduce
the consequent risk to an acceptable level.

This section shall also include demonstration that faults in any system/sub-system/equipment
having a Safety Integrity Level lower than that of the overall system, including Level 0, cannot
reduce the safety of the overall system.

The following headings shall be used in this section.

3.1 Effects of single faults;

3.2 Independence of items;

3.3 Detection of single faults;

3.4 Action following detection (including retention of safe state);

3.5 Effects of multiple faults;

3.6 Defence against systematic faults.

Section 4 Operation with external influences: This section shall demonstrate that when
subjected to the external influences defined in the System Requirements Specification, the
system/sub-system/equipment - continues to fulfil its specified operational requirements,-
continues to fulfil its specified safety requirements (including fault conditions).

The Safety Case is therefore valid only within the specified range of external influences, as
defined in the System Requirements Specification. Safety is not assured outside these limits,
unless additional special measures are provided.

The methods used to withstand the specified external influences shall be fully explained and
justified.

Section 5 Safety-related application conditions: This section shall specify (or reference) the
rules, conditions and constraints which shall be observed in the application of the system/sub-
system/equipment. This shall include the application conditions contained in the Safety Case of
any related sub-system or equipment.

Section 6 Safety Qualification Tests: This section shall contain evidence to demonstrate
successful completion, under operational conditions, of the Safety Qualification Tests.

ADVANCE − 28 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

5.2 Introduction of ADVANCE Methods and Tools in Alstom’s system development process

The figure below illustrates the system development process of Alstom and the activities related to
safety (in red) and to verification and validation (in green). This process has been assessed compliant
with CENELEC EN 50129 standard by independent safety assessors and our intention is to insert in it
the activities, methods and tools developed in the ADVANCE project without disrupting its structure
and balance.

Figure 5.3. Alstom’s system development process compliant with EN50129

In the sequel we present the contribution of ADVANCE to the achievement of the activities of each of
the phases of the Alstom process.

5.2.1 System Definition

The purpose of this phase is to:

 Establish system mission profile,

 Prepare system description,

 Identify operation and maintenance strategies,

 Identify operating conditions,

 Identify maintenance conditions,

 Identify Influence of existing infrastructure constraints.

5.2.1.1 Contribution of ADVANCE

None of the activities, methods and tools of ADVANCE contributes to the achievement of the
previous tasks.

5.2.2 Preliminary Hazard Analysis

Starting from the operational context/procedures and the defined system, this analysis aims at:

 identifying the hazards at the boundary of the system under consideration (resulting from the use
of the system in a specified context, as defined in the system definition);

 classifying the consequences (possible accidents) of these hazards;

System safety
case consolidation

Requirements
specification

Architecture
specification

System
integration

System
validation

Requirements
verification

System
definition

Sub-systems
development

Preliminary hazard
analysis

System hazard
analysis

Interface hazard
analysis

Sub-systems safety
case consolidation

System
acceptance

Safety integration
verification

 Architecture
verification

ADVANCE − 29 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

 identifying the necessary mitigations for the system or the elements of the system (including
preliminary SIL allocation to functions), in order to lower the risk to an acceptable level;

 (optional) predict Hazardous Failure Rate (HFR) achievable (to be confirmed by Fault Tree Analysis
or equivalent method after detailed design).

5.2.2.1 Contribution of ADVANCE

ADVANCE promotes the use of STAMP and STPA for safety analyses. According to Thomas and
Leveson [5], STAMP (System’s Theoretic Accident and Models) is a model of accident causation that
treats safety as a control problem, rather than as a failure problem.

STAMP is based on the observation that there are four types of hazardous control actions that need
to be eliminated or controlled to prevent accidents:

1) A control action required for safety is not provided or is not followed

2) An unsafe control action is provided that leads to a hazard

3) A potentially safe control action is provided too late, too early, or out of sequence

4) A safe control action is stopped too soon or applied too long

STPA (System’s Theoretic Process Analysis) is a hazard analysis technique built on STAMP. Identifying
the potentially unsafe control actions for the specific system being considered is the first step in
STPA. These unsafe control actions are used to create safety requirements and constraints on the
behaviour of both the system and its components. Additional analysis can then be performed to
identify the detailed scenarios leading to the violation of the safety constraints. As in any hazard
analysis, these scenarios are then used to control or mitigate the hazards in the system design.

