
Project ADVANCE
Grant Agreement 287563

“Advanced Design and Verification Environment for
Cyber-physical System Engineering”

ADVANCE Report

Guidelines for Decomposition of Control
System Models in Event-B

Michael Butler, University of Southampton

25 November 2014

http://www.advance-ict.eu

http://www.advance-ict.eu

1 Introduction

In this report we look at how a system-level Event-B model of a system
consisting of multiple physical devices under some coordinated control may
be decomposed into sub-models, where these sub-models will represent sep-
arate architectural components including the devices, the controller and the
signalling mechanisms between them. A closed system model in Event-B in-
cludes variables representing the software-based controller (‘the controller’)
plus the physical entities in the environment (‘the environment’) that are
monitored and controlled by the controller. At the abstract modelling level
it is convenient to allow all variables to be available globally so that a control
decision that affects one device can depend on the state of another device,
e.g., the landing gear door should only be extending or retracting if the gear
door is open. At the more detailed design level we need to model the fact
that decisions about which environment phenomenon to control are made by
the controller. In order to make control decisions (i.e., decisions that control
a phenomenon in the environment) the controller typically needs to know the
values of the environment variables. At implementation level, the controller
will have internal state representing its model of the state of the physical de-
vices received via sensors and signals. The aim is to refine the closed model
sufficiently that it may be decomposed into a model of the controller, the en-
vironment and the signalling mechanisms through which the controller and
the environment interact. In order that the controller has enough informa-
tion to make a decision, we use refinement to introduce a controller version of
each environment variable which will be included in the controller model at
decomposition. In an abstract model, a control decision may depend directly
on an environment variable. In a refinement, instead of basing a control
decision on the environment variable directly, the control decision will be
based on the controller version of the variable. The environment variable
and its corresponding controller version do not need correspond all the time.
However, they do need to correspond when the controller makes a control
decision; otherwise the refinement will be unsafe.

We start by presenting a standard technique for syntactically partition-
ing an Event-B model into several sub-models. An important property of
the decomposition technique is that the resulting sub-models can be refined
independently of each other. Our decomposition technique will be used to
partition the behaviour of agents in a distributed architecture into separate
models, including separate models of signalling mechanisms. In order to be
able to decompose a model, the model needs to contain enough structure for
the variables to be partitioned amongst the sub-models. For example, the
model needs to contain a controller’s version of an environment variable and

2

needs to contain signalling variables. We present a refinement pattern for
introducing variables and events representing the controller’s management of
its version of the environment variables. We also present a refinement pat-
tern for introducing representations of the signalling mechanism. To manage
the complexity of models representing multiple devices, we show how the
refinement and decomposition can be applied in a stepwise manner.

2 Decomposing machines

In this section, we describe a parallel composition operator for Event-B ma-
chines called shared event composition [But09]. Machines M and N must not
have any common state variables in order to be composed. Instead they in-
teract by synchronising over shared events (i.e., events with common names).
They may also exchange parameter values on synchronisation. We look first
at basic composition of events and later look at composition of events with
shared parameters. We show how model composition may be applied in
reverse in order to decompose system models into subsystem models.

2.1 Parallel Composition of Machines

In general, an event has the form

ev = any x where G then S end

where x is a list of event parameters, G is a list of guards (implicitly con-
joined) and S is a list of actions on the machine variables (implicitly simul-
taneous). We write G ∧H to join two lists of guards and S ‖ T to join two
lists of actions.

To achieve the synchronisation effect between machines, shared events
from M and N are composed to form an event that is globally enabled
when both constituent events are locally enabled and that has the effect of
executing the actions of the constituent events in parallel. Assume that m
(resp. n) represents the state variables of machine M (resp. N). Variables
m and n are disjoint. We compose an event from M with an event from N
with the following form:

evM = any y where G(y,m) then S(y,m) end

evN = any z where H(z, n) then T (z, n) end

3

The parallel composition of these events is a single event defined as follows:

evM ‖ evN =̂ any y, z where
G(y,m) ∧H(z, n)

then
S(y,m) ‖ T (z, n)

end

This form of composition models synchronisation: the composite system en-
gages in a joint event when both systems are willing to engage in that event.
The parallel composition of machines M and N is a machine constructed
by composing shared events of M and N and leaving independent events
independent. The state variables of the composite system are formed by the
union of the variables of M and N .

As an illustration of this, consider machines V 1 and W1 of Figure 1. The
machines work on independent variables v and w respectively. Both machines
may be composed using an Event-B composed machine component as shown
in Figure 2. Here VW1 is defined as a machine that composes V 1 and V 2
with events of VW1 being defined as compositions of events of V 1 and W1.
The A event of the composed machine is defined as the A event of V 1. This
means that, from the point of view of V 1, A is an independent event in the
composition since is not executed jointly with any events of W1. Similarly
for event C of the composition. The B event of the composed machine is
defined as the composition of the B-events of V 1 and W2. This means that
B becomes a joint event in the composition that is executed jointly by V 1
and W1. The initialisations of V 1 and W1 are also combined to form the
initialisation of VW1.

The expansion of the composed machine is shown in Figure 3. The A
and C events are copied from V 1 and W1 respectively. The B event of the
expanded machine is formed by combing the guards and the actions of the
B events in both V 1 and W1. Note in practice it is not necessary to expand
a composed machine. We include the expansion here to help the reader
understand the effective meaning of the composed machine.

