N
PROGRAMME

Overview of
ADVANCE Process and Tools

John Colley, Michael Butler
ADVANCE Industry Day 2014

Outline

* ADVANCE Project Overview

e Activities supported by ADVANCE Tools

* ADVANCE Process

ADVANCE(287563)
Advanced Design and Verification
Environment for
Cyber-Physical System Engineering
www.advance-ict.eu

* Cyber-Physical Systems
* Key Innovation

* Technical Approach
e Demonstration and Use

SEVENTH FRAMEWORK
PROGRAMME

Cyber-Physical Systems

* |Integrations of Computing and Physical

Mechanisms

— provide physical services
* Transportation
* Energy Distribution
* Medical Care
* Manufacturing

— with increased

* Adaptability

* Autonomy
 Efficiency
e Safety
E‘,':.
e* °
-

Cyber-Physical System Challenges

“.... the lack of temporal semantics and adequate
concurrency models in computing, and today’s
“best effort” networking technologies make
predictable and reliable real-time performance

difficult, at best. ”

Cyber-Physical Systems - Are Computing Foundations Adequate?
Edward A. Lee, EECS, UC Berkeley, 2006 -

Verifying Cyber-Physical Systems

* Most Traditional Embedded Systems are Closed

Boxes
—amenable to Bench Testing

* Cyber-Physical Systems
— are typically networked
— can have complex interactions with their physical

environment
— pose a much greater verification challenge

* How can predictable behaviour and timing be

achieved?
Cyber-Physical Systems - Are Computing Foundations Adequate? ‘:"
)

_7; Edward A. Lee, EECS, UC Berkeley, 2006

Key Innovation of ADVANCE

* Focuses on the key role played by Modelling in
Cyber-Physical System Engineering

 Modelling is used at all stages of the Development
Process

— From Requirements Analysis to System Acceptance
Testing
* Augments Formal, Refinement-based Modelling
and Verification with
— Simulation
— Testing
in a Single Design and Verification Environment

%

@ _o°
»

Technical Approach: Overview

* Formal Modelling supported by strong Formal
Verification Tools to establish deep
understanding of Specification and Design

e Simulation-based Verification to ensure that
the Formal Models exhibit the expected
behaviour and timing in the target physical
environment

 Model-based Testing for the systematic
generation of high-coverage test suites

?

ADVANCE Multi-Simulation
Framework

* Different simulation tools are better suited to
simulating different parts of a Cyber-physical

system:
— Environments
— Controllers

— Physical Plant
e The ADVANCE Framework manages the co-
operation of multiple simulators to enable

effective Cyber-physical system verification

. 4

‘%
=

0,:~o
e* °
v/

Demonstration and Use

O tO
WP3, WP4
Methods and Tools

WP6

External Dissemination

WP5
Process Integration

o0

WP7
-
Management .‘0
...‘.
-
@0

ADVANCE Workpackages

WP1 Dynamic Trusted Railway Interlocking Case Study Alstom &2
WP2 Smart Energy Grids Case Study Critical/Selex :I:.";_&_q

O
WP3 Methods and Tools for Model Construction and Proof Systerel @6

WP4 Methods and Tools for Simulation and Testing Dusseldorf @

y |
WPS5 Process Integration Southampton EE.
®
WP6 External Dissemination and Exploitation Critical Cp
o0
WP7 Management Southampton ‘&

~

® e,
7 e®* "
SEVENTH FRAMEWORK -
PROGRAMME

Achieving high assurance is not easy

* Requirements are poorly understood and analysed

* No software system is self-contained
— it operates within a potentially complex environment

— complexity of environment means that hazards /
vulnerabilities in environment are poorly understood

* Designs are verified only after implementation

— expensive to fix
— verification usually incomplete — many undiscovered bugs

— Ensuring coverage of faults/attacks in testing is difficult

. 4

Verified Design with Event-B

* Formal modelling at early stages to prevent errors in
understanding requirements and environment

* Verify conformance between high-level
specifications and designs using incremental

approach

* Rodin: open source toolset for modelling,
verification and simulation

Safety/security properties in Event-B

e Aircraft landing gear:
Gear=retracting = Door=open

* Railway signalling safety:
— The signal of a route can only be green when

all blocks of that route are unoccupied
sig(r) = GREEN = blocks[r] n occupied =9

* Access control in secure building:
— ifuseruisinroomr, then u must have sufficient authority to

be inr

location(u)=r =
takeplace[r] & authorised[u] e,
@1

SEVENTH FRAMEWORK
PROGRAMME

Refinement in Event-B

* High level models
— abstract details, allowing focus on system-level properties

* Refined models
— introduce more requirements or design details

 Conformance:
— behaviour exhibited by refined model should be allowed by

abstract model
* Example, signalling mechanism as a refinement:

