OS SN

ADVANCED DESIGN AND VERIFICATION ENVIRONMENT

OO
FOR CYBER-PHYSICAL SYSTEM ENGINEERING OOO
www.advance-ict.eu Va”ce

D.3.4-METHODSAND TOOLS FOR MODEL
CONSTRUCTIONAND PROOF lI

ADVANCE

Grant Agreement: 287563

Date: 30/11/2014

Pages: 30

Status: Final

Authors: Laurent Voisin, Nicolas Beauger Systerel
Reference: D3.4

Issue: 1

Partners / Clients:

* X %
* *
* *

* *
* x K

SEVENTH FRAMEWORK
PROGRAMME

FP7 Framework Programme European Union

Consortium Members:

Y P2 = \»
soutianon [RGUZM ALSTOM ‘Systerel AT Dyes
Sao roatime solutons HEINRICH HEINE AFinmeccanica Company

software UNIVERSITAT DUSSELDORF

University of Critical Software Alstom Systerel Heinrich Heine Selex ES
Southampton Technologies Transport 4 Universitat

SEVENTH FRAMEWORK
PROGRAMME

Project ADVANCE
Grant Agreement 287563

“Advanced Design and Verification Environment for Cyber-physical
System Engineering”

ADVANCE Deliverable D3.}

Methods and tools for model construction and
proof 111

Public Document

November 25, 2014

http://www.advance-ict.eu

http://www.advance-ict.eu

Contributors:

Asieh Salehi University of Southampton
Colin Snook University of Southampton
Andy Edmunds University of Southampton
Lukas Ladenberger University of Duesseldorf
Sebastian Krings University of Duesseldorf
Michael Leuschel University of Duesseldorf
Laurent Voisin = Systerel
Nicolas Beauger Systerel

Reviewers:

Michael Butler University of Southampton

Contents

1 Introduction e 5
2 General Platform Maintenance 7
2.1 CoreRodinplatform L 7
2.1.1 Overview e e e e e e e e 7

2.1.2 Motivations / Decisions e 7

2.1.3 Available Documentation 8

2.1.4 Conclusion e 8

2.2 UML-BImprovements i 8
2.2.1 OVEIVIEW o e e e e e e e 8

2.2.2 Motivations / Decisions 9

2.2.3 Available Documentation 9

224 Conclusion e e e e e e e 10

2.3 ProR/Rodin Integration Plugin L. 10
2.3.1 OVerview e e e 10

2.3.2 Motivations / Decisions e 10

2.3.3 Available Documentation 11

234 Conclusion e e e e 11

24 Camille e 11
241 OVEIVIEW o o i i i e e e e e e e e e 11

2.4.2 Motivations / Decisions e 12

2.4.3 Available Documentation 12

244 Conclusion e e 13

3 Improvement of automated proof 15
3.1 OVEIVIEW . . . o v o e 15
3.2 Motivations / DeCIiSIONSo e e e e e e e 15
3.3 Available Documentation 16
34 Conclusion e e e 16

4 Model Checking e 17
41 OVEIVIEW v o i o e e e e e e e e e e e e e e 17
4.2 Motivations / DecCiSIONS e e e e e e 17
4.2.1 Linear Temporal Logic 17

4.2.2 Theory Support e e 21

423 Physical Units e 22

424 BtoTLA+ e 22

4.2.5 Performance Improvements L. 23

4.3 Available Documentation e e 23

Contents

4.4 Conclusion e e e 24
5 Language extensiono e e 25
5.0 OVerview o o o e e e 25
5.2 Motivations / DecCiSIOnS e e e e 25
5.3 Available Documentation 26
54 Conclusion e e 27
6 Model Composition and Decomposition 29
6.1 OVEIVIEW i e e e e e e e e e e 29
6.2 Motivations / Decisions e 29
6.3 Available Documentation 29
6.4 Conclusion e e 30

1 Introduction

The ADVANCE D3.4 deliverable is composed of the present document and new extensions to
the Rodin toolset as of November 2014. The considered Rodin toolset consists of the Rodin core
platform and the plug-ins created or maintained in the frame of the ADVANCE project: ProB,
UML-B, ProR, Camille, Theory, Composition, SMT. Other plug-ins, available for the Rodin plat-
form but not maintained within the ADVANCE project, are not taken into account within this
deliverable.

The Rodin platform can be downloaded from the SourceForge site.!

Moreover, the platform includes a collaborative documentation that is collected from two main-
tained locations:

« the Event-B wiki,’
e the Rodin Handbook.?

These locations can be consulted from outside the Rodin tool.

The present document intends to give a relevant overview of the work achieved within work pack-
age 3 Methods and Tools for Model Construction and Proof, during the final period of the AD-
VANCE project (Oct 2013 - Nov 2014), and aims to let the reader understand the WP3 member's
contribution plans and objectives.

The document is divided according to the work package tasks: general platform maintenance,
improvement of automated proof, model checking, language extension, model composition and
decomposition.

The common structure which is used for each contribution is the following:

* Overview. The involved partners are identified and an overview of the contribution is given.

* Motivations / Decisions. The motivation for each tool extension and improvement are expressed.
The decisions (e.g. design decision) are reported.

* Available documentation. Some pointers to the available documentation or related publications
are listed.

* Conclusion. A brief summary about what has been achieved in the topic, and an overview of
potential continuations.

1 http://sourceforge.net/projects/rodin-b-sharp/files/Core_Rodin_Platform
2 http://wiki.event-b.org
http://handbook.event-b.org

w

http://sourceforge.net/projects/rodin-b-sharp/files/Core_Rodin_Platform
http://wiki.event-b.org
http://handbook.event-b.org

2 General Platform Maintenance

This part describes the general maintenance performed on the Rodin toolset within the last year of
the ADVANCE project. As the maintenance is a task that concerns the whole toolset, and to ease
the reading of this part of the deliverable, the maintenance section has been decomposed in a list
of subsections corresponding to scopes of the toolset. All these subsections maintain the template
previously defined in the introduction.

