
ADVANCED DESIGN AND VERIFICATION ENVIRONMENT 
FOR CYBER-PHYSICAL SYSTEM ENGINEERING 
www.advance-­‐ict .eu  

 

  
 

   
 

D.5.2 - ADVANCE PROCESS 
INTEGRATION II 
ADVANCE 
 
 

Grant Agreement: 287563 
Date: 3/12/2013 
Pages: 
 

30 
 Status: 

 
Final  
 Access: 

 
Access List 
 Reference: 

 
D5.2 

Issue: 1 

Partners / Clients: 
 

  

FP7 Framework Programme European Union 

Consortium Members: 
 

 
 

   

University of 
Southampton 

Critical Software 
Technologies Alstom Transport Systerel Heinrich Heine 

Universität Düsseldorf 
 



Project ADVANCE
Grant Agreement 287563

“Advanced Design and Verification Environment for
Cyber-physical System Engineering”

ADVANCE Deliverable D5.2

ADVANCE Process Integration II

Public Document

December 3, 2013

http://www.advance-ict.eu

http://www.advance-ict.eu


Contributors:

Lukas Ladenberger
John Colley

Reviewers:

Laurent Voisin

2



Contents

1 Preface 4

2 Summary of earlier work 5

3 Modelling the Door Sub-system in Event-B 8
3.1 The Abstract Model . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 The First Refinement: modeling the safety constraints . . . . 13
3.3 The Second Refinement: Determining how Unsafe Control Ac-

tions could Occur . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Integrating Proof and Simulation 26
4.1 Test Suite Generation . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Concrete Model Decomposition . . . . . . . . . . . . . . . . . 26
4.3 Multi-simulation . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Summary 28

Bibliography 29

3



Chapter 1

Preface

This deliverable reports on the final work on combining formal modelling
with requirements analysis and safety analysis, including tool support. It en-
sures that the tools delivered support properly the requirements and safety
analysis methods that have been developed and that the accompanying doc-
umentation and tutorials are in place. It also reports on initial work on
integration of design flows that combine proof and simulation.

In chapter 2 we summarise our earlier work on combining formal modelling
with requirements and safety analysis to set the context for the work de-
scribed in this deliverable.

In chapter 3 we show how our earlier work using System-Theoretic Process
Analysis (STPA) has been extended and how the ProR developments of the
first reporting period have been used to document this STPA-based approach.

In chapter 4 we report on how a test suite can be developed from a concrete
model of a safety-critical system and how a controller for that system, devel-
oped using this STPA approach, can be used in ADVANCE multi-simulation.

In chapter 5 we summarise the work done so far for this workpackage and
the focus of future work.

4



Chapter 2

Summary of earlier work

In our earlier work, described in the ADANCE deliverable D5.1, we developed
a method for linking formally the safety requirements of a system to its
functional requirements.

We investigate the functional requirements using a method that identifies
the system phenomena and then structures the functional requirements ac-
cording to these phenomena [YB12]. We then use System-Theoretic Process
Analysis (STPA) from Leveson [Lev12], a technique for Hazard Analysis.

STPA has two main steps. The first step is focused on deriving the safety
constraints on the system from the potentially hazardous control actions.
The second concentrates on determining how unsafe control actions could
occur.

• The Functional Requirements are developed using the System Phenom-
ena

• The Safety Requirements are derived from the Controlled Phenomena

• The Safety Constraints are then derived systematically from the Safety
Requirements, represented in natural language

• The Safety Constraints are represented formally in the Event-B model
as invariants and guards

Using a domestic washing machine in our case study, we explored the
application of the method to the washing machine sub-systems. In particular,
we applied the method to the door sub-system, as described below.

5



Controller 

        Process Model 
Door Position 

-- Open 
  -- Closed 

       -- Unknown 
Door Security 

   -- Locked 
       -- Unlocked 
       -- Unknown 

Human Operator 

        Process Model 
Door Security 

   -- Locked 
       -- Unlocked 
       -- Unknown 

Door 
Sub-system 

Actuator Sensor 

Lock Door 
Unlock Door 

Open Door 
Close Door 

Door is Open 
Door is Closed 

Controlled Process 

Figure 2.1: The Controlled Door Sub-system

The Door Sub-system

Consider first a model of the Controlled Door Sub-system as shown in Figure
2.1.