2.2 Synchronous Decomposition

We have presented VW1 as having been formed from the composition of V 1
and W1. We can view the relationship between these machines in another
way. Let us suppose we had started with a normal machine, such as the
expanded version of VW1 of Figure 3, and decided that we wish to decompose
it into subsystems. The diagram in Figure 4(a) illustrates the dependencies

4

machine V1

variables v

invariants v ∈ N
init v := N

event B =̂

when

grd1 : v > 0
then

act1 : v := v − 1
end

event A =̂

begin

act1 : v := N
end

(a) Machine V 1

machine W1

variables w

invariants w ∈ N
init w := 0

event B =̂

when

grd2 : w < M
then

act2 : w := w + 1
end

event C =̂

when

grd1 : w > 0
then

act1 : w := w − 1
end

(b) Machine W1

Figure 1: Machines to be composed in parallel.

composed machine VW1

includes V1, W1

init V 1.INIT ‖ W1.INIT

event A =̂ V 1.A

event B =̂ V 1.B ‖ W1.B

event C =̂ W1.C

Figure 2: Composition of V 1 and W1.

5

machine VW1

variables v, w

invariants v ∈ N, w ∈ N
init v := N, w := 0

event A =̂

begin

act1 : v := N
end

event B =̂

when

grd1 : v > 0

grd2 : w < M
then

act1 : v := v − 1

act2 : w := w + 1
end

event C =̂

when

grd1 : w > 0
then

act1 : w := w − 1
end

Figure 3: Expansion of VW1.

6

!"#$%&'

()*+),-#&' !" #"

.' /'0'

(a) Variable access by events in VW

!"#$%&'

()*+),-#&' !" #"

.' /'0'

(1' 21'

(b) Split events and variables

Figure 4: Illustration of decomposition a machine

between events and variables in the machine VW1. For example, the line
from the box indicating event A to the circle indicating variable v represents
the fact that event A depends on v, i.e., it may read from and assign to v.
The diagram shows that B is the only event that depends on both v and w
suggesting that B needs to be a shared event if we are to partition v and w
into separate subsystems. This decomposition is illustrated in Figure 4(b)
where variables v and w of VW1 are partitioned into subsystems V 1 and
W1 respectively, A is an event of subsystem V 1, C is an event of subsystem
W1 and B is an event shared by both subsystems.

Event B of system VW1 is partitioned into two parts, one of which will
belong in W1 and the other in W1. Event B has an important characteristic
that allows it to be partitioned in this way. The guards and actions depend
either on v or on w but not both. So, guard grd1 and action act1 both
depend on v only, while guard grd2 and action act2 both depend on w. This
localisation of variable dependency allows us to easily partition the guards
and actions of the B event of VW1 into the separate B events of V 1 and
W1 respectively.

2.3 Composition with shared event parameters

We extend the event composition operator to deal with shared event param-
eters. Events to be fused must depend on disjoint machine variables but they
may have common parameters and these common parameters are treated as
joint parameters in the composed event. In the following, x represents pa-
rameters that are joint across events and y and z are local to their respective
events:

evM = any x, y where G(x, y,m) then S(x, y,m) end

evN = any x, z where H(x, z, n) then T (x, z, n) end

7

The composition of these, defined as follows, makes x a single parameter of
the composed event:

evM ‖ evN =̂ any x, y, z where
G(x, y,m) ∧H(x, z, n)

then
S(x, y,m) ‖ T (x, z, n)

end

We illustrate the use of shared parameters by extending the machine of
Figure 3 slightly. Assume that instead of increasing v and decreasing w by
1 in the B event, we modify both v and w by a value i. To do this we give
the B event a parameter i which is used to modify the variables as follows:

event B =̂

any i

where

grd1 : 0 ≤ i ≤ v

grd2 : w < N
then

act1 : v := v − i

act2 : w := w + i
end

Now we partition the guards and actions of B into those that depend on
v and those that depend on w giving the following events:

8

event B =̂

any i

where

grd1 : 0 ≤ i ≤ v
then

act1 : v := v − i
end

event B =̂

any i

where

grd1 : i ∈ Z

grd2 : w < N
then

act1 : w := w + i
end

The shared parameter i means that both of these events will agree on the
amount by which v and w are respectively decreased and increased when they
synchronise. In the left hand sub-event, the guard grd1 constraints the value
of the parameter based in the state variable v. In the right-hand sub-event,
the value of i is not constrained other than a typing guard (i ∈ Z). This
means that the left-hand sub-event can be viewed as outputting the value i
while the right-hand sub-event accepts the value i as an input.

2.4 Independent refinement of subsystems

Shared event composition of Event-B machines is also monotonic w.r.t. re-
finement. This means that when we decompose a system into parallel sub-
systems, the subsystems may be refined and further decomposed indepen-
dently [But09]. This is a major methodological benefit, helping to modularise
the design and proof effort.