2.1 Core Rodin platform

2.1.1 Overview

During the last period of the ADVANCE project, the following versions of the Rodin platform
have been released:

* 3.0.0 (2014-03-20)
* 3.0.1 (2014-06-11)
* 3.1.0 (2014-11-28)

The main part of the work was targeting improvements of

* stability of the platform,
* prover capabilities,
* theory support

Other running tasks consisted in answering questions on mailing lists, and processing bug tickets
and feature requests.

2.1.2 Motivations / Decisions

The core API has been improved. In particular, the interface with the theory plug-in has been
enriched so as to keep track of language changes over time, thus enforcing model and proof con-
sistency.

New proof rules have been implemented (SIMP_EMPTY_PARTITION and
SIMP_SINGLE_PARTITION). The proving experience has been enhanced with HMI that
provide quick access to user-defined tactics.

The Rodin Editor stability has been improved, by fixing bugs pointed out by users.

2 General Platform Maintenance

The underlying Eclipse Platform has been upgraded to the most recent version (Eclipse 4.4.1 as of
Rodin 3.1). This was required by plug-in developers who wanted to take advantage of the newest
Eclipse features. While also bringing fixes to some Eclipse bugs, it prepares for future developments
based on the latest technology.

For the same reasons, the code has been ported to Java 7, while remaining compatible with Java 6.

The source code is now distributed in a more developer-friendly format, so it's easier for plug-in
implementers to extend Rodin as a target platform.

2.1.3 Available Documentation

The release notes, that appear and are maintained on the wiki, and that accompany each release,
give useful information about the changes introduced by each. Moreover, two web trackers list and
detail the known bugs and open feature requests:

» a sourceforge bug tracker,’
« a sourceforge feature requests tracker.?

2.1.4 Conclusion

The Rodin Platform has made significant steps in throughout the ADVANCE project. Improve-
ments concern stability, dependability, extensibility, modeling and proving capability and, globally,
convergence towards user expectancies.

2.2 UML-B Improvements

2.2.1 Overview

UML-B provides Class diagrams and State-machine diagrams for Event-B modelling. There are
two versions of UML-B. The first, Classic UML-B, generates a complete Event-B project and all
modelling is diagrammatic. The second, iUML-B, integrates diagrams inside Event-B machines
and contexts and a mixture of diagrams and Event-B can be used in modelling.

During the last period of ADVANCE,

* Classic UML-B has been migrated to Rodin 3.x. During this release some improvements and
bug fixes were made.

1 http://sourceforge.net/p/rodin-b-sharp/bugs/
2 http://sourceforge.net/p/rodin-b-sharp/feature-requests/

http://sourceforge.net/p/rodin-b-sharp/bugs/
http://sourceforge.net/p/rodin-b-sharp/feature-requests/

2.2 UML-B Improvements

* iUML-B State-machines have undergone major functional and structural improvements including
new diagram features requested by users (in particular, Critical Software in WP2) and a new
Event-B generator that significantly improves performance. State-machine Animation has been
integrated with BMotion Studio so that both can be run in parallel.

* iUML-B Class diagrams have been released as a prototype and are under evaluation by industrial
collaborators for use in their development process.

2.2.2 Motivations / Decisions

While Classic UML-B is still maintained and used by some industrial collaborators, most new
development focusses on the more popular iUML-B.

The iUML-B Statemachine to Event-B translator was implemented in the QVTo declarative lan-
guage. This suffered performance problems due to the need to recompile on each invocation. The
translation was re-written using our own Java based generator framework which greatly improves
performance.

For valiation purposes users find visual animations very powerful and we have used both the State-
machine animation and BMotionStudio in our collaborations with industry. However, previously,
only one or the other could be launched at any particular time. A facility to also automatically
launch any associated and open BMotionStudio editor was added to the launch process of the
state-machine editor. Both animations run from the same ProB animation instance. This provides
an extremely strong visualisation of the model for validation purposes as the image representations
of BMotion Studio complement the state-machine visualisation and vice versa.

The iUML-B class diagram plug-in was delayed as it was not the highest priority for ADVANCE
partners. However, other industrial users (e.g. Thales, Austria) are interested in switching away
from the Classic UML-B tool. A prototype release of iUML-B Class diagrams has now been made
available to these industrial collaborators for evaluation purposes. A full release will be made by
the end of 2014. During recent development of the plug-in, the mechanism for data elaboration
has been rationalised and additional modelling features have been added which make the modelling
tool more effective.

2.2.3 Available Documentation

An overview and tutorial of both Classic UML-B and iUML-B can be found on the Event-B wiki?>.

3 http://wiki.event-b.org/index.php/UML-B

http://wiki.event-b.org/index.php/UML-B

2 General Platform Maintenance

2.2.4 Conclusion

iUML-B state-machines and animation have been significantly improved throughout ADVANCE
and now represent a mature and popular tool. iUML-B class diagrams promise to be equally suc-
cessful as early indications are that the approach to data elaboration is effective.

Classic UML-B will continued to be maintained but no new features are being added unless specif-
ically requested by an industrial partner.

2.3 ProR/Rodin Integration Plugin

2.3.1 Overview

ProR is a tool for working with requirements in natural language. It is part of the Eclipse Require-
ments Modeling Framework (RMF).* The goal of the ProR/Rodin integration plugin is to bring
two complimentary fields of research, requirements engineering and formal modelling, closer to-
gether. The ProR/Rodin integration plugin supports the user by maintaining a traceability between
natural language requirements and Event-B models.

A requirements Meta-Model for the WP-1 and WP-2 industrial case studies has been developed
during the last period of the ADVANCE project. Moreover, several requested features were added.
For instance, when the user selects a linked element (guard, invariant, etc.) in the requirements
document, the tool takes the user directly to the corresponding element in the Event-B model. First
experiments have been made towards a feature to automatically generate reports from ProR>. Beside
this, general improvements, such as usability improvements have been made on the ProR/Rodin
integration plugin during the last period of the ADVANCE project.

2.3.2 Motivations / Decisions

The ProR/Rodin integration plugin provides a default Meta-Model for requirements documents.
However, this Meta-Model does not support all specific needs and characteristics of the industrial
case studies. As a consequence, we decided to create a new requirements Meta-Model that supports
the specific needs of both industrial case studies.