The Main Controller has a Process Model of the Door Sub-system. So
also does the Human Operator. The Operator can open or close the door
directly. The Controller uses an Actuator to lock and unlock the door and a
Sensor to detect whether the door is open or closed.

Step I: Identifying Potentially Hazards Control Actions

For each of the two Controller actions, Unlock Door and Lock Door, we
identify three potential causes of a hazard: not providing the action when it
should, providing the action when it shouldn’t and providing the action at
the wrong time or in the wrong order. The results of the analysis are shown
in in Figure 2.2.

Failing to unlock the door is inconvenient but not hazardous. Unlocking
the door when the drum is filled is hazardous because the operator will be
able to open the door inadvertently and release potentially very hot water.
Unlocking the door before the drum has been fully drained is also hazardous.

Failing to lock the door when the drum is filled is hazardous, but locking
the door when the drum is empty is not. Locking the door after the drum

6



Controller	
  Ac+on	
   Not	
  Providing	
  Causes	
  
Hazard	
  

Providing	
  
Causes	
  Hazard	
  

Wrong	
  Timing	
  or	
  
Order	
  Causes	
  Hazard	
  

Unlock	
  Door	
   Not	
  Hazardous	
   Operator	
  can	
  open	
  
door	
  with	
  drum	
  filled	
  
	
  

Water	
  not	
  fully	
  
drained	
  

Lock	
  Door	
   Operator	
  can	
  open	
  
door	
  with	
  drum	
  filled	
  

Not	
  Hazardous	
   Water	
  starts	
  filling	
  
before	
  Lock	
  

Figure 2.2: Hazards: Door

has started filling is hazardous.

Step II: Deriving the Safety Constraints

Three Safety Constraints can be derived from Figure 2.2

1. The Door must always be locked when there is water in the Drum

2. An Unlock Door command must never be issued until the water is fully
drained

3. A Lock Door command must be issued before starting to fill the Drum

The first is an Invariant of the system. The second and third are Guards
that prevent an operation occurring in an unsafe way. These natural language
invariants and guards can then be represented formally in an Event-B model
[Abr10].

We will now go on to explore more fully the modelling of the safety
constraints of the door sub-system in Event-B.

7



Chapter 3

Modelling the Door Sub-system
in Event-B

3.1 The Abstract Model
“Any controller - human or automated - needs a model of the

process being controlled to control it effectively.”

“Accidents can occur when the controller’s process model does
not match the state of the system being controlled and the con-
troller issues unsafe commands.”

Engineering a Safer World, Leveson, 2012

We therefore begin with an abstract model of the process in Event-B to
represent the controller’s process model shown in Figure 2.1 above, which
subsequently we shall refine. Our refinement strategy mirrors the STPA
method.

We introduce an Event-B context which defines the Door Position as
OPEN or CLOSED. For the Door State, however, we introduce three states:
LOCKED, UNLOCKED, or UNKNOWN, since we have already identified
through STPA that the locking mechanism is the the source of potential
hazards which we must mitigate. If the door lock develops a fault during
operation and the controller detects this fault, the controller may not know
whether the door is actually locked or not. The context is shown below.

8



CONTEXT DOORC
SETS

DoorPosition,DoorState
CONSTANTS

OPEN,CLOSED

LOCKED,UNLOCKED,UNKNOWN
AXIOMS

axm1 : partition(DoorPosition, {OPEN}, {CLOSED})
axm2 : partition(DoorState, {LOCKED}, {UNLOCKED}, {UNKNOWN})

END

We then define the abstract machine for the door sub-system, which has
two variables, dpos and doorst, which are initialised to OPEN and LOCKED
respectively.

MACHINE DOORM
SEES DOORC
VARIABLES

dpos

doorst
INVARIANTS

inv1 : dpos ∈ DoorPosition

inv2 : doorst ∈ DoorState
EVENTS
Initialisation

begin

act1 : dpos := OPEN
act2 : doorst := UNLOCKED

end

We can define the door operations as events. The door can be closed if
it is open and can be opened if it is closed, but not locked.

