
ADVANCED DESIGN AND VERIFICATION ENVIRONMENT
FOR CYBER-PHYSICAL SYSTEM ENGINEERING
www.advance-­‐ict .eu

D.5.3 - ADVANCE PROCESS INTEGRATION III
ADVANCE

Grant Agreement: 287563
Date: 30/11/2014
Pages:

56
 Status:

Final
 Authors:

John Colley, Michael Butler University of Southampton
 Reference:

D5.3

Issue: 1

Partners / Clients:

FP7 Framework Programme European Union

Consortium Members:

 University of
Southampton

Critical Software
Technologies

 Alstom
Transport Systerel Heinrich Heine Selex ES

Universität

Project ADVANCE
Grant Agreement 287563

“Advanced Design and Verification Environment for
Cyber-physical System Engineering”

ADVANCE Deliverable D5.3

ADVANCE Process Integration III

Public Document

November 25, 2014

http://www.advance-ict.eu

http://www.advance-ict.eu

Contributors:

Michael Butler
John Colley

Reviewers:

Laurent Voisin
Luis-Fernando Mejia

2

Contents

1 Preface 4

2 The ADVANCE process overview 6
2.1 Process Summary . 6

3 ADVANCE Process Tutorial 8
3.1 The Landing Gear Case Study 8

4 Guidelines for Decomposition of Control System Models 20
4.1 Introduction . 20
4.2 Decomposing machines . 21
4.3 Introducing Controller version of Environment Variables . . . 28
4.4 Introducing Explicit Signalling 34
4.5 Pattern for non-linear controller decomposition 40
4.6 Stepwise decomposition . 48
4.7 Multiple instances of device 50
4.8 Concluding . 51

5 Model-based Testing and MC/DC Coverage 52
5.1 Introduction . 52
5.2 MC/DC Coverage . 52
5.3 Model-based Testing . 52

6 The ADVANCE Process in Aircraft Certification 54
6.1 Introduction . 54
6.2 DO-178C and DO-254 . 54

7 Summary 55

Bibliography 56

3

Chapter 1

Preface

This deliverable reports on the final work on developing the ADVANCE pro-
cess flow, combining formal modelling with requirements analysis and safety
analysis, a process which has now been applied to both industrial case stud-
ies. We present the complete ADVANCE flow, from conception to concrete
realisation, verification and certification. We present a tutorial to guide the
user through the ADVANCE process flow. We then give a detailed expla-
nation of the formal decomposition process and its role in ADVANCE in
enabling cyber-physical system multi-simulation. We also report on how the
MC/DC coverage measure can be used in ADVANCE at all stages of model
refinement prior to model-based test generation. Finally, we explain how
the ADVANCE process can be applied to the DO-178/254 standards for the
design assurance of airborne electronic hardware and software.

In Chapter 2 we present the complete ADVANCE Process Flow.

In Chapter 3 we present a tutorial, based on the Aircraft Landing Gear
case study, which demonstrates how the ADVANCE process can be applied
to a safety critical cyber-physical system.

In Chapter 4 we look at how a system-level Event-B model of a system
consisting of multiple physical devices under some coordinated control may
be decomposed into sub-models, where these sub-models will represent sep-
arate architectural components including the devices, the controller and the
signalling mechanisms between them.

In Chapter 5 we report on how MC/DC coverage is used throughout the
ADVANCE process flow and how a test suite can be generated from a con-
crete model of a safety-critical system.

4

In Chapter 6 we report on how the ADVANCE process can be used in aircraft
certification.

In Chapter 7 we present a summary of the ADVANCE process developments.

5

Chapter 2

The ADVANCE process overview

2.1 Process Summary

We can summarise the ADVANCE process flow as a set of seven steps:-

1. Deriving the Safety Constraints from the Functional Requirements us-
ing STPA

2. Modeling the Safety Constraints in Event-B

3. Determining how Unsafe Control Actions could occur

4. Documenting the Requirements and Design Decisions with ProR

5. Refining the model and safety constraints to ensure Control Actions
are safe in the presence of Hazards

6. Model-based test generation and MC/DC coverage

7. Shared Event Decomposition

2.1.1 Deriving the Safety Constraints from the Func-
tional Requirements using STPA

After initial studies using simple examples, STPA has now been applied suc-
cessfully to both industrial case studies, as reported in the final deliverables
[Mej14b] and [Rei14]. In both case studies, domain experts were involved in
deriving the safety constraints.

6

2.1.2 Modeling the Safety Constraints in Event-B

Again, in both case studies, the safety constraints were successfully mod-
elled in Event-B as a combination of event guards and invariants, and the
invariants proved.

2.1.3 Determining how Unsafe Control Actions could
occur

This second phase of the STPA process informs the design process and is
used during system development to mitigate or eliminate potential hazards.
Domain experts are closely involved during this phase of the process.

2.1.4 Documenting the Requirements and Design Deci-
sions with ProR

ProR has been used in the case studies for documentation and traceability
[Mej14b] and [Rei14].

2.1.5 Refining the model and safety constraints to en-
sure Control Actions are safe in the presence of
Hazards

Using the input from the domain experts, the system designers can use the
ADVANCE proof facilities to verify that actions issued by the digital con-
troller are safe.

2.1.6 Model-based test generation and MC/DC cover-
age

During the final year of the project these facilities have been added to AD-
VANCE to support the link between formal and simulation-based verification.
MC/DC coverage can be used throughout the formal model refinement pro-
cess and to give confidence that the tests generated have adequate coverage.

2.1.7 Shared Event Decomposition

Formal decomposition has been used in both case studies, enabling further
refinement of the digital controller implementation and multi-simulation.

7

Chapter 3

ADVANCE Process Tutorial

3.1 The Landing Gear Case Study
We have chosen the landing gear case study as the basis for this ADVANCE
process tutorial because it typifies the kind of safety-critical system that AD-
VANCE addresses, is easy to understand without necessarily being a domain
expert and a comprehensive, well-defined set of requirements is available in
the public domain [BW14].

3.1.1 Requirements and Safety Analysis

In the ADVANCE process, requirements and safety analysis are closely inte-
grated. We consider the requirements systematically in terms of the

• Monitored Phenomena

• Controlled Phenomena

• Commanded Phenomena

• Mode Phenomena

The Controlled Phenomena

It is the Controlled Phenomena which provides the link to the safety analysis
process. Consider the requirements for the Door Sub-system of the aircraft
landing gear.

• The Controller will open the Doors when the Pilot moves the Lever to
Extend or Retract the Landing Gear

8

• The Controller will then close the Doors when the Landing Gear is fully
Extended or Retracted

• The Doors will remain open while the Landing Gear is Extending or
Retracting

The ADVANCE process introduces safety analysis at the very beginning,
to ensure that safety considerations are addressed as early as possible. We
use SystemTheoretic Process Analysis (STPA) [Lev12] which is performed in
two phases.

• Identify Potentially Hazardous Control Actions and derive the Safety
Constraints

• Determine how Unsafe Control Actions could occur

Identifying Potentially Hazardous Control Actions

The landing gear system has effectively two controllers: the pilot, who has
a high-level view of the position of the landing gear, according to the posi-
tion of the extend/retract handle in the cockpit, and the digital controller,
which controls the position of the doors, using the actuators, according to
the position of the pilot handle and the landing gear. The digital controller
monitors the position of the doors and updates the state of its internal pro-
cess model using the sensors. If the sensor values are inconsistent with the
process model, the controller can notify the pilot of a potential system failure.
The process models are shown in Figure 3.1 below.

9

Controller

Process Model
Door Position
-- Locked Open
-- Locked Closed
-- Opening
-- Closing
-- Unknown

Human Operator

Process Model
Landing Gear
-- Extended/ing
-- Retracted/ing
-- Unknown

Door
Sub-system

Actuator Sensor

OpenDoor
CloseDoor

Extend
Retract

Controlled Process

LockedOpen
LockedClosed

Figure 3.1: The Landing Gear Doors Process Model

For each of the controller door actions, Open Door and Close Door, we
identify in a systematic way, how these actions can be hazardous as shown
in Figure 3.2.