2.5 Asynchronous Decomposition

Instead of decomposing a model into two subsystems that synchronise di-
rectly with each other, we may decompose into three subsystems as illustrated
in Figure 5. In this decomposition the two agents do not synchronise directly
with each other. Instead they interact indirectly through a signalling sub-
system. Each agent synchronises directly and separately with the signalling
subsystem and this is used to model asynchronous communication between
the agents. This form of asynchronous communication via signals can be

9

A"

v"

B" C"

m"

D"

w"

Agent"1" Signalling" Agent"2"

Figure 5: Decomposition with asynchronous middleware

used to model many distributed systems, including cyber-physical systems
consisting of physical and controller components. In order to be able to
decompose in this way, we will need to apply refinement steps that enable
the agents to be decomposed into asynchronous subsystems and this is the
subject of the next section.

3 Introducing Controller version of Environ-

ment Variables

We will first illustrate the pattern for introducing controller versions of envi-
ronment variables through an example of a very simple landing gear controller
for an aircraft. In this model the landing gear is either up or down. The air-
craft also has a door protecting the landing gear compartment and a safety
requirement is that the gear may only make a transition from up to down or
vice versa when the door is open. The Event-B model is shown in Figure 6.
The model contains a variable for the door state and a variable for the gear
state. It also contains four events for opening and closing the door and for
raising and lowering the gear. The door events are very simple and are in-
dependent of the gear state. The gear events include a guard to ensure that
the gear only changes when the door is open, capturing the above mentioned
requirement.

Our aim is to decompose this system model to an architecture consisting
of the following components:

• A model of the (physical) door

• A model of the (physical) landing gear

• A model of the controller

• A model of the signalling between the door and the controller

• A model of the signalling between the landing gear and the controller

10

machine SimpleLG1

variables doorstate, gearstate

invariants

inv1 : doorstate ∈ {closed, open}
inv2 : gearstate ∈ {up, down}

events

init begin

act1 : doorstate := closed
act2 : gearstate := down

end

event DoorOpen =̂

when

grd1 : doorstate = closed
then

act1 : doorstate := open
end

event DoorClose =̂

when

grd1 : doorstate = open
then

act1 : doorstate := closed
end

event GearUp =̂

when

grd1 : gearstate = down
grd2 : doorstate = open

then

act1 : gearstate := up
end

event GearDown =̂

when

grd1 : gearstate = up

grd2 : doorstate = open
then

act1 : gearstate := down
end

Figure 6: Simple landing gear.

11

OpenDoor(

OpenDoorStartC(
doorstateC:=opening-

OpenDoorE(
doorstate:=open-

OpenDoorFinC(
doorstateC:=open-

Figure 7: Refining the OpenDoor Event

To achieve this, we need to introduce events and variables to represent the
controller’s behaviour and state explicitly. We will focus on the door-opening
behaviour initially. In the refinement the controller should initiate the open-
ing of the door which in turn will trigger the environment to open the door.
After the door has opened in the environment, the controller should register
this change in its internal state. To achieve this we introduce a new vari-
able doorstateC representing the controllers version of the doorstate variable.
We also introduce new events to represent the controller triggering the door
transition and representing the controller registering that the transition has
taken place in the environment.

The relationship between the door opening events is illustrated by the
ERS (Event Refinement Structure) diagram in Figure 7. Here the single
OpenDoor event in the abstract model is replaced by three events in the
refinement and these three refinement events occur in the sequential order
shown in the diagram (left to right). We use a naming convention to dis-
tinguish events of the controller (ending in ‘C’) from events of the environ-
ment (ending in ‘E’). The dashed lines indicate that OpenDoorStartC and
OpenDoorFinC are new events (refining skip). The solid lines indicates
that OpenDoorE is a refinement of the abstract OpenDoor event. When
the controller initiates the opening of the door (OpenDoorStartC event), the
controller variable doorstateC is assigned the value opening meaning the con-
troller does not yet know whether the door is indeed open. The environment
variable doorstate is then assigned the value open by the environment event
OpenDoorE . After the door has opened in the environment, the controller
variable is updated by the OpenDoorFinC event as the controller now knows
that the door is open in the environment. The Event-B specification of the
door opening events is shown in Figure 8.

In the events of Figure 8 there is still a direct dependency between the
controller events and the environment events: environment event DoorOpenE
is guarded by a condition on the controller variable doorstateC and similarly
controller event DoorOpenFinC is guarded by a condition on the environment

12

event DoorOpenStartC =̂

when

grd1 : doorstateC = closed
then

act1 : doorstateC := opening
end

event DoorOpenE =̂

refines DoorOpen

when

grd1 : doorstate = closed
grd2 : doorstateC = opening

then

act1 : doorstate := open
end

event DoorOpenFinC =̂

when

grd1 : doorstate = open
grd2 : doorstateC = opening

then

act1 : doorstateC := open
end

Figure 8: Refined Door Opening Events.

13

variable doorstate. We will make this dependency indirect in the next section
by introducing an explicit signalling mechanism between the controller and
the door.

Before this we turn our attention to the GearUp and GearUp events. In
the abstract model (Figure 6), both these events are guarded by the value of
doorstate directly. In the refinement we replace doorstate by doorstateC as
shown in Figure 9. This represents the fact that the decision about whether
it is safe to move the landing gear is based on the controllers model of the
state of the gear rather than the actual state of the gear in the environment.
To justify the correctness of this replacement of the environment variable by
the controller variable, we need to provide and verify the invariant shown
in Figure 6 that specifies that the refined grd2 entails the corresponding
abstract grd2 for both events. This invariant captures the key property of
doorstateC : when its value is used to make a control decision about the
landing gear, then its value corresponds to the value of the environment
variable that it shadows. There are states when doorstateC and doorstate
differ, e.g., when doorstateC=opening, but that does not matter since, in
those states, the value of doorstateC is not used to make a control decision
about the landing gear.