9



Event CloseDoor =̂

when

grd1 : dpos = OPEN
then

act1 : dpos := CLOSED
end

Event OpenDoor =̂

when

grd1 : dpos = CLOSED
grd2 : doorst 6= LOCKED

then

act1 : dpos := OPEN
end

The door can be locked if it is closed and unlocked. It can be unlocked if
it is locked.

Event LockDoor =̂

when

grd1 : doorst = UNLOCKED
grd2 : dpos = CLOSED

then

act1 : doorst := LOCKED
end

Event UnlockDoor =̂

when

grd1 : doorst = LOCKED
then

act1 : doorst := UNLOCKED
end

For STPA we introduce an extra event DetectDoorFault. In any good
state of the system, if the controller detects a door fault then the door may
or may not be locked, which results in the doorst going to UNKNOWN.

10



Event DetectDoorFault =̂

when

grd1 : doorst 6= UNKNOWN

then

act1 : doorst := UNKNOWN

end

END

The graph for the abstract model, which is produced automatically by
ProB [LB08], is shown in Figure 3.1.

11



root

doorst = UNLOCKED,dpos = OPEN

INITIALISATION(UNLOCKED,OPEN)

doorst = UNLOCKED,dpos = CLOSED

CloseDoor

doorst = UNKNOWN,dpos = OPEN

DetectDoorFault

OpenDoor

doorst = LOCKED,dpos = CLOSED

LockDoor

doorst = UNKNOWN,dpos = CLOSED

DetectDoorFault

CloseDoor

UnlockDoor

DetectDoorFault

OpenDoor

Figure 3.1: The Abstract Process Model Graph

12



3.2 The First Refinement: modeling the safety
constraints

We now extend the Event-B context to introduce the notion of the Drum-
State. The drum is either EMPTY, FILLING, FILLED, or EMPTYING.

CONTEXT LOCKSE1
EXTENDS LOCKSC
SETS

DrumState
CONSTANTS

EMPTY, FILLING,FILLED,EMPTY ING

AXIOMS

axm1 : partition(DrumState, {EMPTY }, {FILLING}, {FILLED}, {EMPTY ING})
END

The abstract process model is refined, introducing the variable drumst to
represent the state of the drum and safety constraints developed using STPA
are modelled.

Recall the derived safety constraints for the door sub-system.

1. The Door must always be locked when there is water in the Drum

2. An Unlock Door command must never be issued until the water is fully
drained

3. A Lock Door command must be issued before starting to fill the Drum

We first consider safety constraint 2. The Unlock Door command is rep-
resented by the event UnlockDoor in the abstract Event-B machine: if the
door is locked, then the door can be unlocked. In the refinement of the event
we introduce an extra guard.

grd2 : drumst = EMPTY

This guard is a direct, formal representation of safety constraint 2 : the
door cannot be unlocked unless the drum is EMPTY, as shown in the refined
event below.

13



Event UnlockDoor =̂

refines UnlockDoor
when

grd1 : doorst = LOCKED
grd2 : drumst = EMPTY

then

act1 : doorst := UNLOCKED
end

We then consider safety constraint 3. We introduce a new event, FillDrum
in the refined machine.

Event FillDrum =̂

when

grd1 : doorst = LOCKED
grd2 : drumst = EMPTY

then

act1 : drumst := FILLING
end

The first guard of this event, grd2, is an indirect, formal representation
of safety constraint 2 : the empty drum cannot be filled unless the door is
locked, but the door can only be locked if the event LockDoor is activated.
Therefore, a lock door command must always precede a fill drum command.