Controller	

Ac+on	

Not	
 Providing	

Causes	
 Hazard	

Providing	

Causes	
 Hazard	

Wrong	
 Timing	
 or	

Order	
 Causes	

Hazard	

Stopped	
 too	

soon/Applied	

too	
 long	

Open	
 Door	
 Cannot	
 extend	

Landing	
 Gear	
 for	

landing	

Not	
 Hazardous	
 Damage	
 to	

Landing	
 Gear	

Damage	
 to	

Landing	
 Gear/	

Not	
 Hazardous	

Close	
 Door	
 Not	
 Hazardous	
 Damage	
 to	

Landing	
 Gear	

Damage	
 to	

Landing	
 Gear	

Not	
 Hazardous/	

Not	
 Hazardous	

Figure 3.2: Safety Analysis for Door Sub-system

The controller not opening the door when it should is hazardous as the
landing gear cannot be extended for landing, but opening the door when it
shouldn’t is not hazardous. Opening the doors after the landing gear has

10

begun to extend or retract is hazardous, as is failing to complete the opening
procedure. A similar analysis is then performed on the Close Door action.

From this table we are able to derive the natural language safety con-
straints.

1. If the Landing Gear is Extending, the Door must be Locked Open

2. If the Landing Gear is Retracting, the Door must be Locked Open

3. A Close Door command must only be issued if the Landing Gear is
Locked Up or Locked Down

4. An Open Door command must only be issued if the Landing Gear is
Locked Up or Locked Down

3.1.2 Modelling the Landing Gear System

The Abstract Model

We begin with an abstract model of the system which represents just the
gearstate. The landing gear may be locked_up, locked_down or, because
we wish to model the temporal nature of the system, extending or retract-
ing. Four events define the transitions between these states: Extend and
Retract represent a requested operation, initiated by the pilot, and Comple-
teExtend and CompleteRetract are observed when the requested operation is
completed.

The abstract model is illustrated by the state machine shown in Figure
3.3 below. Notice that when the landing gear is in the process of extending
or retracting, the pilot can at any time move the landing gear handle position
to reverse the command.

11

G locked_up

G extending

G locked_down

Extend

CompleteExtend

G retracting

Retract

Extend

CompleteRetract

Retract

Figure 3.3: The Abstract Model

12

The First Refinement

We now introduce the door and establish formally the relationship between
the gear and the door from the natural language safety constraints.

1. If the Landing Gear is Extending, the Door must be Locked Open

2. If the Landing Gear is Retracting, the Door must be Locked Open

3. A Close Door command must only be issued if the Landing Gear is
Locked Up or Locked Down

4. An Open Door command must only be issued if the Landing Gear is
Locked Up or Locked Down

The first two safety constraints are represented by the invariant inv3
below.

inv3 : gearstate ∈ {extending, retracting}⇒ doorstate = locked_open

The second two safety constraints are modelled by the guards grd1 in the
Open and Close events.

event Open =̂

when

grd1 : gearstate ∈ {locked_down, locked_up}
grd2 : doorstate ∈ {closing, locked_closed}

then

act1 : doorstate := opening
end

event Close =̂

when

grd1 : gearstate ∈ {locked_down, locked_up}
grd2 : doorstate ∈ {opening, locked_open}

then

act1 : doorstate := closing
end

Running the Rodin automatic provers establishes that the formal system-
level safety constraints are preserved by the refinement. We can represent
the refined model as a state machine in terms of the two variables gearstate
and doorstate as shown in Figure 3.4 below.

13

S7

G locked_up
D locked_closed

G locked_up
D opening

G locked_up
D locked_open

G extending
D locked_open

G locked_down
D closing

G locked_down
D locked_open

G locked_down
D locked_closed

G retracting
D locked_open

G locked_up
D closing

G locked_down
D opening

Open

CompleteOpen

Extend

CompleteExtend

Close

CompleteClose

CompleteClose

Close

Open

Close

Retract

Extend
Complete Retract

Retract

CompleteOpen

Open Open

Figure 3.4: The First Refinement

14

The Second Refinement

In this refinement, we introduce the pilot handle and model the synchronous
timing and synchronisation necessary to represent the concurrency of the
system. We do not at this stage model actual times or delays but simply
introduce the notion of a tick. For any given tick of the system, the handle
may or may not be moved; the digital controller responds to any handle
change in the next tick.

To represent the latency of the system in an abstract way, we introduce
the event Idle as shown in the extended finite state machine, defined in terms
of the three variables gearstate, doorstate and handle, in Figure 3.5 below.

Only 12 of the 32 possible states for (gearstate;doorstate;handle) are valid.
To ensure that the system never makes a transition to one of the 20 invalid
states we introduce and prove a set of invariants. For instance, invariant
inv10 below represents the fact that the door cannot be opening if the gear
is locked up and the handle is up.

inv10 : ¬(gearstate = locked_up ∧ doorstate = opening ∧ handle = UP)

We now run the ADVANCE model checker to ensure that all the valid
states of the model are reachable and there is no deadlock. At this high level
of abstraction an exhaustive model check can be completed in seconds.

15

S7

G locked_up
D opening
H DOWN

G locked_up
D locked_open
H DOWN

G locked_up
D locked_closed
H UP

G extending
D locked_open
H DOWN

G locked_down
D closing
H DOWN

G locked_down
D locked_open
H DOWN

G locked_down
D locked_closed
H DOWN

G retracting
D locked_open
H UP

G locked_up
D closing
H UP

G locked_down
D opening
H UP

Open

CompleteOpen

Extend

CompleteExtend

Close

CompleteClose

CompleteClose

Close

Open

Close

Retract

Extend

Complete Retract

Retract

Open
Open

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

G locked_down
D locked_open
H UP

G locked_up
D locked_open
H UP

Close

CompleteOpen

Extend

Close

Retract

Close

Figure 3.5: The Second Refinement

Introducing the Timing Deadlines

We now introduce the concrete signals between the Controller and the landing
gear sub-system as shown in Figure 3.6 below.

16

Controller	

Landing
Gear

Sub-system

gear_extended/
gear_retracted

open/close

door_open/
door_closed

extend/retract

Figure 3.6: The Component View

The landing gear requirements detail a set of timing constraints for each
of the mechanical and hydraulic procedures of the extending and retracting
sequences. We introduce these constraints, systematically using refinement,
as deadlines which refine the abstract Idle events.

Rather than idling indefinitely, the model sets an abstract timer count
which is decremented if the confirmation signal from the landing gear sub-
system has not been received. If confirmation is received before the deadline
expires, the operation can complete. If, however, the count reaches zero
without confirmation, the controller moves to a fail state and switches on
a warning light on the control panel. The general refinement mechanism is
shown in Figure 3.7 below.

Proving Liveness

Now that model behaviour is sufficiently constrained by the deadlines, we
can prove liveness of the system. For each of the 12 valid states as shown in
Figure 3.5 above we introduce an invariant to prove that at least one event
is always enabled in that state. For instance, in the state (locked_down,
locked_open, DOWN), one of the events Close or Retract is always enabled.
Similarly, in state (locked_down, locked_open, UP), one of the events Close
or Retract is also always enabled. We describe this using a single theorem.

17

INITIATE

IDLE

COMPLETE

INITIATE

WAIT

COMPLETE

F

F, count > 0

T

FAIL

F, count = 0

⊆

Figure 3.7: Introducing the Deadlines

We write the theorem as an implication, with the current state on the
left hand side and the disjunction of the guards of the two enabled events on
the right hand side as shown below in invariant inv19.

inv19 : (gearstate = locked_down ∧ doorstate = locked_open) ⇒
(gearstate ∈ {extending, locked_down} ∧
doorstate = locked_open ∧ handle = UP) ∨
(gearstate = locked_up ∧
doorstate ∈ {opening, locked_open} ∧ handle = UP) ∨
(gearstate = locked_down ∧
doorstate ∈ {opening, locked_open} ∧
handle = DOWN)

Ten theorems describe the liveness properties of the system and are proved
automatically by the Rodin theorem provers.