All of the proof obligations for the refined model of Figures 8 and 9 are
proved (automatically) by the Rodin provers provided inv3 of Figure 9 is
included in the model. Note that the following invariant about the door
closed state also holds, though it is not required to prove the refinement
(because the gear control events are not enabled when the door is closed):

doorstateC = closed ⇒ doorstate = closed

4 Introducing Explicit Signalling

Consider again the door opening events of Figure 8: environment event
DoorOpenE is guarded by a condition on the controller variable doorstateC
and similarly controller event DoorOpenFinC is guarded by a condition on
the environment variable doorstate. In this section we introduce an explicit
signalling mechanism between the controller and the door. The signalling is
a shared resource between the door and the controller and will be used to
replace the direct dependency between the controller events and environment
variable (and between the environment event and controller variable).

First we present a general pattern for introducing signalling between pairs
of events. Suppose we have a pair of events Ev1 and Ev2 where execution of
Ev1 may result in Ev2 being enabled. We wish to be able to decompose the

14

invariants

inv3 : doorstateC = open ⇒ doorstate = open

event GearUp =̂

refines GearUp

when

grd1 : gearstate = down
grd2 : doorstateC = open

then

act1 : gearstate := up
end

event GearDown =̂

refines GearDown

when

grd1 : gearstate = up

grd2 : doorstateC = open
then

act1 : gearstate := down
end

Figure 9: Refined Gear Movement Events.

15

Abstract events:

Ev1 =̂ when G1 then A1 || v1 := E end

Ev2 =̂ when v1 = E ∧G2 then A2 end

Refined events with signalling:

Ev1 =̂ when G1 then A1 || v1 := E || sig := SIG end

Ev2 =̂ when sig = SIG ∧G2 then A2 || sig := noSIG end

inv : sig = SIG ⇒ v1 = E

Figure 10: Pattern for introducing signalling.

model so that Ev1 appears in one agent, Agent1, and Ev2 appears in another
agent, Agent2. We also require that Agent1 and Agent2 do not synchronise
with each other directly but interact indirectly through a signalling agent (as
in Figure 5).

Figure 10 provides a schematic representation of the way in which a sig-
nalling mechanism may be introduced as a refinement of this pair of events.
In Figure 10 the abstract event Ev1 sets variable v1 to the value E. Because
event Ev2 is guarded by v1 = E, execution of Ev1 may result in Ev2 being
enabled. One possibility would be to treat v1 as a resource shared by both
agents. However, assume that we require v1 to be part of Agent1 as it is
used by other events of that agent and not be a shared resource between the
agents. Under these constraints, decomposition of Ev1 and Ev2 into two
non-synchronising agents is not possible because Ev2 depends on variable
v1. We overcome this by introducing a signalling variable sig that acts as a
shared resource between both agents. In the refined events of Figure 10, Ev1
sets the signal variable to a value that enables Ev2 and the abstract guard
v1 = E of Ev2 is replaced by a guard on the signal variable. Thus, in the
refinement, the sequential dependency between Ev1 and Ev2 is achieved via
the shared sig resource rather than via the variable v1 intended for Agent1.
The Ev2 event also resets the signal variable to a value representing the
absence of a signal (noSIG) indicating that Agent2 has received the signal.

To ensure the correctness of this refinement pattern, an invariant is re-
quired that specifies a relationship between the value of the signal variable
and variable v1 as shown in Figure 10.

In the case that there are multiple sequentially dependent pairs of events

16

from Agent1 to Agent2, then we can use the same signalling variable for those
event pairs. For example, in the refined landing gear model, DoorOpenE
depends on DoorOpenStartC and DoorCloseE depends on DoorCloseStartC.
We can group these pairs because

• the signalling is in the same direction (from Controller to Door), and

• the pairs are mutually exclusive, i.e., the controller will not initiate door
opening and closing at the same time.

If there is sequential dependency between the agents in the other direction,
as is often the case, then we introduce a separate shared signalling variable
using the same refinement pattern.

We apply these signalling guidelines and pattern to the refined landing
gear model. The refinement step that introduces the signalling has two ad-
ditional variables, one to represent actuation signals from the controller to
the door and another to represent confirmation signals back from the door
to the controller:

inv1 : todoorsig ∈ SIGNAL

inv2 : fromdoorsig ∈ SIGNAL

SIGNAL has three possibles values representing (i) no signal present, (ii) a
signal to indicate actuation/confirmation of door opening, and (iii) a signal
to indicate actuation/confirmation of door closing:

axm1 : partition(SIGNAL, {noSIG}, {openSIG}, {closeSIG})

To apply the pattern, we pair and group the events as follows:

Group1: (DoorOpenStartC, DoorOpenE)

(DoorCloseStartC, DoorCloseE)

Group2: (DoorOpenE, DoorOpenFinC)

(DoorCloseE, DoorCloseFinC)

Group1 represents signalling from the controller to the environment which
is achieved using the todoorsig variable. Group2 represents signalling from
the environment to the controller which is achieved using the fromdoorsig
variable.