In order to improve the usability and the integration between the ProR tool and the Rodin platform,
anew feature has been added to switch between the requirements document and the Event-B model.
Whenever the user selects a linked element (guard, invariant, etc.) in the requirements document,
the tool takes the user directly to the corresponding element in the Event-B model.

4 http://www.eclipse.org/rmf/
5 http://www.stups.hhu.de/w/Reporting_f%C3%BCr_ReqlIF:_Von_der_Analyse_bis_
zur_Auswertung

10

http://www.eclipse.org/rmf/
http://www.stups.hhu.de/w/Reporting_f%C3%BCr_ReqIF:_Von_der_Analyse_bis_zur_Auswertung
http://www.stups.hhu.de/w/Reporting_f%C3%BCr_ReqIF:_Von_der_Analyse_bis_zur_Auswertung

2.4 Camille

The ability to generate reports is important. For instance, it is desirable to see statistics (the number
of requirements currently covered by the model) so that this can be presented to a customer during
progress meetings. In order to meet this goal, first experiments towards a reporting tool for ProR
have been made during the ADVANCE Project®.

2.3.3 Available Documentation

A Method and Tool for Tracing Requirements into Specifications.” Accepted for Science of Com-
puter Programming.

* Requirements Traceability between Textual Requirements and Formal Models Using ProR®. The
paper has been accepted for iFM'2012 & ABZ'2012.

A Tutorial for the Rodin/ProR integration® can be found on the Event-B wiki.
» The User Guide' contains additional tutorials for ProR.

2.3.4 Conclusion

The customized Meta-Models facilitated the requirements maintenance process of both industrial
case studies. Moreover, the new Meta-Model is expandable so that new features can be easily added
later in the project.

2.4 Camille

2.4.1 Overview

The Camille plug-in provides a textual editor for Rodin. This editor provides the same look and
feel as a typical Eclipse text editor, including features most text editors provide, such as copy, paste,
syntax highlighting and code completion.

During the last period of the ADVANCE project, three new versions of Camille have been released:

* 3.0.0 - Initial release for version 3 of the Core Rodin platform. This release has been based on
Camille 2.1.4.

6 http://www.stups.hhu.de/w/Reporting_£f%C3%BCr_ReqlF:_Von_der_Analyse_bis_
zur_Auswertung

7 http://www.stups.uni-duesseldorf.de/mediawiki/images/e/ec/
Pub-HalJasLad2013.pdf

8 http://www.stups.uni-duesseldorf.de/w/Special:Publication/
LadenbergerJastram_iFMABZ2012
http://wiki.event-b.org/index.php/ProR

10 http://wiki.eclipse.org/RMF/User_Guide

11

http://www.stups.hhu.de/w/Reporting_f%C3%BCr_ReqIF:_Von_der_Analyse_bis_zur_Auswertung
http://www.stups.hhu.de/w/Reporting_f%C3%BCr_ReqIF:_Von_der_Analyse_bis_zur_Auswertung
http://www.stups.uni-duesseldorf.de/mediawiki/images/e/ec/Pub-HalJasLad2013.pdf
http://www.stups.uni-duesseldorf.de/mediawiki/images/e/ec/Pub-HalJasLad2013.pdf
http://www.stups.uni-duesseldorf.de/w/Special:Publication/LadenbergerJastram_iFMABZ2012
http://www.stups.uni-duesseldorf.de/w/Special:Publication/LadenbergerJastram_iFMABZ2012
http://wiki.event-b.org/index.php/ProR
http://wiki.eclipse.org/RMF/User_Guide

2 General Platform Maintenance

¢ 3.0.1 - Port of the changes done in Camille 2.2.0 to version 3. This includes theorems in guards
as well as other bugfixes. See D3.3 for details.

* 3.0.2 - Camille's structure parser has been moved to ProB's parser library. A fully automatic
build process featuring continuous integration has been set up. This is the first release build by
it.

One of the main goals of the last period was the support of Rodin's extensibility in Camille.

2.4.2 Motivations / Decisions

Move to Git / GitHub

The source files for Camille have been moved from the old Rodin SVN repository to their own
repository at GitHub. The old source files have been marked deprecated. Furthermore, the move
to GitHub allows us to use GitHub's infrastructure for bug tracking and feature requests. We moved
old feature requests from the wiki pages to the bug / feature tracking systems at GitHub.

Build Process

Before version 3.0.2 was released, the Camille build was mostly done by hand. This turned out
to be slowing down development during the last period of the ADVANCE project. Starting with
release 3.0.2 we completely revamped the build process. Camille is now build automatically on
each commit using a Jenkins continuous integration server . This facilitates the build as well as
the release process for Camille. Furthermore, it should ease collaborative development.

Move Structure Parser to ProB's Parser Library

Camille's internal parser for the structure of Event-B machines and contexts has been split off
of Camille and moved to ProB's general parsers library. Hence, the parser is now a completely
separate project that can be developed independently of Camille. This further decouples Camille's
core, ui and parsers. Externalising the parser is the first step to making Camille more modular in
oder to be able to replace the parser by the upcoming block parser. In addition, externalising the
parser makes it available for other projects as well.

2.4.3 Available Documentation

* Architectures for an Extensible Text Editor for Rodin."> Bachelor thesis analysing the problem
and discussing possible solutions.

* An earlier version of the thesis has been published as a technical report!? that has been discussed
on the Roding Developers Mailing List and the ADVANCE Progress Meeting in May 2012 in
Paris.