3.1.3 Measuring Coverage

The Modified Condition/Decision Coverage (MC/DC) measure introduced in
ADVANCE can be used to verify, at every refinement level, that the guards
of each event can be independently set to FALSE . The facility is also used
at every refinement stage to ensure that any vacuous guards are eliminated.

3.1.4 Model-based Test Generation

We are now in a position to generate tests from the model that can be used
to verify the implementation. Because, the pilot is free to move the handle
backwards and forwards with complete freedom, we now need to constrain

18

the model behaviour to ensure that we can generate a test suite of tractable
size. We introduce, in a refinement a ghost variable, handle_toggle_count
which limits the number of times the handle can change position. We can
then restrict the value of this count in the ADVANCE test generation tool
to limit the scope of the model search space.

For instance, restricting the count to two, the pilot can only move the
handle twice and a total of 48 tests are generated. If the count is restricted
to three, 852 tests are generated. In a structured regression suite mechanism,
these tests sets can be run first to detect any gross errors. For more thorough
testing, the tests generated for higher handle counts can be run - setting the
count to 5, for instance, results in 15400 tests. The coverage obtained by each
set of tests is measured by using the ProB simulator to run the generated
tests against the model.

3.1.5 Decomposition

Formal, shared event decomposition is now used to separate the Controller
model from its environment for further refinement towards implementation.
The decomposed Controller model can also be converted into a Functional
Mockup Unit (FMU) for simulation in a continuous representation of the
landing gear environment.

19

Chapter 4

Guidelines for Decomposition of
Control System Models

4.1 Introduction

In this chapter we look at how a system-level Event-B model of a system
consisting of multiple physical devices under some coordinated control may
be decomposed into sub-models, where these sub-models will represent sep-
arate architectural components including the devices, the controller and the
signalling mechanisms between them. A closed system model in Event-B in-
cludes variables representing the software-based controller (‘the controller’)
plus the physical entities in the environment (‘the environment’) that are
monitored and controlled by the controller. At the abstract modelling level
it is convenient to allow all variables to be available globally so that a control
decision that affects one device can depend on the state of another device,
e.g., the landing gear door should only be extending or retracting if the gear
door is open. At the more detailed design level we need to model the fact
that decisions about which environment phenomenon to control are made by
the controller. In order to make control decisions (i.e., decisions that control
a phenomenon in the environment) the controller typically needs to know the
values of the environment variables. At implementation level, the controller
will have internal state representing its model of the state of the physical de-
vices received via sensors and signals. The aim is to refine the closed model
sufficiently that it may be decomposed into a model of the controller, the en-
vironment and the signalling mechanisms through which the controller and
the environment interact. In order that the controller has enough informa-
tion to make a decision, we use refinement to introduce a controller version of
each environment variable which will be included in the controller model at

20

decomposition. In an abstract model, a control decision may depend directly
on an environment variable. In a refinement, instead of basing a control
decision on the environment variable directly, the control decision will be
based on the controller version of the variable. The environment variable
and its corresponding controller version do not need correspond all the time.
However, they do need to correspond when the controller makes a control
decision; otherwise the refinement will be unsafe.

We start by presenting a standard technique for syntactically partition-
ing an Event-B model into several sub-models. An important property of
the decomposition technique is that the resulting sub-models can be refined
independently of each other. Our decomposition technique will be used to
partition the behaviour of agents in a distributed architecture into separate
models, including separate models of signalling mechanisms. In order to be
able to decompose a model, the model needs to contain enough structure for
the variables to be partitioned amongst the sub-models. For example, the
model needs to contain a controller’s version of an environment variable and
needs to contain signalling variables. We present a refinement pattern for
introducing variables and events representing the controller’s management of
its version of the environment variables. We also present a refinement pat-
tern for introducing representations of the signalling mechanism. To manage
the complexity of models representing multiple devices, we show how the
refinement and decomposition can be applied in a stepwise manner.

4.2 Decomposing machines

In this section, we describe a parallel composition operator for Event-B ma-
chines called shared event composition [But09]. Machines M and N must not
have any common state variables in order to be composed. Instead they in-
teract by synchronising over shared events (i.e., events with common names).
They may also exchange parameter values on synchronisation. We look first
at basic composition of events and later look at composition of events with
shared parameters. We show how model composition may be applied in
reverse in order to decompose system models into subsystem models.

4.2.1 Parallel Composition of Machines

In general, an event has the form

ev = any x where G then S end

21

where x is a list of event parameters, G is a list of guards (implicitly con-
joined) and S is a list of actions on the machine variables (implicitly simul-
taneous). We write G ∧H to join two lists of guards and S ‖ T to join two
lists of actions.

To achieve the synchronisation effect between machines, shared events
from M and N are composed to form an event that is globally enabled
when both constituent events are locally enabled and that has the effect of
executing the actions of the constituent events in parallel. Assume that m
(resp. n) represents the state variables of machine M (resp. N). Variables
m and n are disjoint. We compose an event from M with an event from N
with the following form:

evM = any y where G(y,m) then S(y,m) end
evN = any z where H(z, n) then T (z, n) end

The parallel composition of these events is a single event defined as follows:

evM ‖ evN =̂ any y, z where
G(y,m) ∧H(z, n)

then
S(y,m) ‖ T (z, n)

end

This form of composition models synchronisation: the composite system en-
gages in a joint event when both systems are willing to engage in that event.
The parallel composition of machines M and N is a machine constructed
by composing shared events of M and N and leaving independent events
independent. The state variables of the composite system are formed by the
union of the variables of M and N .

As an illustration of this, consider machines V 1 and W1 of Figure 4.1.
The machines work on independent variables v and w respectively. Both
machines may be composed using an Event-B composed machine component
as shown in Figure 4.2. Here VW1 is defined as a machine that composes
V 1 and V 2 with events of VW1 being defined as compositions of events of
V 1 and W1. The A event of the composed machine is defined as the A event
of V 1. This means that, from the point of view of V 1, A is an independent
event in the composition since is not executed jointly with any events of
W1. Similarly for event C of the composition. The B event of the composed
machine is defined as the composition of the B-events of V 1 and W2. This
means that B becomes a joint event in the composition that is executed
jointly by V 1 and W1. The initialisations of V 1 and W1 are also combined
to form the initialisation of VW1.

22

machine V1
variables v
invariants v ∈ N
init v := N

event B =̂

when

grd1 : v > 0
then

act1 : v := v − 1
end

event A =̂

begin

act1 : v := N
end

(a) Machine V 1

machine W1
variables w
invariants w ∈ N
init w := 0

event B =̂

when

grd2 : w < M
then

act2 : w := w + 1
end

event C =̂

when

grd1 : w > 0
then

act1 : w := w − 1
end

(b) Machine W1

Figure 4.1: Machines to be composed in parallel.

composed machine VW1
includes V1, W1
init V 1.INIT ‖ W1.INIT

event A =̂ V 1.A

event B =̂ V 1.B ‖ W1.B

event C =̂ W1.C

Figure 4.2: Composition of V 1 and W1.

23

The expansion of the composed machine is shown in Figure 4.3. The
A and C events are copied from V 1 and W1 respectively. The B event of
the expanded machine is formed by combing the guards and the actions of
the B events in both V 1 and W1. Note in practice it is not necessary to
expand a composed machine. We include the expansion here to help the
reader understand the effective meaning of the composed machine.

