
Project ADVANCE
Grant Agreement 287563

“Advanced Design and Verification Environment for
Cyber-physical System Engineering”

ADVANCE Report

Tutorial on ADVANCE Safety Analysis
Process

John Colley, University of Southampton

25 November 2014

http://www.advance-ict.eu

http://www.advance-ict.eu

1 Introduction

This report provides an overview of the ADVANCE process flow, combining
formal modelling with requirements analysis and safety analysis, a process
which has now been applied to both industrial case studies. We present
a tutorial to guide the user through the ADVANCE process flow covering
STPA-based safety analysis, formal modelling and refinement in Event-B,
verification and testing. We have chosen the landing gear case study as
the basis for this ADVANCE process tutorial because it typifies the kind
of safety-critical system that ADVANCE addresses, is easy to understand
without necessarily being a domain expert and a comprehensive, well-defined
set of requirements is available in the public domain [BW14].

2 Requirements and Safety Analysis

In the ADVANCE process, requirements and safety analysis are closely inte-
grated. We consider the requirements systematically in terms of the

• Monitored Phenomena

• Controlled Phenomena

• Commanded Phenomena

• Mode Phenomena

The Controlled Phenomena

It is the Controlled Phenomena which provides the link to the safety analysis
process. Consider the requirements for the Door Sub-system of the aircraft
landing gear.

• The Controller will open the Doors when the Pilot moves the Lever to
Extend or Retract the Landing Gear

• The Controller will then close the Doors when the Landing Gear is fully
Extended or Retracted

• The Doors will remain open while the Landing Gear is Extending or
Retracting

2

The ADVANCE process introduces safety analysis at the very beginning,
to ensure that safety considerations are addressed as early as possible. We
use SystemTheoretic Process Analysis (STPA) [Lev12] which is performed in
two phases.

• Identify Potentially Hazardous Control Actions and derive the Safety
Constraints

• Determine how Unsafe Control Actions could occur

Identifying Potentially Hazardous Control Actions

The landing gear system has effectively two controllers: the pilot, who has
a high-level view of the position of the landing gear, according to the posi-
tion of the extend/retract handle in the cockpit, and the digital controller,
which controls the position of the doors, using the actuators, according to
the position of the pilot handle and the landing gear. The digital controller
monitors the position of the doors and updates the state of its internal pro-
cess model using the sensors. If the sensor values are inconsistent with the
process model, the controller can notify the pilot of a potential system failure.
The process models are shown in Figure 1 below.

3

Controller

 Process Model
Door Position

 -- Locked Open
 -- Locked Closed

-- Opening
-- Closing

 -- Unknown

Human Operator

 Process Model
Landing Gear

 -- Extended/ing
 -- Retracted/ing

 -- Unknown

Door
Sub-system

Actuator Sensor

OpenDoor
CloseDoor

Extend
Retract

Controlled Process

Figure 1: The Landing Gear Doors Process Model

For each of the controller door actions, Open Door and Close Door, we
identify in a systematic way, how these actions can be hazardous as shown
in Figure 2.

Controller	

Ac+on	

Not	
 Providing	

Causes	
 Hazard	

Providing	

Causes	
 Hazard	

Wrong	
 Timing	
 or	

Order	
 Causes	

Hazard	

Stopped	
 too	

soon/Applied	

too	
 long	

Open	
 Door	
 Cannot	
 extend	

Landing	
 Gear	
 for	

landing	

Not	
 Hazardous	
 Damage	
 to	

Landing	
 Gear	

Damage	
 to	

Landing	
 Gear/	

Not	
 Hazardous	

Close	
 Door	
 Not	
 Hazardous	
 Damage	
 to	

Landing	
 Gear	

Damage	
 to	

Landing	
 Gear	

Not	
 Hazardous/	

Not	
 Hazardous	

Figure 2: Safety Analysis for Door Sub-system

The controller not opening the door when it should is hazardous as the
landing gear cannot be extended for landing, but opening the door when it
shouldn’t is not hazardous. Opening the doors after the landing gear has

4

begun to extend or retract is hazardous, as is failing to complete the opening
procedure. A similar analysis is then performed on the Close Door action.

From this table we are able to derive the natural language safety con-
straints.