Based on this grouping, the refined door opening and closing events that
include the signalling are derived by application of the signal-introduction
pattern of Figure 10. The refined door opening events are shown in Figure 11.

17

When the controller initiates the door opening, an openSIG is sent from
the controller to the door by the DoorOpenStartC event. The guard of
the environment event DoorOpenE that refers to the controller variable is
replaced by a signalling guard. Similarly the DoorOpenE event sends an
openSIG signal to indicate the the door is now open and this in turn signals
the DoorOpenFinC event.

4.1 Avoiding signal confusion

Gluing invariants required by the signal-introduction pattern are presented
in Figure 12. Invariants inv3 to inv6 are required because we replace guards
on controller or environment variables by guards on the appropriate signal;
so these invariants describe relations between the value of a signal and the
corresponding controller or environment variable whose value the signal rep-
resents.

The other two invariants of Figure 12 describe conditions under which the
signal variables should have the value noSIG. Invariant inv7 states that both
the to and the from signals cannot have a signal simultaneously, i.e., one of
the two must have the value noSIG. The reason that the system satisfies this
invariant is because of a certain protocol: once the controller has sent a signal
to the door, it does not send another signal until the door has responded.
Later we will see that it is possible to allow for more liberal protocol where
the controller can send another signal without waiting for a response from
the device (e.g., in case of a timeout or in case the previous signal needs to
be overridden).

An interesting question is how does the need for inv7 manifest itself in
terms of proof. Without inv7 it cannot be proved that inv3 is preserved by
DoorOpenFinC : this event sets doorstateC to a value different to opening and
in this case, to preserve inv3, todoorsig should be different from openSIG.
Invariant inv7 together with grd1 of DoorOpenFinC ensure that the value of
todoorsig is different from openSIG. For similar reasons, inv7 is also required
to prove that CloseOpenFinC preserves inv5.

Invariant inv8 states that if the controller believes the door is open or
closed, then there should not be any outstanding signal from the door to the
controller. A state violating this invariant could lead to a hazardous state
where the controller has the wrong view of the door state. The verification
need for inv8 arises from the need to prove that the the controller initiation
events (DoorOpenStartC, DoorCloseStartC) preserve invariant inv7.

All of the proof obligations for the refined model of Figure 11 are proved
(automatically) by the Rodin provers when all the invariants of Figure 12
are included in the model.

18

event DoorOpenStartC =̂

refines DoorOpenStartC

when

grd1 : doorstateC = closed
then

act1 : doorstateC := opening
act2 : todoorsig := openSIG

end

event DoorOpenE =̂

refines DoorOpenE

when

grd1 : doorstate = closed
grd2 : todoorsig = openSIG

then

act1 : doorstate := open
act2 : todoorsig := noSIG
act3 : fromdoorsig := openSIG

end

event DoorOpenFinC =̂

refines DoorOpenFinC

when

grd1 : fromdoorsig = openSIG
grd2 : doorstateC = opening

then

act1 : doorstateC := open
act2 : fromdoorsig := noSIG

end

Figure 11: Door Opening Events with Signalling.

19

invariants

inv3 : todoorsig = openSIG ⇒ doorstateC = opening

inv4 : fromdoorsig = openSIG ⇒ doorstate = open

inv5 : todoorsig = closeSIG ⇒ doorstateC = closing

inv6 : fromdoorsig = closeSIG ⇒ doorstate = closed

inv7 : todoorsig = noSIG ∨ fromdoorsig = noSIG

inv8 : doorstateC ∈ {open, closed} ⇒ fromdoorsig = noSIG

Figure 12: Invariants for Signalling.

4.2 Parameterising the signal events and decomposing
models

Recall from Section 2.2 that in order to decompose a machine, we identify
how the variables should be partitioned amongst the sub-components. Based
on this partition, events that depend on variables in more than one partition
need to be decomposable, that is, each guard and action of an event should
depend only on variables of a single sub-component. Being decomposable
means that an event can be syntactically decomposed into several sub-events,
one for each sub-component on which it depends.

The introduction of the signalling mechansim to the simple landing gear
example means that the events of the model have enough structure to be
able to decompose it into three sub-components as follows:

• Door, with variable doorstate

• Signals, with variables todoorsig, fromdoorsig

• Controller, with variable doorstateC

Each event either depends on variables of Controller and Signals (and not
Door) or on variables of Door and Signals (and not Controller). All of
the events are syntactically decomposable based on this partitioning of the
variables amongst the sub-components.

For example, consider the DoorOpenStartC event of Figure 11: grd1 and
act1 depend on variable doorstateC and can be used to construct an event of
the Controller sub-component while act2 depend on variable todoorsig and
can be used to construct an event for the Signals sub-component. However, a
property of this decomposition of the landing gear model is that the behaviour

20

Abstract event that depends on expression E:

Ev =̂ any x where G(E) then A(E) end

Refined event with additional parameter represent expression E:

Ev =̂ any x, y where y = E ∧G(y) then A(y) end

Figure 13: Pattern for representing expressions as parameters.

of the events in the Signals sub-component depends on particular signal
values (e.g., act2 of DoorOpenStartC depends on the value openSIG). We
would prefer that the behaviour of the signalling mechanism is independent
of the values of the signals since its role is simply to pass signals between the
controller and the door. The behaviour of only the controller and the door
should depend on the signal values.