4.2.2 Synchronous Decomposition

We have presented VW1 as having been formed from the composition of V 1
and W1. We can view the relationship between these machines in another
way. Let us suppose we had started with a normal machine, such as the ex-
panded version of VW1 of Figure 4.3, and decided that we wish to decompose
it into subsystems. The diagram in Figure 4.4(a) illustrates the dependencies
between events and variables in the machine VW1. For example, the line
from the box indicating event A to the circle indicating variable v represents
the fact that event A depends on v, i.e., it may read from and assign to v.
The diagram shows that B is the only event that depends on both v and w
suggesting that B needs to be a shared event if we are to partition v and w
into separate subsystems. This decomposition is illustrated in Figure 4.4(b)
where variables v and w of VW1 are partitioned into subsystems V 1 and
W1 respectively, A is an event of subsystem V 1, C is an event of subsystem
W1 and B is an event shared by both subsystems.

Event B of system VW1 is partitioned into two parts, one of which will
belong in W1 and the other in W1. Event B has an important characteristic
that allows it to be partitioned in this way. The guards and actions depend
either on v or on w but not both. So, guard grd1 and action act1 both
depend on v only, while guard grd2 and action act2 both depend on w. This
localisation of variable dependency allows us to easily partition the guards
and actions of the B event of VW1 into the separate B events of V 1 and
W1 respectively.

4.2.3 Composition with shared event parameters

We extend the event composition operator to deal with shared event param-
eters. Events to be fused must depend on disjoint machine variables but they
may have common parameters and these common parameters are treated as
joint parameters in the composed event. In the following, x represents pa-
rameters that are joint across events and y and z are local to their respective

24

machine VW1
variables v, w
invariants v ∈ N, w ∈ N
init v := N, w := 0

event A =̂

begin

act1 : v := N
end

event B =̂

when

grd1 : v > 0

grd2 : w < M
then

act1 : v := v − 1

act2 : w := w + 1
end

event C =̂

when

grd1 : w > 0
then

act1 : w := w − 1
end

Figure 4.3: Expansion of VW1.

25

!"#$%&'

()*+),-#&' !" #"

.' /'0'

(a) Variable access by events in VW

!"#$%&'

()*+),-#&' !" #"

.' /'0'

(1' 21'

(b) Split events and variables

Figure 4.4: Illustration of decomposition a machine

events:

evM = any x, y where G(x, y,m) then S(x, y,m) end
evN = any x, z where H(x, z, n) then T (x, z, n) end

The composition of these, defined as follows, makes x a single parameter of
the composed event:

evM ‖ evN =̂ any x, y, z where
G(x, y,m) ∧H(x, z, n)

then
S(x, y,m) ‖ T (x, z, n)

end

We illustrate the use of shared parameters by extending the machine of
Figure 4.3 slightly. Assume that instead of increasing v and decreasing w by
1 in the B event, we modify both v and w by a value i. To do this we give
the B event a parameter i which is used to modify the variables as follows:

26

event B =̂

any i
where

grd1 : 0 ≤ i ≤ v

grd2 : w < N
then

act1 : v := v − i

act2 : w := w + i
end

Now we partition the guards and actions of B into those that depend on
v and those that depend on w giving the following events:

event B =̂

any i
where

grd1 : 0 ≤ i ≤ v
then

act1 : v := v − i
end

event B =̂

any i
where

grd1 : i ∈ Z

grd2 : w < N
then

act1 : w := w + i
end

The shared parameter i means that both of these events will agree on the
amount by which v and w are respectively decreased and increased when they
synchronise. In the left hand sub-event, the guard grd1 constraints the value
of the parameter based in the state variable v. In the right-hand sub-event,
the value of i is not constrained other than a typing guard (i ∈ Z). This
means that the left-hand sub-event can be viewed as outputting the value i

27

A"

v"

B" C"

m"

D"

w"

Agent"1" Signalling" Agent"2"

Figure 4.5: Decomposition with asynchronous middleware

while the right-hand sub-event accepts the value i as an input.

4.2.4 Independent refinement of subsystems

Shared event composition of Event-B machines is also monotonic w.r.t. re-
finement. This means that when we decompose a system into parallel sub-
systems, the subsystems may be refined and further decomposed indepen-
dently [But09]. This is a major methodological benefit, helping to modularise
the design and proof effort.

4.2.5 Asynchronous Decomposition

Instead of decomposing a model into two subsystems that synchronise di-
rectly with each other, we may decompose into three subsystems as illustrated
in Figure 4.5. In this decomposition the two agents do not synchronise di-
rectly with each other. Instead they interact indirectly through a signalling
subsystem. Each agent synchronises directly and separately with the sig-
nalling subsystem and this is used to model asynchronous communication
between the agents. This form of asynchronous communication via signals
can be used to model many distributed systems, including cyber-physical
systems consisting of physical and controller components. In order to be
able to decompose in this way, we will need to apply refinement steps that
enable the agents to be decomposed into asynchronous subsystems and this
is the subject of the next section.

4.3 Introducing Controller version of Environ-
ment Variables

We will first illustrate the pattern for introducing controller versions of envi-
ronment variables through an example of a very simple landing gear controller

28

for an aircraft. In this model the landing gear is either up or down. The air-
craft also has a door protecting the landing gear compartment and a safety
requirement is that the gear may only make a transition from up to down or
vice versa when the door is open. The Event-B model is shown in Figure 4.6.
The model contains a variable for the door state and a variable for the gear
state. It also contains four events for opening and closing the door and for
raising and lowering the gear. The door events are very simple and are in-
dependent of the gear state. The gear events include a guard to ensure that
the gear only changes when the door is open, capturing the above mentioned
requirement.

Our aim is to decompose this system model to an architecture consisting
of the following components:

• A model of the (physical) door

• A model of the (physical) landing gear

• A model of the controller

• A model of the signalling between the door and the controller

• A model of the signalling between the landing gear and the controller

To achieve this, we need to introduce events and variables to represent the
controller’s behaviour and state explicitly. We will focus on the door-opening
behaviour initially. In the refinement the controller should initiate the open-
ing of the door which in turn will trigger the environment to open the door.
After the door has opened in the environment, the controller should register
this change in its internal state. To achieve this we introduce a new vari-
able doorstateC representing the controllers version of the doorstate variable.
We also introduce new events to represent the controller triggering the door
transition and representing the controller registering that the transition has
taken place in the environment.

The relationship between the door opening events is illustrated by the
ERS (Event Refinement Structure) diagram in Figure 4.7. Here the sin-
gle OpenDoor event in the abstract model is replaced by three events in
the refinement and these three refinement events occur in the sequential or-
der shown in the diagram (left to right). We use a naming convention to
distinguish events of the controller (ending in ‘C’) from events of the en-
vironment (ending in ‘E’). The dashed lines indicate that OpenDoorStartC
and OpenDoorFinC are new events (refining skip). The solid lines indicates
that OpenDoorE is a refinement of the abstract OpenDoor event. When
the controller initiates the opening of the door (OpenDoorStartC event), the

29

machine SimpleLG1
variables doorstate, gearstate
invariants

inv1 : doorstate ∈ {closed, open}
inv2 : gearstate ∈ {up, down}

events
init begin

act1 : doorstate := closed
act2 : gearstate := down

end
event DoorOpen =̂

when

grd1 : doorstate = closed
then

act1 : doorstate := open
end

event DoorClose =̂

when

grd1 : doorstate = open
then

act1 : doorstate := closed
end

event GearUp =̂

when

grd1 : gearstate = down
grd2 : doorstate = open

then

act1 : gearstate := up
end

event GearDown =̂

when

grd1 : gearstate = up

grd2 : doorstate = open
then

act1 : gearstate := down
end

Figure 4.6: Simple landing gear.

30

OpenDoor(

OpenDoorStartC(
doorstateC:=opening-

OpenDoorE(
doorstate:=open-

OpenDoorFinC(
doorstateC:=open-

Figure 4.7: Refining the OpenDoor Event

controller variable doorstateC is assigned the value opening meaning the con-
troller does not yet know whether the door is indeed open. The environment
variable doorstate is then assigned the value open by the environment event
OpenDoorE . After the door has opened in the environment, the controller
variable is updated by the OpenDoorFinC event as the controller now knows
that the door is open in the environment. The Event-B specification of the
door opening events is shown in Figure 4.8.