— System level property:
Gear=retracting = Door=open

— Design level properties:
Gear=retracting = GearRetractSignal=TRUE
GearRetractSignal=TRUE = Door=open o

oo
@5

SEVENTH FRAMEWORK
PROGRAMME

Main features of the Rodin Toolset

 Model Verification
— Ensure that Event-B models satisfy key properties

formulated in a mathematical way

 Model Validation
— Ensure that Event-B models accurately capture the

intended behaviour / requirements of a system

* Model Transformation
— Transform models from one representation to

another, e.g.,
e graphical to mathematical representation

* model to code transformation
e

Simple Verification Example

Invariant: x <y < x+C (yis bounded by x)
IncEvent = wheny < x+C theny :=y+1 end

SEVENTH FRAMEWORK
PROGRAMME

Assume the the system is initialised to a state that
satisfies the invariant.

Can the system ever get into a state in which the
invariant is violated?

Formulate the question as a mathematical problem
— |Is this theorem provable?:

X <y<xtC A y<x+C = x < y+1 < x+C
NB: theorem and its proof hold for all values of x,y,C. _

Proof Obligations and Provers

* |[n Event-B theorems such as these are called

Proof Obligations (POs)
— The Rodin tool generates the POs for a model

automatically
 The Rodin provers (semi-)automatically
construct mathematical proofs of the validity

of the POs.

. 4

Counter examples for invalid models

* Suppose our event had a specification error:
Invariant: X <y < x+C (yisbounded by x)
IncEvent = when y < x+C theny :=y+1 end

A Model Checker can generate counterexamples that demonstrate
the consequence of the error in IncEvent :

— Before: x=0,y=2,C=2 ok
— After: x=0, y=3, C=2 fault

 Model checker can also generate error traces from initial states:

— Init: x=0, y=0, C=2 ok
— IncEvent: x=0, y=1, C=2 ok
— IncEvent: x=0, y=2, C=2 ok
— IncEvent: x=0, y=3, C=2 fault -

@ _o°
? 2 .
..’
@

Model Verification in Rodin

* Proof Obligation generation
— Invariant preservation
— Refinement checking

 Automated and interactive proof

— Proof manager uses a range of internal and
external plug-in theorem proving tools

— Customisable through proof tactics

-
.
Oe.b.

@0

SEVENTH FRAMEWORK
PROGRAMME

Model Verification in Rodin
(continued)

* Model checking with ProB plug-in: automated

search for
— invariant violations

— refinement violations

— deadlocks
* Proof Support for Domain-specific theories

— Tables and operators for data manipulation
— Hierarchical structures (e.g. file system)
— Train occupancy as chains on a graph

7

@2

Model Validation

* Requirements tracing
— Validating a formal model against (informal) requirements

involves human judgements
— Strong structuring and tracability helps to ensure that the

validation is comprehensive and maintainable
— Tracing is supported by ProR plug-in

e Graphical animation
— ProB provides a simulation engine for Event-B

— BMotionStudio allows interactive graphical animations to

be constructed, driven by the simulation engine
— Very valuable for validating model, especially with domain

experts
e

Graphical animation of Stuttgart 21 model

*VVisualization with ProB2:

TTTTTT

« Track diagram clearly visible
. reserved blocks (blue) and occupied blocks (red)

« uncolored tracks are free in the current state

Model Validation (continued)

* Multi-simulation
— Event-B models discrete event systems

— Some environment variables are best represented as

continuous quantities
* E.g., voltage, temperature, speed,...
— Rodin multi-simulation framework allows co-simulation of

discrete and continuous models
* links ProB with external simulation tools, e.g., Simulink, Modelica

— Co-simulation allows us to validate a discrete controller
model given certain assumptions about the (continuous)

environment it controls
* environment variables represented in a continuous model -
St
@2

SEVENTH FRAMEWORK
PROGRAMME

Continuous / discrete co-simulation

rLoad

line1 b= trafo line
Figure 5. Distribution voltage control system in Modelica

noChange delayAction delayChange
E
IMITIALISATION [skdle | startCount [sCount | _ sAction |
- startAction _
_ cancelCount -
. J |) L J
taplp
-
tapDown :‘.‘
[J . .
Figure 6. Event-B state machine of the OLTC controller e °
@

ssssss
PROGRAMME

SEVENTH FRAMEWORK
PROGRAMME

Co-simulation Results

232]
231 |
230 |
229 |
mm | | | annn
1] 10 20 =0 Gl
] shction
[. . . ;Enunt
] 10 20 =0 G|
12_
11 I| tap

0 HD éD éD hﬂ

Figure 7. Co-simulation results of the OLTP voltage control

(stimulation time = 30s, step size = 0.1s) ,
O..b

Model Transformation

 UML-B
— UML-like graphical notation for Event-B

— Supports class diagrams and statemachines
— Graphical representation of refinement
 Composition and decomposition
— Composition: combine models to form larger models
— Decomposition: split large models into sub-models for further
refinement and decomposition
— Composition and decomposition need to be performed in a disciplined
way
* Code generation
— Generate C/Ada/Java from low-level models

— Customisable
— Support for generating multi-tasking implementations

oo,
Ge.b.