11 http://www.jenkins-ci.org

12 http://www.stups.uni-duesseldorf.de/mediawiki/images/0/0a/
Pub-Weigelt2012.pdf

13 http://www.stups.uni-duesseldorf.de/w/Special:Publication/Weigelt2012>

12

http://www.jenkins-ci.org
http://www.stups.uni-duesseldorf.de/mediawiki/images/0/0a/Pub-Weigelt2012.pdf
http://www.stups.uni-duesseldorf.de/mediawiki/images/0/0a/Pub-Weigelt2012.pdf
http://www.stups.uni-duesseldorf.de/w/Special:Publication/Weigelt2012

2.4 Camille

e Camille GitHub Repository and Bugtracker: https://github.com/hhu-stups/
camille
e Camille Wiki: http://wiki.event-b.org/index.php/Camille_Editor

2.4.4 Conclusion

Camille still has the drawback of not supporting extensibility. It only supports the core Event-B
language and plug-in-specific additions are simply ignored. Consequently, users have to switch
back to Rodin's native Editor to edit plug-in-specific modelling extensions. However, Camille was
extended in oder to preserve plug-in specific additions. This change allows switching between
Camille and the other editors without loosing plugin specific information that Camille can not
display. The changes and improvements to the development process performed in the last period
should finally allow for a new and completely overhauled version of Camille to be implemented.

13

https://github.com/hhu-stups/camille
https://github.com/hhu-stups/camille
http://wiki.event-b.org/index.php/Camille_Editor

3 Improvement of automated proof

3.1 Overview

In a regular Event-B modelling activity, most of the time is spent on interactive proofs. Therefore,
increasing the rate of automated proofs is a productivity booster which decreases the overall cost
of formal modelling. Consequently, enhancing the automated prover has been a continuous task
since the inception of the Rodin platform.

During the third period of the ADVANCE project, priority has been given to stability and improve-
ment, and enhanced user experience.

3.2 Motivations / Decisions

SMT Solvers

The SMT Solvers plug-in brings the glue that allows to use external SMT solvers for discharging
proof obligations in the Rodin platform. The SMT plug-in stability has been improved by fixing
several bugs. We have also added buttons to the Rodin proving interface in order to give direct
access to SMT tactics. Finally, the translation to SMT solvers has been enhanced by supporting
user-defined operators and passing them as uninterpreted functions. This allows an SMT solver to
be used on any proof obligation, even the ones that contain operators defined by the Theory plug-in
(as far as the proof does not depend on the operator semantics, which is usually the case). AWE,
an external user of Rodin, reported a 31% increase in automatic proof by using the SMT plugin.
See AWE presentation at the ADVANCE Industry Day !.

ProB as a Disprover / Prover

Usage of ProB as a disprover has been facilitated. Counter-examples are now displayed in an easier
to understand fashion. Error messages have been cleared up.

A more in-depth empirical evaluation of using ProB as a prover has been performed 2, using a novel
plug-in to compare the performance of different provers 3. As observed in the initial case studies,
ProB is able to find proofs that are not found by the integrated provers or the SMT solvers. For

1 http://www.advance-ict.eu/industry_days
2 http://www.stups.uni-duesseldorf.de/mediawiki/images/2/24/Pub-setsld.pdf
3 https://github.com/wysiib/ProverEvaluationPlugin

15

http://www.advance-ict.eu/industry_days
http://www.stups.uni-duesseldorf.de/mediawiki/images/2/24/Pub-sets14.pdf
https://github.com/wysiib/ProverEvaluationPlugin

3 Improvement of automated proof

certain classes of proof obligations, i.e. those that heavily rely on enumerated or otherwise finite
sets, ProB performs very favourably.

The disprover plug-in now offers the possibility to export proof obligations from inside Rodin into
a custom (Prolog-based) format. These files can then be used as test cases for the disprover. We
created several initial test cases that cover both provable as well as unprovable obligations.

Several other changes to the disprover plug-in have been made:

* As ProB itself, the disprover and prover are completely aware of theories. See the general infor-
mation on ProB's theory support for details.

* Based on the empirical evaluation, several improvements have been made to ProB's kernel. While
some of them also improve constraint solving in general, other are especially tailored for proof.

* A new setting has been introduced to allow ProB to react differently in animation / constraint
solving and (dis-)proving. Mostly, this changes the treatment of well-definedness conditions
during constraint solving.

3.3 Available Documentation

Tactic profiles are described in the Rodin Handbook*.
The user manual of the SMT Solvers plug-in is available on the Event-B wiki°.

Information regarding the Disprover is collected on °.

3.4 Conclusion

During the last period of the ADVANCE project, we have been increasing the rate of automatically
discharged proofs. It has been achieved by improving existing provers, both internal and external
ones. Support for new external provers has been evaluated. Some of them have been rejected
because of licence issue (iProver), lack of maturity (Super Zenon), or lack of evidence of result
improvements (CVC4). However for CVC4, more recent attempts with a different set of proof
obligations tend to show otherwise, so its integration can be considered.

4 http://handbook.event-b.org/current/html/preferences.htmlfref_ 01_
preferences_auto_post_tactic
http://wiki.event-b.org/index.php/SMT_Solvers_Plug-in

6 http://wiki.event-b.org/index.php/Disprover

[V}

16

http://handbook.event-b.org/current/html/preferences.html#ref_01_preferences_auto_post_tactic
http://handbook.event-b.org/current/html/preferences.html#ref_01_preferences_auto_post_tactic
http://wiki.event-b.org/index.php/SMT_Solvers_Plug-in
http://wiki.event-b.org/index.php/Disprover

4 Model Checking

4.1 Overview

In this period we have worked on scalability of the tools, by improving ProB for theories, for the
WP1 and WP2 case study demands, and by adding dedicated support for fairness properties. We
have also provided a link to the TLC model checker for large state space of more concrete formal
models. We have also added new features to the model checking core of ProB, in feedback from
the other work packages.

4.2 Motivations / Decisions

4.2.1 Linear Temporal Logic

LTL is a specification language used for specifying temporal properties of a system. A possible
requirement that could refer to WP1 may be, for example, once a block is reserved, it will eventually
be occupied. The requirement could be easily written as an LTL formula using the temporal
operators "G (always) and “F" (eventually):

"G ({reserved(B) = TRUE} => F {occupied(B) = TRUE}) , where B is a block of
some track segment in the railway network and the expressions inside the curly
brackets “{...} are B predicates.