1. If the Landing Gear is Extending, the Door must be Locked Open

2. If the Landing Gear is Retracting, the Door must be Locked Open

3. A Close Door command must only be issued if the Landing Gear is
Locked Up or Locked Down

4. An Open Door command must only be issued if the Landing Gear is
Locked Up or Locked Down

3 Modelling the Landing Gear System

The Abstract Model

We begin with an abstract model of the system which represents just the
gearstate. The landing gear may be locked up, locked down or, because we
wish to model the temporal nature of the system, extending or retracting.
Four events define the transitions between these states: Extend and Retract
represent a requested operation, initiated by the pilot, and CompleteExtend
and CompleteRetract are observed when the requested operation is com-
pleted.

The abstract model is illustrated by the state machine shown in Figure
3 below. Notice that when the landing gear is in the process of extending or
retracting, the pilot can at any time move the landing gear handle position
to reverse the command.

5

G locked_up

G extending

G locked_down

Extend

CompleteExtend

G retracting

Retract

Extend

CompleteRetract

Retract

Figure 3: The Abstract Model

6

The First Refinement

We now introduce the door and establish formally the relationship between
the gear and the door from the natural language safety constraints.

1. If the Landing Gear is Extending, the Door must be Locked Open

2. If the Landing Gear is Retracting, the Door must be Locked Open

3. A Close Door command must only be issued if the Landing Gear is
Locked Up or Locked Down

4. An Open Door command must only be issued if the Landing Gear is
Locked Up or Locked Down

The first two safety constraints are represented by the invariant inv3
below.

inv3 : gearstate ∈ {extending, retracting}⇒ doorstate = locked open

The second two safety constraints are modelled by the guards grd1 in the
Open and Close events.

event Open =̂

when

grd1 : gearstate ∈ {locked down, locked up}
grd2 : doorstate ∈ {closing, locked closed}

then

act1 : doorstate := opening
end

event Close =̂

when

grd1 : gearstate ∈ {locked down, locked up}
grd2 : doorstate ∈ {opening, locked open}

then

act1 : doorstate := closing
end

Running the Rodin automatic provers establishes that the formal system-
level safety constraints are preserved by the refinement. We can represent
the refined model as a state machine in terms of the two variables gearstate
and doorstate as shown in Figure 4 below.

7

S7

G locked_up
D locked_closed

G locked_up
D opening

G locked_up
D locked_open

G extending
D locked_open

G locked_down
D closing

G locked_down
D locked_open

G locked_down
D locked_closed

G retracting
D locked_open

G locked_up
D closing

G locked_down
D opening

Open

CompleteOpen

Extend

CompleteExtend

Close

CompleteClose

CompleteClose

Close

Open

Close

Retract

Extend
Complete Retract

Retract

CompleteOpen

Open Open

Figure 4: The First Refinement

8

The Second Refinement

In this refinement, we introduce the pilot handle and model the synchronous
timing and synchronisation necessary to represent the concurrency of the
system. We do not at this stage model actual times or delays but simply
introduce the notion of a tick. For any given tick of the system, the handle
may or may not be moved; the digital controller responds to any handle
change in the next tick.

To represent the latency of the system in an abstract way, we introduce
the event Idle as shown in the extended finite state machine, defined in terms
of the three variables gearstate, doorstate and handle, in Figure 5 below.

Only 12 of the 32 possible states for (gearstate;doorstate;handle) are valid.
To ensure that the system never makes a transition to one of the 20 invalid
states we introduce and prove a set of invariants. For instance, invariant
inv10 below represents the fact that the door cannot be opening if the gear
is locked up and the handle is up.

inv10 : ¬(gearstate = locked up ∧ doorstate = opening ∧ handle = UP)

We now run the ADVANCE model checker to ensure that all the valid
states of the model are reachable and there is no deadlock. At this high level
of abstraction an exhaustive model check can be completed in seconds.

9

S7

G locked_up
D opening
H DOWN

G locked_up
D locked_open
H DOWN

G locked_up
D locked_closed
H UP

G extending
D locked_open
H DOWN

G locked_down
D closing
H DOWN

G locked_down
D locked_open
H DOWN

G locked_down
D locked_closed
H DOWN

G retracting
D locked_open
H UP

G locked_up
D closing
H UP

G locked_down
D opening
H UP

Open

CompleteOpen

Extend

CompleteExtend

Close

CompleteClose

CompleteClose

Close

Open

Close

Retract

Extend

Complete Retract

Retract

Open
Open

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

G locked_down
D locked_open
H UP

G locked_up
D locked_open
H UP

Close

CompleteOpen

Extend

Close

Retract

Close

Figure 5: The Second Refinement

Introducing the Timing Deadlines

We now introduce the concrete signals between the Controller and the landing
gear sub-system as shown in Figure 6 below.