We can achieve this by introducing the signal value as an explicit parame-
ter of the events, with the value of the signal parameter being determined by
the controller (or the door) and simply used by signalling mechanism without
interpretation. Figure 13 presents a pattern for introducing a parameter to
represent some expression appearing in an event. The figure shows that an
expression E appearing in the guards and events may be abstracted by a
new parameter y by adding a guard y = E and replacing the occurrences of
E by y.

Figure 14 illustrates the result of applying the parameter introduction
pattern to two events of the controller. In both events, a parameter sig
is introduced and a guard added to define the value of sig for the event.
Occurrences of the signal value (i.e., openSIG, closeSIG are replaced by a
reference to sig. The means that the parts of the events that are used to
construct the sub-events for the signalling sub-component are independent
of the value of the signal. Furthermore for both events of Figure 14, the sub-
events for the signalling sub-component are identical, i.e., act2 is the same in
both events. This means that we can use a single sub-event in the signalling
subcomponent to represent the contribution it makes to both the events of
Figure 14.

After introducing the signal values as event parameters we decompose the
model into the three desired sub-models. The controller events DoorOpen-
StartC, DoorOpenFinC, DoorCloseStartC, DoorCloseFinC are syntactically

21

event DoorOpenStartC =̂

refines DoorOpenStartC

any
sig

where

grd1 : sig = openSIG
grd2 : doorstateC = closed

then

act1 : doorstateC := opening
act2 : todoorsig := sig

end

event DoorCloseStartC =̂

refines DoorCloseStartC

any
sig

where

grd1 : sig = closeSIG
grd2 : doorstateC = open

then

act1 : doorstateC := closing
act2 : todoorsig := sig

end

Figure 14: Adding signalling parameters to events.

22

composed machine CompositeLG

refines SimpleLG3

includes Controller, Door, Signals

init Controller.INIT ‖ Door.INIT ‖ Signals.INIT

event DoorOpenStartC =̂
Controller.DoorOpenStartC ‖ Signals.ControllerSendSignal

event DoorOpenE =̂
Door.DoorOpenE ‖ Signals.DoorReceiveSendSignal

event DoorOpenStartC =̂
Controller.DoorOpenfinC ‖ Signals.ControllerReceiveSignal

event DoorCloseStartC =̂
Controller.DoorCloseStartC ‖ Signals.ControllerSendSignal

event DoorCloseE =̂
Door.DoorCloseE ‖ Signals.DoorReceiveSendSignal

event DoorCloseStartC =̂
Controller.DoorClosefinC ‖ Signals.ControllerReceiveSignal

event GearUp =̂ Controller.GearUp

event GearDown =̂ Controller.GearDown

Figure 15: Composition of controller, door and signals.

split into sub-events for the controller and sub-events for the signalling com-
ponent. Likewise the door DoorOpenE, DoorCloseE are syntactically split
into sub-events for the controller and sub-events for the signalling component.
The composed machine of Figure 15 shows how the three sub-components
are brought together and appropriate combinations of events from the sub-
components are composed to form refinement of the system-level events.

Some of the events of the sub-models are shown in Figures 16, 17 and 18.
The opening events of the controller sub-model are shown in Figure 16, the
opening event of the door sub-model is shown in Figure 17, and the events
of the signalling sub-model are shown in Figure 18.

23

event DoorOpenStartC =̂

any
sig

where

grd1 : sig = openSIG
grd2 : doorstateC = closed

then

act1 : doorstateC := opening
end

event DoorOpenFinC =̂

any
sig

where

grd1 : sig = openSIG
grd2 : doorstateC = opening

then

act1 : doorstateC := open
end

Figure 16: Opening events of the controller machine.

event DoorOpenE =̂

any
sig1, sig2

where

grd1 : sig1 = openSIG
grd1 : sig2 = openSIG
grd2 : doorstate = closed

then

act1 : doorstate := open
end

Figure 17: Opening event of the door machine.

24

event ControllerSendSignal =̂

any
sig

where

grd1 : sig ∈ SIGNAL
then

act2 : todoorsig := sig
end

event DoorReceiveSendSignal =̂

any
sig1, sig2

where

grd1 : todoorsig = sig1
grd2 : sig2 ∈ SIGNAL

then

act2 : todoorsig := noSIG
act3 : fromdoorsig := sig2

end

event ControllerReceiveSignal =̂

any
sig

where

grd1 : sig ∈ SIGNAL
grd1 : fromdoorsig = sig

then

act2 : fromdoorsig := noSIG
end

Figure 18: Events of the signalling machine.

25

B"

BA"

AB"

A"

ABstart'

BAfin'

ABfin'

BAstart'

(a) Linear ordering

B"

BA"

AB"

A"

ABstart'

BAfin'

ABfin'

BAstart'

(b) Non-linear ordering

Figure 19: State machines for discrete device.