Railway industry has a long experience using conventional, well known, safety analysis techniques:
Fault Trees Analysis, Failure Mode Effect Analysis, etc. and, indeed, these are the only safety
techniques recommended in CENELEC standards. Therefore, it seems to us unrealistic to propose to
introduce STAMP and STPA without a very deep and careful examination of their pros and cons. For
the time being ADVANCE contributes to our introduction to these techniques, to dissemination of
this knowledge in Alstom and to encourage Alstom to go further in their evaluation.

5.2.3 Requirements Specification

The requirements specification phase aims at:

 Undertake requirements analysis

 Specify system

 Specify environment

 Define system demonstration and acceptance criteria

 Establish validation plan

 Establish management, quality and organisation requirements

 Implement change control procedure

5.2.3.1 Contribution of ADVANCE

ADVANCE contributes to achieve the Requirements specification phase by introducing a formal
model development process made of three activities: modelling, simulation and proof.

Starting from the informal Requirements Specification document and from the Preliminary Hazard
Analysis document the modelling activity shall consist in creating with the Rodin tool an Event-B
model of critical parts of the system and in discharging the proof obligations ensuring that the model
is sound or well defined (e.g. no division by 0). The Event-B model shall be verified by the verification
and safety assurance teams regarding compliance with functional and safety requirements.

The simulation activity shall consist in animating with ProB and/or co-simulating with FMI the Event-
B model created by the modelling activity. The simulation report shall describe the animation/co-
simulation scenarios: their objectives, their steps and the expected behaviour of the model. The

ADVANCE − 30 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

relevance of the scenarios regarding the envisioned behaviour of the system shall be verified by the
verification team. The animation report shall be used by the validation team for the definition of
system validation tests.

The proof activity shall consist in discharging the proof obligations of the Event-B model generated
by Rodin. The proof report shall be verified by the verification team regarding completeness and
correctness of the proof.

The figure below illustrates the formal development in the Requirements Specification phase.

Figure 5.4. Requirements Specification formal model development process

5.2.4 Requirements Verification

The requirements verification activity aims at verifying completeness and consistency of system
requirements and external interface description.

5.2.4.1 Contribution of ADVANCE

Currently, completeness verification consists of ensuring that system requirements capture all
system needs identified in the previous step; and consistency verification consists of ensuring that
requirements define sound, complementary and adequate functions. To achieve completeness
verification verifiers construct a traceability matrix using standard requirements management tools
(Doors, Reqtify, etc.). ADVANCE will leave this unchanged. To achieve consistency verification
verifiers undertake document reviews. ADVANCE will provide rigorous methods and tools to achieve
this task.

There will be three verifications related to formal development: the Event-B model verification, the
simulation verification and the proof verification.

The Event-B model verification ensures that the model formalises adequately the concepts and
requirements of the system and therefore that it is a sound basis for further formal development.
The effectiveness of the verification will be improved because the formal model is rigorous and
therefore reduces the ambiguities of interpretation. Furthermore, the ProR tool shall help verifiers
keep track of requirements in the Event-B model and to generate the traceability matrix between
system requirements and formulae in the Event-B model. The Event-B model verification report shall
be used for consolidation of the System Safety Case.

The simulation verification ensures that the simulation scenarios are relevant and that they cover all
the features of the Event-B model. Model simulation and simulation verification are new activities
that will improve considerably the confidence on the system being developed. The simulation
verification report shall be used for consolidation of the System Safety Case.

Animation

Co-simulation

(ProB - FMI)

Proof

(Rodin)

Modelling

(Rodin)

System
Event-B model

Tests scenarios

Proof report

System validation

Requirements
verification

(ProR)

System hazard
analysis

Requirements
specification

ADVANCE − 31 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

The proof verification ensures completeness and correctness of proofs of proof obligations of the
Event-B model generated by Rodin. Proof obligations represent the sufficient conditions for the
model to be consistent. Thus, the verification of completeness and correctness of proofs of proof
obligations shall ensure consistency of the Event-B model and contribute to check consistency of
requirements specification. The proof verification report shall contain evidence that the proof rules
added by the user, if any, are valid mathematical lemmas. The proof verification report shall be used
for consolidation of the System Safety Case.

5.2.5 System Hazard Analysis

This analysis aims at:

 identifying the cause and consequences of the failures of the functions and interfaces supported
by the system on the basis of system requirements specification and external interfaces
description;

 identifying the mitigations necessary to control the hazards and to lower the risk at an acceptable
level;

 confirming the SIL allocation to the functions and interfaces of the system,

 recording the hazards identified with their effects and the associated risk mitigation
recommendations.