The safety constraint 1 is an invariant of the system: the door must
always be locked when there is water in the drum. and can be represented
formally in Event-B thus.

inv2 : drumst 6= EMPTY ⇒ doorst = LOCKED

When we run the Rodin [ABH+10] provers, however, we find that this
safety invariant is not preserved by the event DetectDoorFault. From STPA,
if the door sub-system develops a fault during normal operation and the
controller detects the fault, the controller will not know whether the door
is locked or not. If the drum is not empty when the fault arises and the
door is indeed no longer locked, then the system does not preserve the safety
invariant. We can, however, say that under normal operation in the absence
of faults, the following invariant,

inv2 : drumst 6= EMPTY ⇒ doorst 6= UNLOCKED

14



is preserved and the Rodin provers confirm this. We must therefore make
a design decision. Do we wish to eliminate the hazard or mitigate it when
we detect it? If a fail safe door subsystem component was selected for the
design, the controller would always know whether the door was locked or not.
When a door fault was detected the state of the door would go to LOCKED,
the hazard would be eliminated and the invariant

inv2 : drumst 6= EMPTY ⇒ doorst = LOCKED

would be preserved by the system. A fail-safe washing machine door sub-
system would, however, be very inconvenient to a domestic user, so we choose
to mitigate the hazard rather than eliminate it and use the invariant.

inv2 : drumst 6= EMPTY ⇒ doorst 6= UNLOCKED

We will then, in a subsequent refinement have to develop a mitigation
strategy, and prove that the design implements the mitigation strategy under
all possible failure circumstances.

We document the safety analysis using ProR [Jas10] within Rodin as
shown in Figure 3.2.

Figure 3.2: Documenting the Safety Analysis in ProR

3.3 The Second Refinement: Determining how
Unsafe Control Actions could Occur

Following the second STPA step we determine how unsafe control actions
could occur with respect to the hazard: the door is open and there is water
in the drum, as shown in Figure 3.3.

15



• The Controller issues the lock but it is not received

• The Actuator fails and the door is not locked

• The Door is not properly closed

• Door Closed is signaled when the door is not properly closed

Controller 

Human Operator 
Door open; 

Water in Drum 

Actuator Failure Sensor Failure 

Lock Issued 
but not 
Received 

Door not 
Properly  
Closed 
Opens Door 
When Drum 
Has Water 

Door Closed signaled 
When not Properly Closed 

Door not Locked 

•  Requirements 
not fully specified 

•  Requirements 
not Implemented 

•  Process Model 
Incorrect 

•  Inadequately 
Trained 

•  Process Model 
Incorrect 

Figure 3.3: How Unsafe Control Actions can Occur

We now make the design decision to select a pre-certified door component
which uses electo-mechanical interlocks as shown in Figure 3.4 below. The
door component is supplied with the following contract.

If lock is held high then confirmlocked high indicates that the
door is properly shut and locked.

The door component also provides a parallel circuit with a signal which
the controller can use to determine whether the door is closed or not. It has
the following contract.

If the signal is high then the door is closed.

16



Switch is closed when 
door is properly shut 

Switch is closed when 
lock signal is high 

confirmlocked 

lock 

Figure 3.4: A Door Component with Interlocks

We have already made the decision to mitigate the hazard: the door is
open and there is water in the drum, rather than eliminate it. We now refine
this design decision.

When the Controller detects that the confirmlocked signal is
low while its internal process model says it should be high, it
must

• Post a warning on the control panel

• Empty the drum if necessary

• Prevent the user from initiating another wash

We then implement the design in this second refinement of our Event-B
model, introducing the concrete signals confirmlocked and lock. We can use
the variable dpos from the abstract model to represent the door closed signal.

We therefore represent two components in the refinement, the Controller
and the Door, which communicate using the signals dpos, confirmlocked and
lock as shown in Figure 3.5.

17



Controller	
  

Door 
Component 

confirmlocked 

TRUE/FALSE 

TRUE/FALSE 
lock 

dpos 
OPEN/CLOSED 

Figure 3.5: The Component View

The abstract event CloseDoor is renamed to indicate that it is an action
of the door component. Otherwise it is unchanged.

Event DoorSubsystemCloseDoor =̂

refines CloseDoor
when

grd1 : dpos = OPEN
then

act1 : dpos := CLOSED
end

We then data refine the OpenDoor event; the abstract guard

grd2 : doorst 6= LOCKED

is replaced by two concrete guards

grd2 : lock = FALSE

grd3 : confirmlocked = FALSE

together with the gluing invariant

18



inv7 : lock = FALSE⇒ doorst 6= LOCKED

The refined event is shown below.