UML-B Class diagrams for Bank Accounts

¢ Account
Attributes
¢ Customer
¢ bal: T
¢ cust: Customer Events
8..n o cust 8..n < newCust
Events
< newAcc

Abstract Class Diagram

<> Account

Attributes
© bal
© cust

Events

& newAcc 1..1

NTH FRAMEW!
PROGRAMME

© Sacc

g..

¢ Session

< newsess

7 <+ getBal

Refined Class Diagram

|] L]
P Customer

Events "
% newCust
n

1..1

¢ scust

Attributes
¢ sacc: Account

¢ scust: Customer

28

UML-B Statemachine for ATM

BAXAR |l o
= B[& ml.smOc [[=

- =

.'NlTIAUSATlON . READY enterCard) VAUIDATE | ithdraw ‘:SUCCESS
- L |

rejectCard

releaseCard

R @

NNNNNNNNNNNNN
RRRRRRRRR

Refined model of ATM

H Mhnhﬁ- 2 m0.sm0c |

. "VALIDATE
INITIALISATION STARTVAL) CHECKPIN X PINOK | withdraw [SUCCESS
getPin pinok
enterCard
Js — — | S—
READY
rejectCard PINKO
f pinko
— S
. PINMODE | Pinok, pinko (OTHERMODE |
—_— R — |
—— e *
getPin
@
~
@ _ g0
releaseCard
TR @30

Rodin Architecture

* Extension of Eclipse Open Source IDE

* Core Rodin Platform manages:

— Well-formedness + type checker
— Consistency/refinement PO generator

— Proof manager

e Extension points to support plug-ins
— ProB, Bmotion Studio, ProR

-
.
‘O‘Q.

@

The ADVANCE Process

* Deriving the Safety Constraints from the Functional
Requirements using STPA

* Modeling the Safety Constraints in Event-B
— System-level Safety Constraints
 Determining how Unsafe Control Actions could occur

* Documenting the Requirements and Design Decisions
with ProR

* Refining the model and safety constraints to ensure
Control Actions are safe in the presence of Hazards

— Architecture-level Safety Constraints
* Constraint-based test generation and MC/DC coverage
 Shared Event Decomposition

— Further refinement/ implementation
7 — FMI-based Multi-simulation ®_ 3.

The Functional Requirements

* System Overview
e Monitored Phenomena

e Controlled Phenomena
e Commanded Phenomena

e Mode Phenomena

Controlled Phenomena

Landing Gear Doors
1. The Controller will open the Doors when the Pilot
moves the Lever to Extend or Retract the
Landing Gear

2. The Controller will then close the Doors when
the Landing Gear is fully Extended or Retracted

3. The Doors will remain open while the Landing
Gear is Extending or Retracting

o
"‘U".

Safety Requirements

“Any controller — human or automated — needs a model
of the process being controlled to control it effectively”

“Accidents can occur when the controller’s process model
does not match the state of the system being controlled

and the controller issues unsafe commands.”

Engineering a Safer World, Leveson, 2012

. 4

System-Theoretic Process Analysis
(STPA)

1. ldentify Potentially Hazardous Control Actions

and derive the Safety Constraints
2. Determine how Unsafe Control Actions could

OCCuUr

@e
‘0:'0.
_W; Engineering a Safer World, Leveson, 2012 pe
36

The Door Sub-system Process Models

OpenDoor
CloseDoor

v

Actuator

Controller

Process Model
Door Position

-- Locked Open

-- Locked Closed

-- Opening

-- Closing

-- Unknown

Human Operator

Door

Door is Locked Open
Door is Locked Closed

Sub-system

Process Model
Landing Gear
-- Extended/ing
-- Retracted/ing
-- Unknown

Extend
Retract

o

Sensor
Controlled Process
Se,
Sos

@7

Step I: Identify Potentially Hazardous Control
Actions and Derive Safety Constraints

Controller Not Providing Providing Wrong Timing or | Stopped too
Action Causes Hazard Causes Hazard Order Causes soon/Applied
Hazard too long

Open Door Cannot extend Not Hazardous Not Hazardous Damage to
Landing Gear for Landing Gear/
landing Not Hazardous

Close Door Not Hazardous Damage to Damage to Not Hazardous/

Landing Gear Landing Gear Not Hazardous
Safety Constraints

1. If the Landing Gear is Extending, the Door must be Locked Open
2. If the Landing Gear is Retracting, the Door must be Locked Open