5.2.5.1 Contribution of ADVANCE

Safety Hazard Analysis shall identify the safety requirements captured in the Event-B model, verify
that they are correctly formalised and log that information in the Hazard Log (cf. 5.1.2.2.3).

The motivation for doing this is that if finally the formalisation of a system safety requirement is
present in the model of the formally developed software of one its sub-systems it will be possible to
close the related hazard in the Hazard Log through mathematical proof rather than through testing.
This shall be definitively an improvement in terms of safety evidence and furthermore shall reduce
the number of tests related to safety.

5.2.6 Architecture Specification

This activity aims at:

 Apportion System Requirements

 Specify sub-systems and component requirements

 Define sub-systems and component acceptance criteria

5.2.6.1 Contribution of ADVANCE

ADVANCE contributes to achieve this activity by introducing a refinement process involving two
activities: refinement/decomposition of the system Event-B model and proof.

The refinement/decomposition activity shall consist in refining the properties and events of the
Event-B model of the system in order to apportion them between the sub-systems of the system. The
refinement technique of Event-B and the composition/decomposition plug-in of Rodin shall be used.
This activity shall produce an Event-B model involving several refinements of the Event-B model of
the system. This Event-B model shall be verified by the verification and safety assurance teams
regarding respectively the adequacy and correctness of the models and the formalisation of safety
requirements.

The proof activity shall consist in discharging the proof obligations of the Event-B model generated
by Rodin. The proof report shall be verified by the verification team regarding completeness and
correctness of the proof.

The figure bellow illustrates the formal development in the Architecture Specification phase/

ADVANCE − 32 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

Figure 5.5. Architecture Specification formal model development process

5.2.7 Architecture verification

This activity aims at verify consistency and completeness of system architecture and internal
interfaces descriptions.

5.2.7.1 Contribution of ADVANCE

The verification of the Event-B model of sub-systems shall contribute to check consistency of this
model regarding architecture specification. The ProR tool shall assist verifiers to trace system and
architecture requirements in the Event-B model and to generate the traceability matrix of the
verification report. The Event-B model verification report shall be used for consolidation of the
System Safety Case.

The proof obligations of the Event-B model of sub-systems generated by Rodin represent the
necessary and sufficient conditions for this model to be consistent and compliant with the Event-B
model of the system. Therefore, the verification of completeness and correctness of proofs of proof
obligations shall ensure consistency of the Event-B model of sub-systems and compliance of this
model with the Event-B model of the system. The proof verification report shall contain evidence
that the proof rules added by the user, if any, are valid mathematical lemmas. The proof verification
report shall be used for consolidation of the System Safety Case.

5.2.8 Interface Hazard analysis

This analysis aims at:

 identifying the cause and consequences of the failures of internal interfaces of the system on the
basis of system architecture and internal interfaces description;

 identifying the mitigations necessary to control the hazards and to lower the risk at an acceptable
level;

 confirming the SIL allocation to the components of the system,

 recording the hazards identified with their effects and the associated risk mitigation
recommendations.

5.2.8.1 Contribution of ADVANCE

Interface Hazard Analysis shall identify the safety requirements captured in the Event-B model of
sub-systems, verify that they are correctly formalised, refined and apportioned and log that
information in the Hazard Log (cf. 5.1.2.2.3).

5.2.9 Sub-systems development

The development process of each sub-system depends on the nature of the sub-system.

If the sub-system itself is decomposed in sub-systems, like for instance the ATS and ATC sub-systems
then, except minor details, the process described here shall be followed. If the sub-system is not

Proof

(Rodin)

Refinement/
Decomposition

(Rodin)

Proof report

Architecture
verification

(ProR)

Interface hazard
analysis

System

Event-B model

Sub-systems
Event-B model

Architecture
specification

ADVANCE − 33 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

decomposed into sub-systems, like for instance the wayside zone controller, then the development
of its hardware and the development of its software start in parallel.

5.2.9.1 Contribution of ADVANCE

When one of the sub-systems to be developed is not decomposed into sub-systems and is safety-
critical its software is developed formally with Classical-B method. In this case, the Event-B model of
the sub-system shall be used to create the initial Classical-B model of the software. This Classical-B
model is not a refinement of the Event-B model, in the B sense of the term. Therefore, it will not be
possible to prove formally compliance of the Classical-B model with the Event-B model. However, the
former shall be generated systematically from the latter according to a validated predefined schema
[6] that will ensure compliance. We shall the have a continuous and homogeneous formal process
from system development to software development. Ensuring the soundness of the translation is a
topic for future research.