Event DoorSubsystemOpenDoor =̂

refines OpenDoor
when

grd1 : dpos = CLOSED
grd2 : lock = FALSE
grd3 : confirmlocked = FALSE

then

act1 : dpos := OPEN
end

We now refine the abstract event LockDoor. In fact, because of the syn-
chronisation required between the components, we need three events: the
new event, ControllerIssueLock which refines skip and the events Controller-
CompleteLock and ControllerCompleteLockFail.

The controller issues a lock if the controller’s process model is in state
UNLOCKED, the door position is CLOSED and the confirmlock signal is
FALSE. The event sets the lock signal to TRUE and then waits for a response
from the door component.

Event ControllerIssueLock =̂

when

grd1 : doorst = UNLOCKED
grd2 : dpos = CLOSED
grd3 : confirmlocked = FALSE
grd4 : controllerwait = FALSE
grd5 : lock = FALSE
grd6 : controllerlockwarning = FALSE

then

act1 : lock := TRUE
act2 : controllerwait := TRUE

end

A new door component event DoorSubsystemLock is introduced which
detects that the lock signal is set to TRUE and then non-deterministically
sets the confirmlocked signal to TRUE or FALSE. It also sets an internal
variable lockfailure to TRUE. In this way the event models a possible failure
in the lock.

19



Event DoorSubsystemLock =̂

any

pfail
where

grd1 : pfail ∈ BOOL
grd2 : lock = TRUE
grd3 : confirmlocked = FALSE
grd4 : lockfailure = FALSE
grd5 : doorsubsystemwait = FALSE

then

act1 : confirmlocked := pfail

act2 : lockfailure := bool(pfail = FALSE)
act3 : doorsubsystemwait := TRUE

end

The controller can now use its process model to determine whether the
locking procedure has been successful or not. If the signal confirmlocked is
set to TRUE by the door component, the controller knows that the door
is locked and the event ControllerCompleteLock, which refines LockDoor is
activated.

Event ControllerCompleteLock =̂

refines LockDoor
when

grd1 : doorst = UNLOCKED
grd2 : lock = TRUE
grd3 : dpos = CLOSED
grd4 : confirmlocked = TRUE
grd5 : controllerwait = FALSE

then

act1 : doorst := LOCKED
end

The controller updates the state of its internal process model to LOCKED.

20



If, however, the signal confirmlocked is not set to TRUE by the door com-
ponent, the controller knows that the door locked may have failed and the
event ControllerCompleteLockFail, which refines DetectDoorFailure is acti-
vated instead.

Event ControllerCompleteLockFail =̂
refines DetectDoorFault

when

grd1 : doorst = UNLOCKED
grd2 : lock = TRUE
grd3 : dpos = CLOSED
grd4 : confirmlocked = FALSE
grd5 : controllerwait = FALSE

then

act1 : lock := FALSE
act2 : controllerlockwarning := TRUE
act3 : doorst := UNKNOWN

end

The controller updates the state of its internal process model to UN-
KNOWN and sets controllerlockwarning to TRUE.

21



The event Update controls the synchronisation between the controller and
the door.

Event Update =̂

when

grd1 : controllerwait = TRUE
grd2 : doorsubsystemwait = TRUE

then

act1 : controllerwait := FALSE
act2 : doorsubsystemwait := FALSE

end

Update is a formal representation of the synchronisation mechanism used
in ADVANCE multi-simulation.

If the controller completes the locking successfully, it can proceed to fill
the drum.

Event ControllerFillDrum =̂

refines FillDrum
when

grd1 : doorst = LOCKED
grd2 : drumst = EMPTY
grd3 : confirmlocked = TRUE

then

act1 : drumst := FILLING
end

We now refine the safety invariant. For the abstract model, we proved
the invariant

inv2 : drumst 6= EMPTY ⇒ doorst 6= UNLOCKED

In this refinement the invariant is re-cast in terms of the concrete signals.

22



inv8 : drumst 6= EMPTY ⇒(lock = TRUE∧confirmlocked = TRUE)∨
lockfailure = TRUE

If the lock is sound then confirmlocked will be TRUE. If, however, at any
stage, confirmlocked changes to FALSE when the controller’s process model
indicates that the door is LOCKED, the controller must mitigate the hazard
appropriately.