In the events of Figure 4.8 there is still a direct dependency between the
controller events and the environment events: environment event DoorOpenE
is guarded by a condition on the controller variable doorstateC and similarly
controller event DoorOpenFinC is guarded by a condition on the environment
variable doorstate. We will make this dependency indirect in the next section
by introducing an explicit signalling mechanism between the controller and
the door.

Before this we turn our attention to the GearUp and GearUp events. In
the abstract model (Figure 4.6), both these events are guarded by the value
of doorstate directly. In the refinement we replace doorstate by doorstateC as
shown in Figure 4.9. This represents the fact that the decision about whether
it is safe to move the landing gear is based on the controllers model of the
state of the gear rather than the actual state of the gear in the environment.
To justify the correctness of this replacement of the environment variable by
the controller variable, we need to provide and verify the invariant shown
in Figure 4.6 that specifies that the refined grd2 entails the corresponding
abstract grd2 for both events. This invariant captures the key property of
doorstateC : when its value is used to make a control decision about the
landing gear, then its value corresponds to the value of the environment
variable that it shadows. There are states when doorstateC and doorstate
differ, e.g., when doorstateC=opening, but that does not matter since, in
those states, the value of doorstateC is not used to make a control decision
about the landing gear.

All of the proof obligations for the refined model of Figures 4.8 and 4.9

31

event DoorOpenStartC =̂

when

grd1 : doorstateC = closed
then

act1 : doorstateC := opening
end

event DoorOpenE =̂

refines DoorOpen
when

grd1 : doorstate = closed
grd2 : doorstateC = opening

then

act1 : doorstate := open
end

event DoorOpenFinC =̂

when

grd1 : doorstate = open
grd2 : doorstateC = opening

then

act1 : doorstateC := open
end

Figure 4.8: Refined Door Opening Events.

32

invariants

inv3 : doorstateC = open ⇒ doorstate = open

event GearUp =̂

refines GearUp
when

grd1 : gearstate = down
grd2 : doorstateC = open

then

act1 : gearstate := up
end

event GearDown =̂

refines GearDown
when

grd1 : gearstate = up

grd2 : doorstateC = open
then

act1 : gearstate := down
end

Figure 4.9: Refined Gear Movement Events.

33

are proved (automatically) by the Rodin provers provided inv3 of Figure 4.9
is included in the model. Note that the following invariant about the door
closed state also holds, though it is not required to prove the refinement
(because the gear control events are not enabled when the door is closed):

doorstateC = closed ⇒ doorstate = closed

4.4 Introducing Explicit Signalling
Consider again the door opening events of Figure 4.8: environment event
DoorOpenE is guarded by a condition on the controller variable doorstateC
and similarly controller event DoorOpenFinC is guarded by a condition on
the environment variable doorstate. In this section we introduce an explicit
signalling mechanism between the controller and the door. The signalling is
a shared resource between the door and the controller and will be used to
replace the direct dependency between the controller events and environment
variable (and between the environment event and controller variable).

First we present a general pattern for introducing signalling between pairs
of events. Suppose we have a pair of events Ev1 and Ev2 where execution of
Ev1 may result in Ev2 being enabled. We wish to be able to decompose the
model so that Ev1 appears in one agent, Agent1, and Ev2 appears in another
agent, Agent2. We also require that Agent1 and Agent2 do not synchronise
with each other directly but interact indirectly through a signalling agent (as
in Figure 4.5).

Figure 4.10 provides a schematic representation of the way in which a
signalling mechanism may be introduced as a refinement of this pair of events.
In Figure 4.10 the abstract event Ev1 sets variable v1 to the value E. Because
event Ev2 is guarded by v1 = E, execution of Ev1 may result in Ev2 being
enabled. One possibility would be to treat v1 as a resource shared by both
agents. However, assume that we require v1 to be part of Agent1 as it is
used by other events of that agent and not be a shared resource between
the agents. Under these constraints, decomposition of Ev1 and Ev2 into two
non-synchronising agents is not possible because Ev2 depends on variable v1.
We overcome this by introducing a signalling variable sig that acts as a shared
resource between both agents. In the refined events of Figure 4.10, Ev1 sets
the signal variable to a value that enables Ev2 and the abstract guard v1 = E
of Ev2 is replaced by a guard on the signal variable. Thus, in the refinement,
the sequential dependency between Ev1 and Ev2 is achieved via the shared
sig resource rather than via the variable v1 intended for Agent1. The Ev2
event also resets the signal variable to a value representing the absence of a
signal (noSIG) indicating that Agent2 has received the signal.

34

Abstract events:

Ev1 =̂ when G1 then A1 || v1 := E end
Ev2 =̂ when v1 = E ∧G2 then A2 end

Refined events with signalling:

Ev1 =̂ when G1 then A1 || v1 := E || sig := SIG end
Ev2 =̂ when sig = SIG ∧G2 then A2 || sig := noSIG end

inv : sig = SIG ⇒ v1 = E

Figure 4.10: Pattern for introducing signalling.

To ensure the correctness of this refinement pattern, an invariant is re-
quired that specifies a relationship between the value of the signal variable
and variable v1 as shown in Figure 4.10.

In the case that there are multiple sequentially dependent pairs of events
from Agent1 to Agent2, then we can use the same signalling variable for those
event pairs. For example, in the refined landing gear model, DoorOpenE
depends on DoorOpenStartC and DoorCloseE depends on DoorCloseStartC.
We can group these pairs because

• the signalling is in the same direction (from Controller to Door), and

• the pairs are mutually exclusive, i.e., the controller will not initiate door
opening and closing at the same time.

If there is sequential dependency between the agents in the other direction,
as is often the case, then we introduce a separate shared signalling variable
using the same refinement pattern.

We apply these signalling guidelines and pattern to the refined landing
gear model. The refinement step that introduces the signalling has two ad-
ditional variables, one to represent actuation signals from the controller to
the door and another to represent confirmation signals back from the door
to the controller:

inv1 : todoorsig ∈ SIGNAL

inv2 : fromdoorsig ∈ SIGNAL

35

SIGNAL has three possibles values representing (i) no signal present, (ii) a
signal to indicate actuation/confirmation of door opening, and (iii) a signal
to indicate actuation/confirmation of door closing:

axm1 : partition(SIGNAL, {noSIG}, {openSIG}, {closeSIG})

To apply the pattern, we pair and group the events as follows:

Group1: (DoorOpenStartC, DoorOpenE)

(DoorCloseStartC, DoorCloseE)

Group2: (DoorOpenE, DoorOpenFinC)

(DoorCloseE, DoorCloseFinC)

Group1 represents signalling from the controller to the environment which
is achieved using the todoorsig variable. Group2 represents signalling from
the environment to the controller which is achieved using the fromdoorsig
variable.

Based on this grouping, the refined door opening and closing events that
include the signalling are derived by application of the signal-introduction
pattern of Figure 4.10. The refined door opening events are shown in Fig-
ure 4.11. When the controller initiates the door opening, an openSIG is sent
from the controller to the door by the DoorOpenStartC event. The guard
of the environment event DoorOpenE that refers to the controller variable
is replaced by a signalling guard. Similarly the DoorOpenE event sends an
openSIG signal to indicate the the door is now open and this in turn signals
the DoorOpenFinC event.

4.4.1 Avoiding signal confusion

Gluing invariants required by the signal-introduction pattern are presented
in Figure 4.12. Invariants inv3 to inv6 are required because we replace
guards on controller or environment variables by guards on the appropriate
signal; so these invariants describe relations between the value of a signal and
the corresponding controller or environment variable whose value the signal
represents.