The figure bellow is an extract of the Software Development Work Method Statement of Alstom
Transport Information Solutions. It illustrates the development process of safety-critical software
with Classical-B.

Figure 5.6. Alstom’s Software development process with Classical-B

It should be noted that in this process component testing is not performed on components
developed with Classical-B and that integration testing is performed only to test interfaces between
components developed with Classical-B and components not developed with Classical-B.

Likewise we shall take advantage of the use of Event-B for system development and of Classical-B for
software development to reduce system testing activities.

5.2.10 Sub-system safety cases consolidation

This activity aims at:

 assess the Safety Cases of the sub-systems,

ADVANCE − 34 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

 identify and record the hazards closed by sub-system development,

 analyse the consequences on safety of the constraints exported by the sub-systems and, if
necessary, integrate them into the Hazard Log.

5.2.10.1 Contribution of ADVANCE

ADVANCE contributes indirectly to this activity through safety analysis and verifications reports
produced by the safety and verifications teams during the development of the sub-systems.

5.2.11 System integration

This activity aims at:

 assemble all the sub-systems,

 test compliance with system architecture and internal interface descriptions.

5.2.11.1 Contribution of ADVANCE

Requirements on the interface of a sub-system that have been formalised and proved in an Event-B
model need not to be tested if the software of the sub-system has been formally developed and if its
Classical-B model captures these requirements too.

5.2.12 Safety integration verification

This activity aims at verify that safety requirements closing hazards related to architecture and
internal interfaces have been effectively satisfied either by testing or by formal proof of Event-B and
Classical-B models.

5.2.12.1 Contribution of ADVANCE

ADVANCE contributes indirectly to this activity through safety analysis and verifications reports
produced by the safety and verifications teams during the development of the sub-systems.

5.2.13 System validation

This activity aims at:

 perform tests ensuring fulfilment of system requirements,

 analyse system verification and integration reports,

 analyse sub-system verification and validation reports.

5.2.13.1 Contribution of ADVANCE

As for system integration, requirements on the system that have been formalised and proved in an
Event-B model need not be tested if they have been refined and apportioned between subs-systems
formally developed and proved.

5.2.14 System safety case consolidation

This activity aims at produce a System Safety Case compliant with CENELEC EN 50129 standard as
described in §5.1.2.

5.2.14.1 Contribution of ADVANCE

5.2.15 System acceptance

This activity aims at:

 assess that the signalling system meets the customer requirements

 assess reliability, availability and maintainability demonstration,

 assess application specific System Safety Case

ADVANCE − 35 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

5.2.15.1 Contribution of ADVANCE

ADVANCE contributes indirectly to this activity through safety analysis and verifications reports
produced by the safety and verifications teams during the development of the sub-systems.

6. Concluding

Considerable advances have been made in WP1 during Period 2 of the project and these are
documented here. We have demonstrated the feasibility of a refinement based approach to
modelling, simulation and verification of a complex interlocking system. We have identified both
strengths and weaknesses of the existing Rodin tools for Event-B and found that considerable
improvements have been made to the tools over the last period. Our experiences with the
development of a refinement strategy approach will provide important guidance for other systems
engineers in the future, both within Alstom and externally. The weaknesses we have identified in
Rodin is helping the tool developers to prioritise there development plans. We have also developed a
thorough understanding of where and how the ADVANCE methods and tools will contribute to
enhancing the Alstom safety development process. Since the Alstom process id derived from
processes defined by European standards, we believe many of these insights will be applicable to
safety development in other domains.

ADVANCE − 36 −

Work Package: 1 − Deliverable: D1.3 21/10/2013

References

[1] CENELEC Standard EN 50126 : Railway applications — The specification and demonstration of
Reliability Availability, Maintainability and Safety (RAMS); 1999.

[2] CENELEC Standard EN 50128 : Railway applications — Communication, signalling and processing
systems -Software for railway control and protection systems; October 2011.

[3] CENELEC Standard EN 50129 : Railway applications — Communication, signalling and processing
systems —Safety related electronic systems for signalling. February 2003.

[4] Constraints of the certification process, D1.1, OpenCoss: Open Platform for the Evolutionary
Certification of Safety-critical systems, 28 March 2012. EC 7th Framework Programme.

[5] Performing Hazard Analysis on Complex, Software- and Human-Intensive Systems, J. Thomas, N.
G. Leveson; Massachusetts Institute of Technology.

[6] FP7 ADVANCE project, Proof of Concept Application in Railway Domain, D1.2 .