We introduce a new event DoorSubsystemFail which is always enabled
when the door is LOCKED and can, non-deterministically set confirmlocked
to FALSE

Event DoorSubsystemFail =̂
when

grd1 : lock = TRUE
grd2 : confirmlocked = TRUE
grd3 : lockfailure = FALSE
grd4 : doorst = LOCKED

then

act1 : confirmlocked := FALSE
act2 : lockfailure := TRUE

end

If DoorSubsystemFail is activated, lockfailure is also set to TRUE.
Controller events are introduced which use its process model to detect and

mitigate the hazard. For instance, the event ControllerWash is accompanied
by an event ControllerAbortWash. The guards of this pair of events are
identical except that in ControllerAbortWash we have the guard

grd2 : confirmlocked = FALSE

rather than

grd2 : confirmlocked = TRUE

At every node of the control graph, where the drum is not EMPTY a
pair of events must be implemented; one to handle the good behaviour and
one to detect and mitigate the hazard.

We must now prove that the controller mitigates the hazard correctly.

23



Informally,

if lockfailure is non-deterministically set to TRUE when the
drum is not EMPTY then either a controller event is enabled that
will set controllerlockwarning to TRUE or controllerlockwarning
has already been set to TRUE.

Formally,

inv13 : lockfailure = TRUE ∧ drumst 6= EMPTY ⇒ (lock = TRUE ∧
doorst = LOCKED) ∨ controllerlockwarning = TRUE)

We prove that this invariant is preserved by all the events of the the
refined machine. (It should be noted that the analysis of the guards of the
enabled controller events that mitigate the hazard was performed manually
in order to derive the formal invariant. It would be very valuable if Rodin
were to provide a mechanism which performed this analysis automatically).

In fact, we can extend the invariant to ensure that the controller always
sets the door state in it’s internal process model to UNKNOWN. The guard
of ControllerIssueLock

grd1 : doorst = UNLOCKED

ensures that another wash cannot be initiated if a door fault is detected.

Validating the Concrete Model

A graph of the concrete machine is extracted using ProB and used to validate
the model against the requirements. (The graph is included here, Figure 3.6,
to illustrate it’s level of complexity.)

24



root

confirmlocked = FALSE,controllerlockwarning = FALSE,controllerwait = FALSE,
doorsubsystemwait = FALSE,lock = FALSE,lockfailure = FALSE,

drumst = EMPTY,doorst = UNLOCKED,dpos = OPEN

INITIALISATION(FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
,EMPTY,UNLOCKED,OPEN)

confirmlocked = FALSE,controllerlockwarning = FALSE,controllerwait = FALSE,
doorsubsystemwait = FALSE,lock = FALSE,lockfailure = FALSE,

drumst = EMPTY,doorst = UNLOCKED,dpos = CLOSED

DoorSubsystemCloseDoor DoorSubsystemOpenDoor

confirmlocked = FALSE,controllerlockwarning = FALSE,controllerwait = TRUE,
doorsubsystemwait = FALSE,lock = TRUE,lockfailure = FALSE,

drumst = EMPTY,doorst = UNLOCKED,dpos = CLOSED

ControllerIssueLock

confirmlocked = TRUE,controllerlockwarning = FALSE,controllerwait = TRUE,
doorsubsystemwait = TRUE,lock = TRUE,lockfailure = FALSE,

drumst = EMPTY,doorst = UNLOCKED,dpos = CLOSED

DoorSubsystemLock(TRUE)

confirmlocked = FALSE,controllerlockwarning = FALSE,controllerwait = TRUE,
doorsubsystemwait = TRUE,lock = TRUE,lockfailure = TRUE,

drumst = EMPTY,doorst = UNLOCKED,dpos = CLOSED

DoorSubsystemLock(FALSE)

confirmlocked = TRUE,controllerlockwarning = FALSE,controllerwait = FALSE,
doorsubsystemwait = FALSE,lock = TRUE,lockfailure = FALSE,

drumst = EMPTY,doorst = UNLOCKED,dpos = CLOSED

Update

confirmlocked = FALSE,controllerlockwarning = FALSE,controllerwait = FALSE,
doorsubsystemwait = FALSE,lock = TRUE,lockfailure = TRUE,