The other two invariants of Figure 4.12 describe conditions under which
the signal variables should have the value noSIG. Invariant inv7 states that
both the to and the from signals cannot have a signal simultaneously, i.e.,
one of the two must have the value noSIG. The reason that the system
satisfies this invariant is because of a certain protocol: once the controller
has sent a signal to the door, it does not send another signal until the door

36

event DoorOpenStartC =̂

refines DoorOpenStartC
when

grd1 : doorstateC = closed
then

act1 : doorstateC := opening
act2 : todoorsig := openSIG

end
event DoorOpenE =̂

refines DoorOpenE
when

grd1 : doorstate = closed
grd2 : todoorsig = openSIG

then

act1 : doorstate := open
act2 : todoorsig := noSIG
act3 : fromdoorsig := openSIG

end
event DoorOpenFinC =̂

refines DoorOpenFinC
when

grd1 : fromdoorsig = openSIG
grd2 : doorstateC = opening

then

act1 : doorstateC := open
act2 : fromdoorsig := noSIG

end

Figure 4.11: Door Opening Events with Signalling.

37

invariants

inv3 : todoorsig = openSIG ⇒ doorstateC = opening

inv4 : fromdoorsig = openSIG ⇒ doorstate = open

inv5 : todoorsig = closeSIG ⇒ doorstateC = closing

inv6 : fromdoorsig = closeSIG ⇒ doorstate = closed

inv7 : todoorsig = noSIG ∨ fromdoorsig = noSIG

inv8 : doorstateC ∈ {open, closed} ⇒ fromdoorsig = noSIG

Figure 4.12: Invariants for Signalling.

has responded. Later we will see that it is possible to allow for more liberal
protocol where the controller can send another signal without waiting for a
response from the device (e.g., in case of a timeout or in case the previous
signal needs to be overridden).

An interesting question is how does the need for inv7 manifest itself in
terms of proof. Without inv7 it cannot be proved that inv3 is preserved by
DoorOpenFinC : this event sets doorstateC to a value different to opening and
in this case, to preserve inv3, todoorsig should be different from openSIG.
Invariant inv7 together with grd1 of DoorOpenFinC ensure that the value of
todoorsig is different from openSIG. For similar reasons, inv7 is also required
to prove that CloseOpenFinC preserves inv5.

Invariant inv8 states that if the controller believes the door is open or
closed, then there should not be any outstanding signal from the door to the
controller. A state violating this invariant could lead to a hazardous state
where the controller has the wrong view of the door state. The verification
need for inv8 arises from the need to prove that the the controller initiation
events (DoorOpenStartC, DoorCloseStartC) preserve invariant inv7.

All of the proof obligations for the refined model of Figure 4.11 are proved
(automatically) by the Rodin provers when all the invariants of Figure 4.12
are included in the model.

4.4.2 Parameterising the signal events and decomposing
models

Recall from Section 4.2.2 that in order to decompose a machine, we identify
how the variables should be partitioned amongst the sub-components. Based
on this partition, events that depend on variables in more than one partition

38

need to be decomposable, that is, each guard and action of an event should
depend only on variables of a single sub-component. Being decomposable
means that an event can be syntactically decomposed into several sub-events,
one for each sub-component on which it depends.

The introduction of the signalling mechansim to the simple landing gear
example means that the events of the model have enough structure to be
able to decompose it into three sub-components as follows:

• Door, with variable doorstate

• Signals, with variables todoorsig, fromdoorsig

• Controller, with variable doorstateC

Each event either depends on variables of Controller and Signals (and not
Door) or on variables of Door and Signals (and not Controller). All of
the events are syntactically decomposable based on this partitioning of the
variables amongst the sub-components.

For example, consider the DoorOpenStartC event of Figure 4.11: grd1
and act1 depend on variable doorstateC and can be used to construct an event
of the Controller sub-component while act2 depend on variable todoorsig and
can be used to construct an event for the Signals sub-component. However, a
property of this decomposition of the landing gear model is that the behaviour
of the events in the Signals sub-component depends on particular signal
values (e.g., act2 of DoorOpenStartC depends on the value openSIG). We
would prefer that the behaviour of the signalling mechanism is independent
of the values of the signals since its role is simply to pass signals between the
controller and the door. The behaviour of only the controller and the door
should depend on the signal values.

We can achieve this by introducing the signal value as an explicit parame-
ter of the events, with the value of the signal parameter being determined by
the controller (or the door) and simply used by signalling mechanism without
interpretation. Figure 4.13 presents a pattern for introducing a parameter
to represent some expression appearing in an event. The figure shows that
an expression E appearing in the guards and events may be abstracted by a
new parameter y by adding a guard y = E and replacing the occurrences of
E by y.

Figure 4.14 illustrates the result of applying the parameter introduction
pattern to two events of the controller. In both events, a parameter sig
is introduced and a guard added to define the value of sig for the event.
Occurrences of the signal value (i.e., openSIG, closeSIG are replaced by a
reference to sig. The means that the parts of the events that are used to

39

Abstract event that depends on expression E:

Ev =̂ any x where G(E) then A(E) end

Refined event with additional parameter represent expression E:

Ev =̂ any x, y where y = E ∧G(y) then A(y) end

Figure 4.13: Pattern for representing expressions as parameters.

construct the sub-events for the signalling sub-component are independent
of the value of the signal. Furthermore for both events of Figure 4.14, the
sub-events for the signalling sub-component are identical, i.e., act2 is the
same in both events. This means that we can use a single sub-event in the
signalling subcomponent to represent the contribution it makes to both the
events of Figure 4.14.

After introducing the signal values as event parameters we decompose the
model into the three desired sub-models. The controller events DoorOpen-
StartC, DoorOpenFinC, DoorCloseStartC, DoorCloseFinC are syntactically
split into sub-events for the controller and sub-events for the signalling com-
ponent. Likewise the door DoorOpenE, DoorCloseE are syntactically split
into sub-events for the controller and sub-events for the signalling component.
The composed machine of Figure 4.15 shows how the three sub-components
are brought together and appropriate combinations of events from the sub-
components are composed to form refinement of the system-level events.

Some of the events of the sub-models are shown in Figures 4.16, 4.17
and 4.18. The opening events of the controller sub-model are shown in Fig-
ure 4.16, the opening event of the door sub-model is shown in Figure 4.17,
and the events of the signalling sub-model are shown in Figure 4.18.

4.5 Pattern for non-linear controller decompo-
sition

The model of door movements used in the previous sections is simplistic in a
number of aspects. Firstly it assumes that the physical door will transition
from open to close instantaneously. A more realistic model would assume that
a door movement takes time. We will represent this by having two events

40

event DoorOpenStartC =̂

refines DoorOpenStartC
any

sig
where

grd1 : sig = openSIG
grd2 : doorstateC = closed

then

act1 : doorstateC := opening
act2 : todoorsig := sig

end
event DoorCloseStartC =̂

refines DoorCloseStartC
any

sig
where

grd1 : sig = closeSIG
grd2 : doorstateC = open

then

act1 : doorstateC := closing
act2 : todoorsig := sig

end

Figure 4.14: Adding signalling parameters to events.

41

composed machine CompositeLG
refines SimpleLG3
includes Controller, Door, Signals
init Controller.INIT ‖ Door.INIT ‖ Signals.INIT

event DoorOpenStartC =̂
Controller.DoorOpenStartC ‖ Signals.ControllerSendSignal

event DoorOpenE =̂
Door.DoorOpenE ‖ Signals.DoorReceiveSendSignal

event DoorOpenStartC =̂
Controller.DoorOpenfinC ‖ Signals.ControllerReceiveSignal

event DoorCloseStartC =̂
Controller.DoorCloseStartC ‖ Signals.ControllerSendSignal

event DoorCloseE =̂
Door.DoorCloseE ‖ Signals.DoorReceiveSendSignal

event DoorCloseStartC =̂
Controller.DoorClosefinC ‖ Signals.ControllerReceiveSignal

event GearUp =̂ Controller.GearUp

event GearDown =̂ Controller.GearDown

Figure 4.15: Composition of controller, door and signals.