5 Pattern for non-linear controller decompo-

sition

The model of door movements used in the previous sections is simplistic in a
number of aspects. Firstly it assumes that the physical door will transition
from open to close instantaneously. A more realistic model would assume that
a door movement takes time. We will represent this by having two events
for a door movement: one to represent the point at which the door starts a
transition (e.g., OpenStart) and another to represent the point at which the
transition finishes (e.g., OpenFin). Figure 19(a) presents a generic pattern
for such behaviour as a state machine. Here, A and B are the stable states
(e.g., open, closed) while AB and BA represent intermediate transitioning
states (e.g., opening, closing).

Figure 19(a) is itself simplistic in that the ordering of the events is purely
linear. The linear ordering does not allow for the possibility of reversing a
transition while that transition is in progress. For example, while a door
is closing, we might want to start re-opening it before it finishes closing,
e.g., because an open button is pressed. The state machine of Figure 19(b)
addresses this: as well as allowing a transition into an intermediate state
to come from a stable state, it allows that transition to come from another
intermediate states, e.g., the ABstart event, which sets the state to be AB,
is enabled when the state is either A or BA.

As with the door mechanism in Section 3, we treat the state variable
represented by Figure 19(b) as a model of the physical device and we use a
refinement step to introduce a variable representing the controllers version of
the device state. After introducing the controller variable, we use a further
refinement step to introduce the explicit signalling as described in Section 4.

26

This is presented in Figure 20 which covers both refinement steps for the
ABstart and ABfin events (the BAstart and BAfin events are treated in the
same way). The top layer in Figure 20 specifies the abstract events (note
that ABstart is enabled when the state is A or BA following Figure 19(b)).
The middle layer shows the refined events where the controller version of the
state variable, stC, is introduced (for clarity, the abstract state variable st is
renamed to stE to indicate that it is an environment variable). Correspond-
ing to each abstract variable at the top level, there are two events in the
refinement, one representing a controller event and the other representing
an environment event (with the controller events being new events refining
skip). The invariants for the refinement steps are also shown in Figure 20.
As with the refinement of the door control in Section 3, we have that when
the controller variable is in a stable state (A or B), then the controller and
environment values agree and thus is safe for the control to make a critical
decision based on the value of its variable.

The bottom layer of Figure 20 specifies the refinement of the controller
and environment events in which the signalling mechanism is introduced.
This allows any dependency by controller events on environment variables
to be removed and similarly for environment events and controller variables.
The invariants for this refinement specify correspondences between the signal
values on the state of the agent sending the signal, e.g., if the signal to
the device is abSIG then the state of the controller is AB (inv3.1); if the
signal from the device is abSIG then the device has reached state B. These
invariants are used to verify the correctness of the guard replacements in the
refined events, e.g, inv3.1 justifies the replacement of the guard stC = AB by
tosig = abSIG in the lowest level ABstartE event. The events at the bottom
layer are in a form that allows them to be decomposed. Prior to that, we
can introduce explicit parameters to represent the signals exchanged by the
decomposed events using the technique described in Section 4. After this, the
model is decomposed into three sub-models, Controller, Signals and Device,
such that:

• stC is placed in Controller, stE is placed in Device and tosig and
fromsig are placed in Signals,

• Events ABstartC and ABfinC are decomposed into Controller parts
and Signals parts,

• Events ABstartE and ABfinE are decomposed into Device parts and
Signals parts.

27

ABstart''≙!
when!st!�{A,BA}'
then!st!:=!AB'

ABstartC!!≙!
when!stC!�{A,BA}'
then!stC!:=!AB'
'

ABstartE!!≙!
when!stE!�{A,BA}&

!stC!=!AB'
then!stE!:=!AB'

ABfin''≙!
when!st'=!AB'
then!st!:=!B'

ABfinE''≙!
when!stE!=!AB'
then!stE!:=!B'
'

ABfinC''≙!
when!stC!=!AB'

!!stE!=!B'
then!stC!:=!B'

ABstartC!!≙!
when!stC!�{A,BA}'
then!stC!:=!AB'
'''''tosig!:=!abSIG'
'''''fromsig!:=!noSIG'
'

ABstartE!!≙!
when!stE!�{A,BA}&

!!tosig!=!abSIG'
then!stE!:=!AB'
'''''''tosig':='noSIG'
''''''''fromsig!:=!noSIG'

ABfinE''≙!
when!stE!=!AB'
''''''tosig='noSIG'
then!stE!:=!B'
''fromsig':='abSIG'
'

ABfinC''≙!
when!stC!=!AB'
'''''fromsig!=!abSIG'
then!stC!:=!B'
'''''tosig':='noSIG'
'''''fromsig':='noSIG'

Invariants for first refinement:

inv2.1 : stE = st

inv2.2 : stC ∈ {A,B} ⇒ stC = stE

Invariants for second refinement:

inv3.1 : tosig = abSIG ⇒ stC = AB

inv3.2 : fromsig = abSIG ⇒ stE = B

inv3.2 : tosig = baSIG ⇒ stC = BA

inv3.2 : fromsig = baSIG ⇒ stE = A

Figure 20: Refinement steps for non-linear controller.