10

Controller	

Landing
Gear

Sub-system

gear_extended/
gear_retracted

open/close

door_open/
door_closed

Figure 6: The Component View

The landing gear requirements detail a set of timing constraints for each
of the mechanical and hydraulic procedures of the extending and retracting
sequences. We introduce these constraints, systematically using refinement,
as deadlines which refine the abstract Idle events.

Rather than idling indefinitely, the model sets an abstract timer count
which is decremented if the confirmation signal from the landing gear sub-
system has not been received. If confirmation is received before the deadline
expires, the operation can complete. If, however, the count reaches zero
without confirmation, the controller moves to a fail state and switches on
a warning light on the control panel. The general refinement mechanism is
shown in Figure 7 below.

Proving Liveness

Now that model behaviour is sufficiently constrained by the deadlines, we
can prove liveness of the system. For each of the 12 valid states as shown
in Figure 5 above we introduce an invariant to prove that at least one event
is always enabled in that state. For instance, in the state (locked down,
locked open, DOWN), one of the events Close or Retract is always enabled.
Similarly, in state (locked down, locked open, UP), one of the events Close or
Retract is also always enabled. We describe this using a single theorem.

11

INITIATE

IDLE

COMPLETE

INITIATE

WAIT

COMPLETE

F

F, count > 0

T

FAIL

F, count = 0

⊆

Figure 7: Introducing the Deadlines

We write the theorem as an implication, with the current state on the
left hand side and the disjunction of the guards of the two enabled events on
the right hand side as shown below in invariant inv19.

inv19 : (gearstate = locked down ∧ doorstate = locked open) ⇒
(gearstate ∈ {extending, locked down} ∧
doorstate = locked open ∧ handle = UP) ∨

(gearstate = locked up ∧
doorstate ∈ {opening, locked open} ∧ handle = UP) ∨

(gearstate = locked down ∧
doorstate ∈ {opening, locked open} ∧
handle = DOWN)

Ten theorems describe the liveness properties of the system and are proved
automatically by the Rodin theorem provers.

4 Measuring Coverage

The Modified Condition/Decision Coverage (MC/DC) measure introduced in
ADVANCE can be used to verify, at every refinement level, that the guards
of each event can be independently set to FALSE. The facility is also used
at every refinement stage to ensure that any vacuous guards are eliminated.

5 Model-based Test Generation

We are now in a position to generate tests from the model that can be used
to verify the implementation. Because, the pilot is free to move the handle

12

backwards and forwards with complete freedom, we now need to constrain
the model behaviour to ensure that we can generate a test suite of tractable
size. We introduce, in a refinement a ghost variable, handle toggle count
which limits the number of times the handle can change position. We can
then restrict the value of this count in the ADVANCE test generation tool
to limit the scope of the model search space.

For instance, restricting the count to two, the pilot can only move the
handle twice and a total of 48 tests are generated. If the count is restricted
to three, 852 tests are generated. In a structured regression suite mechanism,
these tests sets can be run first to detect any gross errors. For more thorough
testing, the tests generated for higher handle counts can be run - setting the
count to 5, for instance, results in 15400 tests. The coverage obtained by each
set of tests is measured by using the ProB simulator to run the generated
tests against the model.

6 Decomposition

Formal, shared event decomposition is now used to separate the Controller
model from its environment for further refinement towards implementation.
The decomposed Controller model can also be converted into a Functional
Mockup Unit (FMU) for simulation in a continuous representation of the
landing gear environment.

References

[BW14] Frédéric Boniol and Virginie Wiels. The landing gear system case
study. In ABZ 2014: The Landing Gear Case Study, pages 1–18.
Springer, 2014.

[Lev12] N.G. Leveson. Engineering a safer world: Systems thinking applied
to safety. MIT Press (MA), 2012.

13

	Introduction
	Requirements and Safety Analysis
	Modelling the Landing Gear System
	Measuring Coverage
	Model-based Test Generation
	Decomposition