42

event DoorOpenStartC =̂

any
sig

where

grd1 : sig = openSIG
grd2 : doorstateC = closed

then

act1 : doorstateC := opening
end

event DoorOpenFinC =̂

any
sig

where

grd1 : sig = openSIG
grd2 : doorstateC = opening

then

act1 : doorstateC := open
end

Figure 4.16: Opening events of the controller machine.

event DoorOpenE =̂

any
sig1, sig2

where

grd1 : sig1 = openSIG
grd1 : sig2 = openSIG
grd2 : doorstate = closed

then

act1 : doorstate := open
end

Figure 4.17: Opening event of the door machine.

43

event ControllerSendSignal =̂

any
sig

where

grd1 : sig ∈ SIGNAL
then

act2 : todoorsig := sig
end

event DoorReceiveSendSignal =̂

any
sig1, sig2

where

grd1 : todoorsig = sig1
grd2 : sig2 ∈ SIGNAL

then

act2 : todoorsig := noSIG
act3 : fromdoorsig := sig2

end

event ControllerReceiveSignal =̂

any
sig

where

grd1 : sig ∈ SIGNAL
grd1 : fromdoorsig = sig

then

act2 : fromdoorsig := noSIG
end

Figure 4.18: Events of the signalling machine.

44

B"

BA"

AB"

A"

ABstart'

BAfin'

ABfin'

BAstart'

(a) Linear ordering

B"

BA"

AB"

A"

ABstart'

BAfin'

ABfin'

BAstart'

(b) Non-linear ordering

Figure 4.19: State machines for discrete device.

for a door movement: one to represent the point at which the door starts a
transition (e.g., OpenStart) and another to represent the point at which the
transition finishes (e.g., OpenFin). Figure 4.19(a) presents a generic pattern
for such behaviour as a state machine. Here, A and B are the stable states
(e.g., open, closed) while AB and BA represent intermediate transitioning
states (e.g., opening, closing).

Figure 4.19(a) is itself simplistic in that the ordering of the events is purely
linear. The linear ordering does not allow for the possibility of reversing a
transition while that transition is in progress. For example, while a door is
closing, we might want to start re-opening it before it finishes closing, e.g.,
because an open button is pressed. The state machine of Figure 4.19(b)
addresses this: as well as allowing a transition into an intermediate state
to come from a stable state, it allows that transition to come from another
intermediate states, e.g., the ABstart event, which sets the state to be AB,
is enabled when the state is either A or BA.

As with the door mechanism in Section 4.3, we treat the state variable
represented by Figure 4.19(b) as a model of the physical device and we use a
refinement step to introduce a variable representing the controllers version of
the device state. After introducing the controller variable, we use a further
refinement step to introduce the explicit signalling as described in Section 4.4.
This is presented in Figure 4.20 which covers both refinement steps for the
ABstart and ABfin events (the BAstart and BAfin events are treated in the
same way). The top layer in Figure 4.20 specifies the abstract events (note
that ABstart is enabled when the state is A or BA following Figure 4.19(b)).
The middle layer shows the refined events where the controller version of the
state variable, stC, is introduced (for clarity, the abstract state variable st is
renamed to stE to indicate that it is an environment variable). Correspond-

45

ing to each abstract variable at the top level, there are two events in the
refinement, one representing a controller event and the other representing
an environment event (with the controller events being new events refining
skip). The invariants for the refinement steps are also shown in Figure 4.20.
As with the refinement of the door control in Section 4.3, we have that when
the controller variable is in a stable state (A or B), then the controller and
environment values agree and thus is safe for the control to make a critical
decision based on the value of its variable.

The bottom layer of Figure 4.20 specifies the refinement of the controller
and environment events in which the signalling mechanism is introduced.
This allows any dependency by controller events on environment variables
to be removed and similarly for environment events and controller variables.
The invariants for this refinement specify correspondences between the signal
values on the state of the agent sending the signal, e.g., if the signal to
the device is abSIG then the state of the controller is AB (inv3.1); if the
signal from the device is abSIG then the device has reached state B. These
invariants are used to verify the correctness of the guard replacements in the
refined events, e.g, inv3.1 justifies the replacement of the guard stC = AB
by tosig = abSIG in the lowest level ABstartE event. The events at the
bottom layer are in a form that allows them to be decomposed. Prior to that,
we can introduce explicit parameters to represent the signals exchanged by
the decomposed events using the technique described in Section 4.4. After
this, the model is decomposed into three sub-models, Controller, Signals and
Device, such that:

• stC is placed in Controller, stE is placed in Device and tosig and
fromsig are placed in Signals,

• Events ABstartC and ABfinC are decomposed into Controller parts
and Signals parts,

• Events ABstartE and ABfinE are decomposed into Device parts and
Signals parts.

4.5.1 Dealing with Errors

All real control systems have to deal with errors arising in the environment
such as failure of a mechanical component or loss or delay of signals. In
some cases, errors will be detected through sensors and this can be treated
as another form of signal from the environment with an appropriate response
from the controller such as the use of a backup mechanism or through the

46

ABstart''≙!
when!st!�{A,BA}'
then!st!:=!AB'

ABstartC!!≙!
when!stC!�{A,BA}'
then!stC!:=!AB'
'

ABstartE!!≙!
when!stE!�{A,BA}&

!stC!=!AB'
then!stE!:=!AB'

ABfin''≙!
when!st'=!AB'
then!st!:=!B'

ABfinE''≙!
when!stE!=!AB'
then!stE!:=!B'
'

ABfinC''≙!
when!stC!=!AB'

!!stE!=!B'
then!stC!:=!B'

ABstartC!!≙!
when!stC!�{A,BA}'
then!stC!:=!AB'
'''''tosig!:=!abSIG'
'''''fromsig!:=!noSIG'
'

ABstartE!!≙!
when!stE!�{A,BA}&

!!tosig!=!abSIG'
then!stE!:=!AB'
'''''''tosig':='noSIG'
''''''''fromsig!:=!noSIG'

ABfinE''≙!
when!stE!=!AB'
''''''tosig='noSIG'
then!stE!:=!B'
''fromsig':='abSIG'
'

ABfinC''≙!
when!stC!=!AB'
'''''fromsig!=!abSIG'
then!stC!:=!B'
'''''tosig':='noSIG'
'''''fromsig':='noSIG'

Invariants for first refinement:

inv2.1 : stE = st

inv2.2 : stC ∈ {A,B} ⇒ stC = stE

Invariants for second refinement:

inv3.1 : tosig = abSIG ⇒ stC = AB

inv3.2 : fromsig = abSIG ⇒ stE = B

inv3.2 : tosig = baSIG ⇒ stC = BA

inv3.2 : fromsig = baSIG ⇒ stE = A

Figure 4.20: Refinement steps for non-linear controller.

47

transition to a failsafe mechanism. This can be modelled using appropriate
environment and controller events, e.g., detection of an obstacle while a door
is closing could result in a signal to the controller to revert to the opening
state. In other cases, the controller may enter an error state because a
signal was not received from a device by a particular time. Such a timeout
can be modelled as a controller event that causes the controller to enter an
error state in the absence of an expected signal from the environment. At
the abstract level this can be done without any explicit timing. In a more
detailed refinement, the timeout delay can be modelled by using a clock or
counter that causes the timeout to trigger after an appropriate number of
time steps – unless the expected response is received beforehand.