LTL Fairness

ProB provides support for checking temporal properties expressed by means of LTL (Linear Tem-
poral Logic) or CTL (Computation Tree Logic).! In ProB linear temporal properties can be ex-
pressed by an extended version of LTL, denoted as LTL[®], which additionally enables the user
to set propositions on transitions. Writing propositions on transitions is allowed by using the con-

1 D. Plagge and M. Leuschel: Seven at one stroke: LTL model checking for High-level Specifications in B, Z, CSP,
and more. STTT, 12(1): 9-21, Feb 2010

17

4 Model Checking

structs “e(...)" and “[...]". (For more information on the syntax and semantics of LTL[°] consult
2
)

Fairness is a notion where the search for counterexamples is restricted to paths that do not ignore
infinitely the execution of a set of enabled actions imposed by the user as fair constraints. One
possibility to set fairness constraints in ProB is to encode them in the LTL[®] formula intended
to be checked. For example, for a given LTL[®] formula "f" a set of weak fairness conditions
{el,...,en} (where el,...,en are some events) can be given as follows:

(FG e(el) => GF [el]) & .. & (FG e(en) => GF [en]) => f.

In a similar way, strong fairness constraints can be imposed expressed by means of an LTL[®]
formula:

(GF e(el) => GF [el]) & .. & (GF e(en) => GF [en]) => f.

Checking fairness in this way is very often considered to be inefficient as usually the number of
atoms (the possible valuations of the property) of the LTL property is exponential in the size of the
formula * *,

For this reason, the search algorithm of the LTL model checker in ProB has been extended in order
to allow fairness to be checked efficiently. In addition, new operators have been added to ProB’s
LTL parser for setting fairness constraints to an LTL[®] property. The new operators are WF(-)
and SF(-) and both accept as argument an operation. The fairness constraints must be given by
means of implication: "fair => ", where "f" is the property to be checked and "fair" the fairness
constraints.

non non

In particular, "fair" can have one of the forms: "wfair", "sfair", "wfair & sfair”, and "sfair & wfair",
where "wfair" and "sfair" represent the imposed weak and strong fairness constraints, respectively.

Basically, "wfair" and "sfair" are expressed by means of logical formulas having the following
syntax:

¢ Weak fair conditions ("wfair"):

* "WF(a)", where "a" is an operation

* “& and “or™: conjunction and disjunction
* Strong fair conditions ("sfair"):

* "SF(a)’, where "a" is an operation

2 ProB User Manual: LTL Model Checking, http://www.stups.uni-duesseldorf.de/ProB/
index.php5/LTL_Model_Checking

3 O. Lichtenstein and A. Pnueli: Checking that Finite State Concurrent Programs Satisfy Their Linear Specification.
POPL '85, Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages, ACM, 1985

4 D. Plagge and M. Leuschel: Seven at one stroke: LTL model checking for High-level Specifications in B, Z, CSP,
and more. STTT, 12(1): 9-21, Feb 2010

18

http://www.stups.uni-duesseldorf.de/ProB/index.php5/LTL_Model_Checking
http://www.stups.uni-duesseldorf.de/ProB/index.php5/LTL_Model_Checking

4.2 Motivations / Decisions

e "& and “or™: conjunction and disjunction

More information on setting fairness to LTL formulas and the LTL Model Checker is available on
the ProB User Manual website °.

Use Case

Consider an Event-B model formalizing an algorithm for mutual exclusion with semaphores for
two concurrent processes P, and P». Each process has been simplified to perform three types of
events: request (for entering in the critical section), enter (entering the critical section), and release
(exiting the critical section). (For more information on the algorithm and the design of the model
see 9).

Each of the actions of a process are represented by a respective event:

event Reql event Enterl event Rell
when when when
ggrdl pl=noncritl @grdl pl=waitl @grdl pl=critl
then Bgrd? y=1 then
Bactl pl = waitl then Bactl pl = noncritl
end Bactl pl = critl Bact? y=1
Bact? y=0 end
end
event Reqg2 event Enter2 event Rel2
when when when 1
Bgrdl p2=noncrit2 Bgrdl p2=-wait2 Bgrdl p2-crit2
then Bgrd? y=1 tben 1
Bactl p? = wait? then EMLEL\ p2 = noncrit?
end Bactl p?2 = crit2 Bact? w=1
Bact? y=0 end
end

Figure 1

Each process P; has three possible states that are denoted by the constants noncrit; (the state
in which P; performs noncritical actions), wait; (the state in which P; waits to enter the critical
section), and crit; (representing the state in which F; is in the critical section). Both processes
share the binary semaphore y where y=1 indicates that the semaphore is free and y=0 that the
semaphore is currently processed by one of the processes.

5 ProB User Manual: LTL Model Checking, http://www.stups.uni-duesseldorf.de/ProB/
index.php5/LTL_Model_Checking
6 C.Baier and J.-P. Katoen. “Principles of Model Checking”, The MIT Press, 2008, pages 43-45.

19

http://www.stups.uni-duesseldorf.de/ProB/index.php5/LTL_Model_Checking
http://www.stups.uni-duesseldorf.de/ProB/index.php5/LTL_Model_Checking

4 Model Checking

There are several requirements that the mutual exclusion algorithm should satisfy. The most
important one is the mutual exclusion property that says always at most one process is in its critical
section. This can be simply expressed, for example, as an invariant of the respective Event-B
model: not(pl = critl & p2 = crit2). However, there are other properties that can be easily
expressed by means of LTL formulas and automatically checked on the model. For example, the
requirement each process will enter infinitely often its critical section can be specified by the LTL
formula "GF {pl = critl} & GF {p2 = crit2}" or the starvation freedom property that states each
waiting process will eventually enter its critical section:

G ({pl = waitl} => F {pl = critl}) & G ({p2 = wait2} => F {p2=crit2})

Running the LTL model checker of ProB will provide for the last two properties above a coun-
terexample since the model permits that a process may perform infinitely often consecutively the
events request, enter and release, and in this way to ignore the other process infinitely. An example
trace that describes this behavior could be (Req2, Reql, Enterl, Rell, Reql, Enterl,...).