drumst = EMPTY,doorst = UNLOCKED,dpos = CLOSED

Update

confirmlocked = TRUE,controllerlockwarning = FALSE,controllerwait = FALSE,
doorsubsystemwait = FALSE,lock = TRUE,lockfailure = FALSE,

drumst = EMPTY,doorst = LOCKED,dpos = CLOSED

ControllerCompleteLock

confirmlocked = FALSE,controllerlockwarning = TRUE,controllerwait = FALSE,
doorsubsystemwait = FALSE,lock = FALSE,lockfailure = TRUE,

drumst = EMPTY,doorst = UNKNOWN,dpos = CLOSED

ControllerCompleteLockFail

confirmlocked = FALSE,controllerlockwarning = FALSE,controllerwait = FALSE,
doorsubsystemwait = FALSE,lock = TRUE,lockfailure = TRUE,

drumst = EMPTY,doorst = LOCKED,dpos = CLOSED

DoorSubsystemFail

confirmlocked = TRUE,controllerlockwarning = FALSE,controllerwait = FALSE,
doorsubsystemwait = FALSE,lock = FALSE,lockfailure = FALSE,

drumst = EMPTY,doorst = UNLOCKED,dpos = CLOSED

ControllerUnlockDoor

confirmlocked = TRUE,controllerlockwarning = FALSE,controllerwait = FALSE,
doorsubsystemwait = FALSE,lock = TRUE,lockfailure = FALSE,

drumst = FILLING,doorst = LOCKED,dpos = CLOSED

ControllerFillDrum

confirmlocked = FALSE,controllerlockwarning = TRUE,controllerwait = FALSE,
doorsubsystemwait = FALSE,lock = FALSE,lockfailure = TRUE,

drumst = EMPTY,doorst = UNKNOWN,dpos = OPEN

DoorSubsystemOpenDoor

ControllerConfirmLockFailure

DoorSubsystemUnlock

confirmlocked = FALSE,controllerlockwarning = FALSE,controllerwait = FALSE,
doorsubsystemwait = FALSE,lock = TRUE,lockfailure = TRUE,

drumst = FILLING,doorst = LOCKED,dpos = CLOSED

DoorSubsystemFail

confirmlocked = TRUE,controllerlockwarning = FALSE,controllerwait = FALSE,
doorsubsystemwait = FALSE,lock = TRUE,lockfailure = FALSE,

drumst = FILLED,doorst = LOCKED,dpos = CLOSED

ControllerWash

DoorSubsystemCloseDoor

confirmlocked = FALSE,controllerlockwarning = TRUE,controllerwait = FALSE,
doorsubsystemwait = FALSE,lock = TRUE,lockfailure = TRUE,
drumst = EMPTYING,doorst = UNKNOWN,dpos = CLOSED

ControllerAbortWash
confirmlocked = FALSE,controllerlockwarning = FALSE,controllerwait = FALSE,

doorsubsystemwait = FALSE,lock = TRUE,lockfailure = TRUE,
drumst = FILLED,doorst = LOCKED,dpos = CLOSED

DoorSubsystemFail

confirmlocked = TRUE,controllerlockwarning = FALSE,controllerwait = FALSE,
doorsubsystemwait = FALSE,lock = TRUE,lockfailure = FALSE,

drumst = EMPTYING,doorst = LOCKED,dpos = CLOSED

ControllerEmptyDrum

ControllerFinishAfterEmptyFail

ControllerEmptyDrumFail

confirmlocked = FALSE,controllerlockwarning = FALSE,controllerwait = FALSE,
doorsubsystemwait = FALSE,lock = TRUE,lockfailure = TRUE,

drumst = EMPTYING,doorst = LOCKED,dpos = CLOSED

DoorSubsystemFail

ControllerFinish

ControllerFinishFail

Figure 3.6: The Concrete Graph

25



Chapter 4

Integrating Proof and Simulation

In this initial work, we show how an STPA-based model development with
proof can be integrated in the design flow with the multi-simulation and test
capabilities that are being developed in WP4 in ADVANCE [Col11]. The
first step is test generation.