3. A “Close Door” command must only be issued if the Landing Gear is Locked Up
or Locked Down

4. An “Open Door” command must only be issued if the Landing Gear is Locked Up
or Locked Down o,

§

SEVENTH FRAMEWORK
mmmmmmmmm @:s

Deriving the Formal Safety Constraints

* Natural Language Constraints developed systematically by
the Domain Experts

1. If the Landing Gear is Extending, the Door must be Locked Open
2. If the Landing Gear is Retracting, the Door must be Locked Open
3. A “Close Door” command must only be issued if the Landing Gear is Locked Up or

Locked Down
4. An “Open Door” command must only be issued if the Landing Gear is Locked Up or

Locked Down
Formal, Event-B Safety Constraints
— Derived systematically from the Natural Language Descriptions

— Linked to Requirements
* ProR

Deriving the Formal Safety Constraints

* Natural Language Constraints developed systematically by

the Domain Experts

» event Close

where
@grd1 gearstate € {locked_down, locked_up}

@grd2 doorstate € {opening, locked_open}

 Formal, Event-
— Derived syste

— Linked to Req

* ProR then
@actl doorstate = closing o

end

@0

4

SEVENTH FRAMEWORK
PROGRAMME

The Model Extended FSM

G locked_up

D locked_closed CompleteClose

— —
G locked_up G locked_up
D opening D closing

CompleteOpen

G locked_up
D locked_open -

Complete Retract
Extend Extend

G retracting

G extending
D locked_open

D locked_open
Retract

CompleteExtend Retract

—
G locked _down
D opening

G locked_down
D locked_open
CompleteOpen

Close

‘
G locked_down
D closing

G locked_down o
D locked_closed

N ||| —
SEVENTH FRAMEWORK
PROGRAMME 41

CompleteClose

Refinement: Introducing the Handle and Timing

G lockedup

D Iocked:closed

" G lockedup *

D closing_

Close

H DOWN __ Glockedup
D locked_open
H UP

CompleteOpen

D locked_open
H DOWN
D locked_open
H UP
Extend

Extend

D locked_open Retract
H DOWN

D Iocked:oen
H UP

CompleteExtend

"G locked_down

[5) Iocked:oen Idle

D openina
D closin_

H DOWN
@ G locked_down -
CompleteClose D locked closed @

H DOWN [}

B o] —
SEVENTH FRAMEWORK
PROGRAMME 42

Refinement: Introducing the Handle and Timing

* Measure Coverage (MC/DC) wn
 all the guards of all the events
can be set independently to ot ¢

FALSE for all states

Refinement: The Component View
Architecture-Level

gear_extended/
gear_retracted

<
Controller
door_open/
door_closed
€ Landing
Gear
Sub-system

open/close

e
. ~
‘“‘b.

@

Refinement: The Component View
Architecture-Level

gear_extended/
gear_retracted

Formal Shared Event Decomposition

Further refinement/implementation of the Controller
* FMI-based Multi-simulation

ADVANCE in Railway and Smart Grids

« WP1: ADVANCE in Railway Interlocking (Alstom)
— Requirements and hazard analysis

— Modelling
— Model visualisation
— Verification and proof
e WP2: ADVANCE in Smart Grids (Selex, Critical
Software)
— Requirements traceability
— Modelling

— Verification and proof
— Application of FMI-based co-simulation -

"‘U".

Role of ADVANCE in Certification

Contributions to stages of EN50129 certification (Rail sector)

* Hazard Analysis:

— STPA
Safety requirements specification:

— Event-B modelling
* Requirements verification:
— Traceability, formal verification, co-simulation

* Architecture Specification:
— Refinement + decomposition

* Interface hazard analysis:
— Verification and logging of decomposition

e System validation:
— Tests derived from models providing functional coverage
— Verification and validation reports o,
@

SEVENTH FRAMEWORK
PROGRAMME

ADVANCE in Aerospace Certification

Supports DO-254/178C flows for design assurance
of airborne electronic hardware and software

 DO-331 addressing Model-based development
and verification

 DO-333 addressing Formal Methods to
complement testing

e Combines formal and simulation-based
verification with MC/DC coverage closure

* Traceable model-based development and
verification from conception to certification

-

=

Important Messages

e System assurance can be strengthened
— using systematic processes and verified design

* Role of systematic requirements and safety analysis

— Structures to focus the analysis
— Path to formalisation
* Role of formal modelling and refinement:

— increase understanding, decrease errors
— manage complexity through multiple levels of abstraction

Role of verification and tools:
— improve quality of models (validation + verification)

— make verification as automatic as possible, pin-pointing errors
and even suggesting improvements
0“

. 4