On the other hand, such behaviors can be considered as unrealistic computations for the eventual
implementation of the algorithm. Therefore fairness constraints can be set in order to discard such
behaviors. For example, checking the property process P will enter its critical section infinitely
often (as LTL property: "GF {p1 = crit1}") can be checked by restricting that the event "Req1” will
not be continuously ignored and that the event “Enter1” will not be ignored infinitely often. Both
conditions on the property can be given by means of an LTL[°] formula on the right side of the
implication as follows:

(FG e(Regl) => GF [Reqgl]) & (GF e(Enterl) => GF [Enterl]) => GF {pl = critl}

For checking the formula the LTL model checker generates 13312 atoms and 7515 transitions and
needs overall 509 ms to prove the property. On the other hand, using the extension of the LTL
model checker for checking fairness (by entering the formula “"WF(Reql) & SF(Enterl) => GF
{pl=critl}"), the model checker generates 32 atoms and 39 transitions (the atoms and transitions
generated just for "GF {p1l = critl}") and an overall time of 50 ms.

For checking the requirement each process will enter infinitely often its critical section the LTL
formula * GF {pl = critl} & GF {p2 = crit2}" should be checked with the following fairness
constraints:

(WF (Regql) & WF (Reg2)) & (SF(Enterl) & SF(Enter2))

Encoding these fairness conditions as an LTL[®] formula will blow up exponentially the number of
atoms and the transitions and thus make practically impossible to check the above property in a
reasonable time.

20

4.2 Motivations / Decisions

New LTL Patterns

The ABZ landing gear case study ’ was formalized in Event-B and validated with ProB. ® In the
course of the validation of the model new features have been developed in ProB for checking
relative deadlock freedom and determinism.

Since it has turned out that the features were a key part of the validation of the model and the
authors believe that they will be of use for other Event-B system developments, the LTL model
checker has been extended to support these features as new patterns within LTL[®] formulas:

¢ deadlock(el,e2,...,ek), where el,e2,...,ek with k>0 are events. Used to check relative deadlocks,
more precisely to check if a set of events are disabled in a state.

¢ deterministic(el,e2,...,ek), where el,e2,...,ek with k>0 are events. Used to check that maximum
one of the events in the parentheses is enabled in a state. Note that if the atomic proposition is
checked in a state where no one of the events el,e2,...,ek is enabled, the test will succeed.

* controller(el,e2,...,ek), where el,e2,...,ek with k>0 are events. Used to check that exactly one
of the events el,e2,...,ek is enabled in a state.

Referring to the landing gear case study from °, one important issue in the process of

validation of the model was to guarantee that the controller behaves in a determinisitc
way. In the corresponding model the behavior of the controller is divided into sev-
eral events: con_stop_stimulate_extend_gear_valve, con_stimulate_extend_gear_valve,
con_stop_stimulate_retract_gear_valve, etc. = The deterministic behavior of the controller
could, for example, be tested by using new LTL pattern “deterministic(el,e2,...,ek)” within an
LTL[®] formula:

G deterministic(con_stop_stimulate_extend_gear_
valve, con_stimulate_extend_gear_valve,con_stop_stimulate_retract_gear_valve,...)

and then check the LTL[®] formula with the ProB's LTL model checker.

4.2.2 Theory Support

Theory Support was relevant for a variety of case studies, and is relevant for simulation, model
checking and proving. We ensured that the Disprover also works with theories. We have also
improved the constraint propagation of the ProB kernel for records and freetypes, which are used to
represent Event-B inductive datatypes. (As a side note, this feature is also being used for validating

7 F.Boniol, V. Wiels, “The Landing Gear System Case Study”, ABZ 2014

8 D. Hansen, L. Ladenberger, H. Wiegard, J. Bendisposto, M. Leuschel, “Validation of the ABZ Landing Gear Sys-
tem using ProB”, ABZ 2014: The Landing Gear Case Study, 2014, pages 66-79, Springer International Publisher.

9 D. Hansen, L. Ladenberger, H. Wiegard, J. Bendisposto, M. Leuschel, “Validation of the ABZ Landing Gear Sys-
tem using ProB”, ABZ 2014: The Landing Gear Case Study, 2014, pages 66-79, Springer International Publisher.

21

4 Model Checking

VDM specifications using ProB within the Ouverture'® tool !!. Quverture is the subject of ongoing
and past EU projects, e.g., Destecs'? or Compass'>.). Finally, the treatment of recursive functions
within the ProB kernel has been improved, also in light of dealing with recursive operators of
Event-B Theories. More details can be found in deliverable D4.4 (ProB constraint solving kernel).

4.2.3 Physical Units

The physical units analysis has been further stabilised, several reported bugs have been fixed. Sup-
port for physical units has been extended to theories along with the general theory-related im-
provements of ProB mentioned in the previous paragraph. The plug-in was ported to Rodin 3, all
bugfixes and changes could be back ported to Rodin 2 successfully.

Further extension to the unit analysis include:

 Support for the analysis of units throughout refinement relations.
* Support for abstract units like "length" that can later be concretised to standard SI units.

A journal version of the SEFM'13 article '# has been submitted.

4.2.4 B to TLA+

We developed a translation from B to TLA+ to verify B specifications with TLC. TLC is an explicit
state model checker for TLA+ providing a parallel and a distributed mode. It is particularly good
for lower level specifications, where it can be substantially faster than ProB's own model checker.

Moreover, we are interested in validating the correctness of our translation from B to TLA+. Hence,
we have conducted extensive tests to validate our approach. For example, we use a range of models
encoding mathematical laws to stress test our translation. These have proven to be very useful
for detecting bugs in our translation and libraries. In addition, we have uncovered a bug in the
model checker TLC. Moreover, we use a wide variety of benchmarks, checking that ProB and
TLC produce the same result and generate the same number of states

The current version of our translator covers almost all operators of a abstract B machine. More-
over, TLC can be used to validate liveness properties (LTL formulas) for B specifications under

10 http://overturetool.org

11 Lausdahl, Kenneth; Ishikawa, Hiroshi; Larsen, Peter Gorm. Interpreting Implicit VDM Specifications using
ProB. 2014. Abstract from 12th Overture Workshop on VDM, Newcastle, United Kingdom. http://wiki.
overturetool.org/index.php/12th_Overture_Workshop.