28

5.1 Dealing with Errors

All real control systems have to deal with errors arising in the environment
such as failure of a mechanical component or loss or delay of signals. In
some cases, errors will be detected through sensors and this can be treated
as another form of signal from the environment with an appropriate response
from the controller such as the use of a backup mechanism or through the
transition to a failsafe mechanism. This can be modelled using appropriate
environment and controller events, e.g., detection of an obstacle while a door
is closing could result in a signal to the controller to revert to the opening
state. In other cases, the controller may enter an error state because a
signal was not received from a device by a particular time. Such a timeout
can be modelled as a controller event that causes the controller to enter an
error state in the absence of an expected signal from the environment. At
the abstract level this can be done without any explicit timing. In a more
detailed refinement, the timeout delay can be modelled by using a clock or
counter that causes the timeout to trigger after an appropriate number of
time steps – unless the expected response is received beforehand.

Typically, an error will arise when a controller is in an intermediate state
between stable states, e.g., states AB and BA. Once the controller state has
been introduced, an abstract (unguarded) error event could have is guards
strengthened as follows:

event Error =̂

when

grd1 : st ∈ {AB,BA}
then

act1 : warning := TRUE
end

6 Stepwise decomposition

When we have a system model consisting of a number of devices that need
to be controlled in a coordinated manner, decomposition can be achieved in
stages. Typically the target architecture will be such that the devices will
be independent from each other and will only interact via the controller. For
such an architecture, a way to proceed, starting with a high level model of
the system, is to extract each device out from the system model, one device
at a time. To extract a device model from the system model, we introduce

29

Landing'Gear''System'1'

Landing'Gear'System'2'Door'

Landing'
Gear'
Signals'

Landing'
Gear'

Landing'
Gear'

Controller'

Door'
Signals'

Figure 21: Stepwise decomposition for landing gear.

controller versions of the device state, then introduce signalling mechanisms
using the techniques already outlined. Then we decompose the system model
to a device model, a signalling model and a residual model. The residual
model may contain a mix of controller and environment variables and events
(not including variables and events of the extracted device). The residual
model can then be further refined in the same way so that the next device
can be extracted, and so on until the residual model only contains controller
variables and events representing the controller-only behaviour.

This form of stepwise refinement and decomposition based on device ex-
traction is illustrated in Figure 21 for the landing gear example. The top
box represents the model of the landing gear system (Landing Gear System
1). The first goal is to extract the door model. This is achieved by refine-
ment steps to introduce the controller version of the door variables followed
by the signalling mechanisms. The refined model is then decomposed into
three sub-components: Door, Door Signals and Landing Gear System 2. The
next decomposition stage is to extract the landing gear model from the sys-

30

tem. Again this requires introduction of the controller version of the landing
gear variables and of the signalling system. The refinement of Landing Gear
System 2 can then be decomposed into three components representing the
device, the signalling for the landing gear and the residual model. In this case
the residual model (Landing Gear Controller) only contains controller vari-
ables and events and can thus be treated as the specification of the controller
software.

7 Multiple instances of device

Systems involving multiple instances of the same kind of device can be treated
using the techniques outlined above. For example, a train door controller
will control a collection of doors or a railway zone controller will control a
collection of points and signals. The use of a state variable to model the
state of an individual device can be lifted to a collection of similar devices
by using functions from device instances, e.g., instead of st ∈ ST , we have:

st ∈ Device→ ST

The invariants used for introducing controller copies of environment variables
can be lifted, e.g.,

∀d · d ∈ Device ∧ stC(d) ∈ {A,B} ⇒ stC(d) = stE(d)

Similarly the invariants and variables for the signalling introduction may be
lifted to collections of similar devices.

Alternatively we can use disjoint sets to represent the set of devices in
each state, as follows:

partition(Device, A,B,AB,BA)

Here, for example, A ⊆ Device represents the set of devices in the A state.
An invariant specifying the relationship between controller and environment
state can be represented as follows:

AC ⊆ AE ∧ BC ⊆ BE.

(The set of devices that the controller believes are in the A state is a subset
of the devices that are actually in the A state, etc.) Similarly, disjoint sets
can be used for different kinds of messages, e.g.,

partition(tosig, abSIG, baSIG, noSIG)

For stepwise decomposition, we extract out a model representing the col-
lection of similar devices, rather than each individual device, along with a
lifted signalling sub-component representing the signalling between the group
of extracted devices and the residual system.

31

8 Concluding

To summarise, we presented techniques for stepwise decomposition of control
systems involving coordination by a controller of a number of devices. The
key techniques are:

• Identification of a device (or collection of similar devices) to be ex-
tracted from the model,

• Introduction by refinement of the controller version of the environment
variables representing the state of the device(s),

• Introduction by refinement of the signalling mechanism between the
device(s) and the residual system,

• Decomposition of the refined system model into sub-models represent-
ing the extracted device(s), the signalling between the device(s) and
the residual system.

This process is then repeated on the residual system model to extract the
next device(s) until all devices have been extracted and the residual model
represents the model of the controller.

References

[But09] Michael Butler. Decomposition Structures for Event-B. In Integrated
Formal Methods 2009, pages 20–38, 2009.

32

	Introduction
	Decomposing machines
	Parallel Composition of Machines
	Synchronous Decomposition
	Composition with shared event parameters
	Independent refinement of subsystems
	Asynchronous Decomposition

	Introducing Controller version of Environment Variables
	Introducing Explicit Signalling
	Avoiding signal confusion
	Parameterising the signal events and decomposing models

	Pattern for non-linear controller decomposition
	Dealing with Errors

	Stepwise decomposition
	Multiple instances of device
	Concluding