4.1 Test Suite Generation

ProB will be used to generate a set of tests which, in the first instance, cover
all the transitions of the graph shown in Figure 3.6 above. Since the guards
of the controller events are all conjunctions of simple expressions, coverage of
all the controller transitions equates directly to full MC/DC [Chi01] coverage
of the controller function with respect to the door subsystem. These tests
can be used to drive ADVANCE multi-simulation.

The next step is to perform formal Event-B decomposition [But09].

4.2 Concrete Model Decomposition

The concrete machine can now be decomposed into three distinct machines:
the controller, the door component and the communication/synchronisation
mechanism. The controller machine can then be used as a Functional Mockup
Unit (FMU) [BOA+11] in an Event-B multi-simulation.

4.3 Multi-simulation

The communication/synchronisation mechanism is performed by the AD-
VANCE multi-simulation master and an FMU of the door component, pos-

26



sibly provided by the door component vendor, replaces the Event-B model.
The FMUs that represent the controller and the door components are then
simulated using Event-B multi-simulation using the tests generated in ProB
as the stimuli. Coverage of the controller FMU is verified using ProB.

27



Chapter 5

Summary

We have shown that we have developed a method in ADVANCE for capturing
System Requirements and providing traceability between those requirements
and a formal specification of the system in Event-B. We have also developed
a method for capturing Safety Requirements which is integrated with Func-
tional Requirement capture and uses the ProR facility. We have shown, using
Event-B refinement and proof, how a controller can be developed for a safety-
critical system which incorporates an STPA process model of the system to
control the good behaviour of the system, detect faults in the system and
mitigate hazards that arise from these faults. Event-B refinement ensures
that the design decisions are clearly and formally represented and Event-B
proof has been used to ensure that the safety constraints, represented as
invariants, are preserved and the hazards correctly mitigated.

We have also performed some initial work to show how this method,
based on formal modelling and proof, can be integrated into the ADVANCE
multi-simulation and test method.

In future work, we will explore more fully the use of ProR to document the
STPA-based method and to use our case study to validate the ADVANCE
multi-simulation and test method. We shall also validate the code generation
capability being developed in WP4. In parallel we are applying the method
to our two ADVANCE case studies.

28



Bibliography

[ABH+10] J.-R. Abrial, M. J. Butler, S. Hallerstede, T. S. Hoang, F. Mehta,
and L. Voisin. Rodin: an open toolset for modelling and reasoning
in Event-B. STTT, 12(6):447–466, 2010.

[Abr10] J.-R. Abrial. Modeling in Event-B – System and Software Engi-
neering. Cambridge University Press, 2010.

[BOA+11] Torsten Blochwitz, M Otter, M Arnold, C Bausch, C Clauß,
H Elmqvist, A Junghanns, J Mauss, M Monteiro, T Neidhold,
et al. The functional mockup interface for tool independent
exchange of simulation models. In Modelica’2011 Conference,
March, pages 20–22, 2011.

[But09] Michael Butler. Decomposition Structures for Event-B. In IFM,
pages 20–38, 2009.

[Chi01] John J Chilenski. An investigation of three forms of the modified
condition decision coverage (mcdc) criterion. Technical report,
DTIC Document, 2001.

[Col11] J. Colley. D4.1 specification of multi-simulation framework. Tech-
nical report, December 2011.

[Jas10] M. Jastram. ProR, an open source platform for requirements
engineering based on RIF. SEISCONF, 2010.

[LB08] M. Leuschel and M. Butler. ProB: an automated analysis toolset
for the B method. STTT, 10(2):185–203, 2008.

[Lev12] N.G. Leveson. Engineering a safer world: Systems thinking ap-
plied to safety. MIT Press (MA), 2012.

[YB12] S. Yeganefard and M. Butler. Control systems: Phenomena and
structuring functional requirement documents. 2012.

29


	D.5.2-front-cover-sheet
	AdvanceD5.2i
	Preface
	Summary of earlier work
	Modelling the Door Sub-system in Event-B
	The Abstract Model
	The First Refinement: modeling the safety constraints
	The Second Refinement: Determining how Unsafe Control Actions could Occur

	Integrating Proof and Simulation
	Test Suite Generation
	Concrete Model Decomposition
	Multi-simulation

	Summary
	Bibliography