Typically, an error will arise when a controller is in an intermediate state
between stable states, e.g., states AB and BA. Once the controller state has
been introduced, an abstract (unguarded) error event could have is guards
strengthened as follows:

event Error =̂

when

grd1 : st ∈ {AB,BA}
then

act1 : warning := TRUE
end

4.6 Stepwise decomposition

When we have a system model consisting of a number of devices that need
to be controlled in a coordinated manner, decomposition can be achieved in
stages. Typically the target architecture will be such that the devices will
be independent from each other and will only interact via the controller. For
such an architecture, a way to proceed, starting with a high level model of
the system, is to extract each device out from the system model, one device
at a time. To extract a device model from the system model, we introduce
controller versions of the device state, then introduce signalling mechanisms
using the techniques already outlined. Then we decompose the system model
to a device model, a signalling model and a residual model. The residual
model may contain a mix of controller and environment variables and events
(not including variables and events of the extracted device). The residual
model can then be further refined in the same way so that the next device

48

Landing'Gear''System'1'

Landing'Gear'System'2'Door'

Landing'
Gear'
Signals'

Landing'
Gear'

Landing'
Gear'

Controller'

Door'
Signals'

Figure 4.21: Stepwise decomposition for landing gear.

can be extracted, and so on until the residual model only contains controller
variables and events representing the controller-only behaviour.

This form of stepwise refinement and decomposition based on device ex-
traction is illustrated in Figure 4.21 for the landing gear example. The top
box represents the model of the landing gear system (Landing Gear System
1). The first goal is to extract the door model. This is achieved by refine-
ment steps to introduce the controller version of the door variables followed
by the signalling mechanisms. The refined model is then decomposed into
three sub-components: Door, Door Signals and Landing Gear System 2. The
next decomposition stage is to extract the landing gear model from the sys-
tem. Again this requires introduction of the controller version of the landing
gear variables and of the signalling system. The refinement of Landing Gear
System 2 can then be decomposed into three components representing the
device, the signalling for the landing gear and the residual model. In this case
the residual model (Landing Gear Controller) only contains controller vari-
ables and events and can thus be treated as the specification of the controller

49

software.

4.7 Multiple instances of device

Systems involving multiple instances of the same kind of device can be treated
using the techniques outlined above. For example, a train door controller
will control a collection of doors or a railway zone controller will control a
collection of points and signals. The use of a state variable to model the
state of an individual device can be lifted to a collection of similar devices
by using functions from device instances, e.g., instead of st ∈ ST , we have:

st ∈ Device→ ST

The invariants used for introducing controller copies of environment variables
can be lifted, e.g.,

∀d · d ∈ Device ∧ stC(d) ∈ {A,B} ⇒ stC(d) = stE(d)

Similarly the invariants and variables for the signalling introduction may be
lifted to collections of similar devices.

Alternatively we can use disjoint sets to represent the set of devices in
each state, as follows:

partition(Device, A,B,AB,BA)

Here, for example, A ⊆ Device represents the set of devices in the A state.
An invariant specifying the relationship between controller and environment
state can be represented as follows:

AC ⊆ AE ∧ BC ⊆ BE.

(The set of devices that the controller believes are in the A state is a subset
of the devices that are actually in the A state, etc.) Similarly, disjoint sets
can be used for different kinds of messages, e.g.,

partition(tosig, abSIG, baSIG, noSIG)

For stepwise decomposition, we extract out a model representing the col-
lection of similar devices, rather than each individual device, along with a
lifted signalling sub-component representing the signalling between the group
of extracted devices and the residual system.

50

4.8 Concluding
To summarise, we presented techniques for stepwise decomposition of control
systems involving coordination by a controller of a number of devices. The
key techniques are:

• Identification of a device (or collection of similar devices) to be ex-
tracted from the model,

• Introduction by refinement of the controller version of the environment
variables representing the state of the device(s),

• Introduction by refinement of the signalling mechanism between the
device(s) and the residual system,

• Decomposition of the refined system model into sub-models represent-
ing the extracted device(s), the signalling between the device(s) and
the residual system.

This process is then repeated on the residual system model to extract the
next device(s) until all devices have been extracted and the residual model
represents the model of the controller.

51

Chapter 5

Model-based Testing and MC/DC
Coverage

5.1 Introduction

Testing and coverage are the mechanisms in the ADVANCE process that
link formal, proof-based verification with traditional, simulation-based veri-
fication techniques. By introducing testing and coverage early in the process
at the formal model development stage, testability issues can be addressed
much earlier to inform the design process.

5.2 MC/DC Coverage

The Modified Condition/Decision Coverage (MC/DC) measure introduced in
ADVANCE can be used to verify, at every refinement level, that the guards of
each event can be independently set to FALSE. Since, ultimately the refined
model will be used to implement the digital controller, it is good practice
to ensure that at even the high levels of abstraction, the controller will be
testable.The facility is also used at every refinement stage to ensure that any
vacuous guards are eliminated.

5.3 Model-based Testing

The ADVANCE project has developed two mechanisms for model-based test-
ing: constraint-based and scope-based, which are described in the deliverable
[Leu14]. In the first, the user provides a constraint and the tool finds a test
that meets that constraint. In the second, the model checker is used to ex-

52

plore the state space within a scope provided by the user and to generate
tests for all paths within that scope. Cyber-physical systems are difficult
to test, and by using constraints and scoping, a set of tests can be gener-
ated which can be targeted at particular aspects of the system functionality.
The coverage obtained by each set of tests is measured by using the ProB
simulator to run the generated tests against the model.

53

Chapter 6

The ADVANCE Process in
Aircraft Certification

6.1 Introduction
The ADVANCE process has been applied to certification in the railway sig-
nalling domain as reported in the deliverables [Mej14b] and [Mej14a]. The
ADVANCE process is, however, also applicable to aircraft certification.

6.2 DO-178C and DO-254
The ADVANCE process supports both DO-254 and DO-178C flows for de-
sign assurance of airborne electronic hardware and software. Both standards
support the use of formal methods and require MC/DC structural coverage of
implementations at the highest safety criticality levels. DO-178C introduces
two annexes which are particularly relevant when considering the impact that
the ADVANCE process could have in this area, DO-331 addressing Model-
based development and verification and DO-333 addressing Formal Meth-
ods to complement testing. The ADVANCE process combines formal and
simulation-based verification with MC/DC coverage closure in a way that is
well-suited to airborne system verification and sign-off, providing traceable
model-based development and verification from conception to certification.

54

Chapter 7

Summary

We have shown that we have developed a method in ADVANCE for capturing
System Requirements and providing traceability between those requirements
and a formal specification of the system in Event-B. We have also developed a
method for capturing Safety Requirements, using STPA, which is integrated
with Functional Requirement capture and uses the ProR facility. We have
also shown how this method, based on formal modelling and proof, can be
integrated into the ADVANCE multi-simulation and test method. These
techniques have been applied to both ADVANCE case studies.

55

Bibliography

[But09] Michael Butler. Decomposition Structures for Event-B. In Inte-
grated Formal Methods 2009, pages 20–38, 2009.

[BW14] Frédéric Boniol and Virginie Wiels. The landing gear system case
study. In ABZ 2014: The Landing Gear Case Study, pages 1–18.
Springer, 2014.

[Leu14] Michael Leuschel. D4.4 methods and tools for simulation and test-
ing iii. Technical report, University of Dusseldorf, 2014.

[Lev12] N.G. Leveson. Engineering a safer world: Systems thinking applied
to safety. MIT Press (MA), 2012.

[Mej14a] Luis-Fernando Mejia. D1.4 certification strategy. Technical report,
Alstom Transport, 2014.

[Mej14b] Luis-Fernando Mejia. D1.5 full case study. Technical report, Al-
stom Transport, 2014.

[Rei14] Jose Reis. D2.4 full application in the smart energy domain. Tech-
nical report, CSWT, 2014.

56

	D5.3cover
	AdvanceD5.3
	Preface
	The ADVANCE process overview
	Process Summary

	ADVANCE Process Tutorial
	The Landing Gear Case Study

	Guidelines for Decomposition of Control System Models
	Introduction
	Decomposing machines
	Introducing Controller version of Environment Variables
	Introducing Explicit Signalling
	Pattern for non-linear controller decomposition
	Stepwise decomposition
	Multiple instances of device
	Concluding

	Model-based Testing and MC/DC Coverage
	Introduction
	MC/DC Coverage
	Model-based Testing

	The ADVANCE Process in Aircraft Certification
	Introduction
	DO-178C and DO-254

	Summary
	Bibliography