12 http://destecs.org

13 http://www.compass—-research.eu

14 Sebastian Krings, Michael Leuschel, "Inferring Physical Units in B Models. SEFM"2013, LNCS 8137, p. 137-
151."

22

http://overturetool.org
http://wiki.overturetool.org/index.php/12th_Overture_Workshop.
http://wiki.overturetool.org/index.php/12th_Overture_Workshop.
http://destecs.org
http://www.compass-research.eu

4.3 Available Documentation

fairness conditions. Our approach has been published at the ABZ’2014 conference in Toulouse °.

A technical report is available '°.

4.2.5 Performance Improvements

Various performance improvements have been made to the model checker and animator for Event-
B models, both in terms of memory consumption and speed. For example, ProB now executes the
models from WP1 and WP2 considerably faster than at the beginning of the project and than at
the beginning of the last period of the project. Another example is an Event-B model of the Early
parser by JR Abrial (a standard benchmark used for ProB regression testing) is now running an
order of magnitude faster than before the beginning of the project.

4.3 Available Documentation

ProB

The ProB Website!” is the place where we collect information on the ProB toolset. There are
several tutorials on ProB available in the User manual section'®. We also supply documentation on
extending ProB for developers'®. Documentation and tutorials on the new LTL features available®.
Recently, a tutorial for the LTL counter-example view in Rodin has been written®'.

The physical unit support is explained here?.
The TLC for B model checking support is explained here?.

In addition we run a bug tracking system?* to document known bugs, workarounds and feature
requests.

15 D. Hansen and M. Leuschel: Translating B to TLA + for Validation with TLC. ABZ'14, LNCS 8477, p.40-55,
June 2014

16 http://stups.hhu.de/w/Special:Publication/HansenLeuschel_ TLC4B_techreport

17 ProB Website: http://www.stups.uni-duesseldorf.de/ProB/

18 ProB User Manual: http://www.stups.uni-duesseldorf.de/ProB/index.php5/User
Manual

19 ProB Developer Manual: http://www.stups.uni-duesseldorf.de/ProB/index.php5/
Developer_Manual

20 ProB User Manual: LTL Model Checking, http://www.stups.uni-duesseldorf.de/ProB/
index.php5/LTL_Model_Checking

21 LTL View in Rodin: http://www.stups.uni-duesseldorf.de/ProB/index.php5/
Tutorial_LTL_Counter-example_View

22 Unit Plugin: http://www.stups.uni-duesseldorf.de/ProB/index.php5/Tutorial_
Unit_Plugin

23 TLC:http://www.stups.uni-duesseldorf.de/ProB/index.php5/TLC

24 Bug Tracking System: http://jira.cobra.cs.uni-duesseldorf.de/

23

http://stups.hhu.de/w/Special:Publication/HansenLeuschel_TLC4B_techreport
http://www.stups.uni-duesseldorf.de/ProB/
http://www.stups.uni-duesseldorf.de/ProB/index.php5/User_Manual
http://www.stups.uni-duesseldorf.de/ProB/index.php5/User_Manual
http://www.stups.uni-duesseldorf.de/ProB/index.php5/Developer_Manual
http://www.stups.uni-duesseldorf.de/ProB/index.php5/Developer_Manual
http://www.stups.uni-duesseldorf.de/ProB/index.php5/LTL_Model_Checking
http://www.stups.uni-duesseldorf.de/ProB/index.php5/LTL_Model_Checking
http://www.stups.uni-duesseldorf.de/ProB/index.php5/Tutorial_LTL_Counter-example_View
http://www.stups.uni-duesseldorf.de/ProB/index.php5/Tutorial_LTL_Counter-example_View
http://www.stups.uni-duesseldorf.de/ProB/index.php5/Tutorial_Unit_Plugin
http://www.stups.uni-duesseldorf.de/ProB/index.php5/Tutorial_Unit_Plugin
http://www.stups.uni-duesseldorf.de/ProB/index.php5/TLC
http://jira.cobra.cs.uni-duesseldorf.de/

4 Model Checking
4.4 Conclusion

With TLC4B we have provided a new scalable model checking approach for low-level B models.
It should be particularly interesting for hardware models or lower-level models with very large state
spaces. Fairness is often important for real-life temporal properties; by adding these we have made
the ProB LTL model checker much more convenient and effective to use. The new LTL patterns
arose multiple times in the various case studies; by providing them directly within the LTL language
we have made the specification task much easier. Finally, theories in Rodin are very important and
have played an important role in both WP1 and WP2 case studies. The support provided by ProB
was thus essential for the success in these work packages.

24

5 Language extension

5.1 Overview

Mathematical extensions have been co-developed by Systerel (for the Core Rodin Platform) and
Southampton (for the Theory plug-in). The main purpose of this feature was to provide the Rodin
user with a way to extend the standard Event-B mathematical language by supporting user-defined
operators, basic predicates and algebraic types. Along with these additional notations, the user can
also define new proof rules (proof extensions).

The Theory plug-in provides, among other things, a user-friendly mechanism to extend the Event-B
mathematical language as well as the prover. A theory is the dedicated component used to hold
mathematical extensions (datatypes, operators with direct definitions, operators with recursive def-
initions and operators with axiomatic definitions), and proof extensions (polymorphic theorems,
rewrite and inference rules). Theories are developed in the workspace (akin to models), and are sub-
ject to static checking and proof obligation generation. Proof obligations generated from theories
ensure any contributed extensions do not compromise the soundness of the existing infrastructure
for modelling and proof. In essence, the Theory plug-in provides a systematic platform for defining,
validating and using extensions while exploiting the benefits brought by proof obligations.

5.2 Motivations / Decisions

Supporting mathematical and proof extensions has been a longing for the Event-B community for
considerable time. Serious considerations have been made to ensure any support ensures: 1) ease
of use, and 2) soundness preservation. The Theory plug-in became a natural candidate to provide
support for mathematical and proof extensions. The use of proof obligations goes a long way in
preserving the soundness of the underlying Event-B formalism.

In the past 5 months:
* Two versions of the Theory plug-in is released. ! The releases include several bug fixes.

* A set of standard theories and some models using these theories are developed . The standard
library of the theories is available to download here?.

1 http://wiki.event-b.org/index.php/Theory_Release_History
https://sourceforge.net/projects/rodin-b-sharp/files/Theory_StdLib/

StandardTheory0.1.zip/download

25

http://wiki.event-b.org/index.php/Theory_Release_History
https://sourceforge.net/projects/rodin-b-sharp/files/Theory_StdLib/StandardTheory0.1.zip/download
https://sourceforge.net/projects/rodin-b-sharp/files/Theory_StdLib/StandardTheory0.1.zip/download

5 Language extension

This library includes:

* BasicTheory project: including theories of BinaryTree, BoolOps, List, PEANO, SUMand-

PRODUCT and Seq.

» RelationOrderTheory project:

including theories of Connectivity, FixPoint, Relation,

Well_Fondation, closure, complement and galois.
» RealTheory project: including theory of Real.

Also it includes three Event-B models that use these theories:

 Data project: using SUMandPRODUCT theory
* Queue project: using Seq theory
* SimpleNetwork project: using closure theory

During last 4 months, the migration of Theory plug-in for Rodin v3.1 is being perfumed. This
work involves major changes in managing the compatibilities in the Theory plug-in using the APIs

from Rodin core v3.1.

5.3 Available Documentation

Pre-studies (states of the art, proposals, discussions):

* Proposals for Mathematical Extensions for Event-B.
* Mathematical Extension in Event-B through the Rodin Theory Component.*
* Generic Parser's Design Alternatives.?

Technical details (specifications):

 Mathematical_Extensions wiki page.®

* Constrained Dynamic Lexer wiki page.’

» Constrained Dynamic Parser wiki page.®

* Theory plug-in wiki page.’

User's guides:

» Theory Plug-in User Manual.'®

W AW

Alternatives
http://wiki.event-b.
http://wiki.event-b.
http://wiki.event-b.
http://wiki.event-Db.
0 http://wiki.event-Db.

— O 0 3

26

org/index
org/index
org/index
org/index

http://deploy-eprints.ecs.soton.ac.uk/216/
http://deploy-eprints.ecs.soton.ac.uk/251/
http://wiki.event-b.org/index.

php/Constrained_Dynamic_Parser#Design_

.php/Mathematical_Extensions
.php/Constrained_Dynamic_Lexer
.php/Constrained_Dynamic_Parser
.php/Theory_Plug-in

org/images/Theory_Plugin.pdf

http://deploy-eprints.ecs.soton.ac.uk/216/
http://deploy-eprints.ecs.soton.ac.uk/251/
http://wiki.event-b.org/index.php/Constrained_Dynamic_Parser#Design_Alternatives
http://wiki.event-b.org/index.php/Constrained_Dynamic_Parser#Design_Alternatives
http://wiki.event-b.org/index.php/Mathematical_Extensions
http://wiki.event-b.org/index.php/Constrained_Dynamic_Lexer
http://wiki.event-b.org/index.php/Constrained_Dynamic_Parser
http://wiki.event-b.org/index.php/Theory_Plug-in
http://wiki.event-b.org/images/Theory_Plugin.pdf

5.4 Conclusion
5.4 Conclusion

The Theory plugin plays an important role in enhancing the useability of the Rodin in terms of
extending the Event-B modelling language and provers. The latest release (2.0.2) can be considered
as a stable release for Rodin v2.8, and is used in WP1 and WP2 as below:

* In WP1 it was used to develop theories of graphs and chains to represent rail network topology,
train positions and train movements.

* In WP2 is was used for modelling arithmetic operations on data collections (generalised product
and sum) for the voltage controller.

Also an external industrial user, Thales, has used the Theory plug-in for representing variability
in modelling of railway interlocking systems. In particular Thales developed a generic model of
an interlocking system and represented operational rules specific to particular rail operators as
mathematical operators in theories. Different rules are represented as different theories for the
same generic model. The Thales presentation at ADVANCE Industry Day is available here!!.

11 http://www.advance-ict.eu/industry_days

27

http://www.advance-ict.eu/industry_days

6 Model Composition and Decomposition

6.1 Overview

Composition is the process by which it is possible to combine different sub-systems into a larger
system. Known and studied in several areas, this has the advantage of re-usability and combination
of systems especially when it comes to distributed systems. One of the most important feature
of the Event-B approach is the possibility to introduce new events during refinement steps, but a
consequence is an increasing complexity of the refinement process when having to deal with many
events and many state variables. Model decomposition is a powerful technique to scale the design
of large and complex systems. It enables first developers to separate components development
from the concerns of their integration and orchestration. Moreover, it tackles the complexity prob-
lem mentioned above, since decomposition allows the partitioning the complexity of the original
model into separated components. This allows a decomposed part of the model to be treated as an
independent artifact so that the modeller can concentrate on this part and does not have to worry
about the other parts. Composition and decomposition can be seen as inverse operations: while
composition starts with different components that can be assembled together, decomposition starts
with a single components that can be partitioned into different components.

6.2 Motivations / Decisions

Recent updates to the composition and decomposition features are:

1) Support for flattening: this is needed in order to compose refinement chains, rather than just
machines at a single abstraction level. It was requested by the Critical Software partner, in order
to apply composition to the smart grid case study.

2) Porting to Rodin 3 as part of the tool maintenance activity.

6.3 Available Documentation

Details about decomposition can be found here!

1 http://wiki.event-b.org/index.php/Decomposition_Plug-in_User_Guide

29

http://wiki.event-b.org/index.php/Decomposition_Plug-in_User_Guide

6 Model Composition and Decomposition

Details about composition can be found here?

6.4 Conclusion

Composition/decomposition have been applied in the interlocking case study of WP1 and the smart
grid case study of WP2. WP2 required the addition of a feature to flat refinement chains in order
to compose them. Composition/decomposition has been ported to Rodin 3.

2 http://wiki.event-b.org/index.php/Parallel_Composition_using_Event-B

30

http://wiki.event-b.org/index.php/Parallel_Composition_using_Event-B

	D3.4cover
	AdvanceD3.4

