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ABSTRACT

As power plants become more complex and system models
become difficult or impossible to generate, the plants must
be split into subsystems to be controlled independently. Dis-
tributed sensor networks show promise for this application,
because they are inherently modular and have the ability to
preprocess data to help with the control process. We inves-
tigate how effectively a distributed sensor network could be
implemented in a model power plant, showing that system
parameters may be accurately measured and tracked more
effectively than traditional power plant sensors. In addition,
a distributed sensor network is also shown to be capable of
detecting system changes that are undetectable by standard
sets of sensors. Finally, a cost analysis is performed to show
when a distributed sensor network is a financially viable al-
ternative to a standard set of sensors.
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1. INTRODUCTION

One of the most significant challenges to developing effi-
cient energy sources is addressing how to control and opti-
mize power plants. As power plants become more and more
complex, and models for such plants become difficult or im-
possible to generate, a distributed control strategy will be-
come necessary [12]. Rather than a central controller making
decisions for an entire power plant, subsystems within the
plant must be defined and controlled independently, while
maintaining effectiveness for the entire plant.

Sensors are becoming smaller, less expensive, more com-
putationally powerful, and more capable of operating in
harsh environments [4]. Traditionally, sensors in power plants
simply record data and communicate this data with a central
controller, which makes system level decisions [5]. In order
for the control to be decentralized, it is helpful if sensors can
record data, preprocess data, and handle data requests.

Given the complexity of power plants and the power of
new sensors, a distributed sensor network is a natural sys-
tem for a power plant. Increasing the number of sensors in a

Kagan Tumer
Oregon State University
204 Rogers Hall
Corvallis, OR 97331
kagan.tumer@oregonstate.edu

system provides many benefits. First, with a large system of
sensors, the network can compensate for sensor failures. Sec-
ondly, with the ability of sensors to preprocess data, sensor
networks can give much more useful data relating to system
wide performance than a smaller set of sensors. Finally,
sensors capable of interacting with other sensors can give
system level information that is not available from simply
aggregating sensor information.

This paper demonstrates that a distributed sensor net-
work is preferable to a standard set of sensors in a power
plant. Five key components provide evidence for this claim:

1. A distributed sensor network can track system param-
eters such as temperature and pressure

2. A distributed sensor network is robust to sensor fail-
ures.

3. A distributed sensor network with low accuracy sen-
sors can measure system parameters more accurately
than a single high accuracy sensor

4. A distributed sensor network is capable of detecting
changes in the system that go unnoticed by standard
Sensors.

5. A distributed sensor network is competitive with a
standard sensor implementation in terms of fiscal cost

For this work, a multiagent system controls a distributed
sensor network in order to measure enthalpy, and track chang-
ing enthalpy profiles. We use a modified version of the Defect
Combination Problem, as well as the Difference Reward, to
give feedback to reinforcement learning agents. The contri-
bution of this paper is two-fold. We show that:

1. The Difference Reward can be used to train reinforce-
ment learning agents controlling a distributed sensor
network in a model power plant to achieve the first
four objectives outlined above

2. A distributed sensor network which meets or exceeds
the performance thresholds of a traditional sensor im-
plementation can be developed for a competitive cost.

Ultimately, we show that a sensor network using a large
number of relatively cheap and less accurate sensors can
outperform a costly more accurate sensor for measuring the
same parameters. The rest of this paper is organized as
follows. Section 2 gives the background information and
related work. Section 3 explains the modified Defect Com-
bination Problem and how it is implemented in this work.



Section 4 explains the experiments conducted. Section 5
gives the experimental results. Finally, Section 6 gives a
discussion of the results and presents possibilities for future
research.

2. BACKGROUND

The following sections introduce the Difference Reward,
the physics governing the model power plant, the Defect
Combination Problem, and related work.

2.1 Difference Reward
The Difference Reward is defined as [8]:

DUZ' = G(Z) — G(Z_Z) (1)

where G(z) is the system reward, and G(z—;) is the system
reward without the effects of agent i. Intuitively, this reward
function tells an agent its specific impact on the system util-
ity, and is thus aligned with the system reward. Further, as
this reward depends only on the actions of agent i, there is
less noise introduced to the signal from other agents, making
the learning process easier for each individual agent.

By being factored and aligned with the global system re-
ward, the Difference Reward gives a private utility which
allows individual agents to improve overall system perfor-
mance. This is an attractive feature which becomes more
valuable as the number of agents and complexity of a sys-
tem increases [9, 10].

2.2 Rankine Cycle

Rather than attempting to design a sensor network to op-
erate in a complex power plant with no system model, we
develop a sensor network in a well known power generation
system: a vapor power Rankine cycle. In a Rankine cycle,
the working fluid passes through a boiler and becomes satu-
rated vapor. Next, the fluid goes through the turbine, which
results in an energy output which is used to produce elec-
tricity. The fluid then passes through the condenser and be-
comes a saturated liquid. Finally, the fluid is passes through
a pump and returns to the boiler, completing the cycle [5].
The Rankine cycle is shown in Figure 1. For the purposes
of this analysis, we make the following assumptions:

A1l. Each component of the cycle is considered to be a con-
trol volume

A2. All processes of the working fluid are internally re-
versible

A3. The turbine and pump operate adiabatically
A4. Kinetic and potential energy effects are negligible

A5. Saturated vapor enters the turbine. Condensate exits
the condenser as a saturated liquid

A6. The working fluid is assumed to be water

As seen in Figure 1, there are four distinct states in the
Rankine cycle, each of which lies between two of the com-
ponents. The system performance is related to the enthalpy
h; at each plant state ¢ by the following relations:
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Figure 1: A vapor power Rankine cycle. The work-
ing fluid travels through a boiler, turbine, con-
denser, and pump in succession. The work output
of the turbine is used to generate electricity.
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where 717 is the mass flow rate of the working fluid, W, is the
work output of the turbine, Qout is the heat output of the
condenser, W), is the work input to the pump, and Qi is
the heat input to the boiler. In order to find the enthalpy at
each of these states, the pressure and temperature must be
determined, requiring a sensing policy to be developed. Such
a policy was studied in the Defect Combination Problem.

2.3 Defect Combination Problem

The Defect Combination Problem (DCP) assumes that
there exists a set of imperfect sensors X which have constant
attenuations due to manufacturing defects or imperfections
[1]. Each of the sensors z; € X has an associated attenuation
a; in its reading. Thus, if sensor z; is taking a measurement
of A, it measures A + a;. The DCP involves choosing a
subset of the X sensors such that the aggregate attenuation
of the combined readings is minimized:

‘Zi\il niaq
g=1== 1
N
Dim i

where G is the aggregated attenuation of the combined sen-
sor readings, and n; € {0,1} is an indicator function based
on whether the sensor chooses to be “on” or “off.”

Early work on the DCP defined each sensor as an agent,
which then chose whether to be on or off [8]. Each sensor
learns from feedback provided by the Difference Reward.

(6)



The rewards of each agent are thus factored with respect to
the global reward, such that agents acting to improve their
private rewards also act to minimize the aggregate system
attenuation. By using the Difference Reward to provide in-
dividual feedback for each agent, the aggregate error was
much lower than the error resulting from global rewards.
Private rewards eliminate the need for centralized control.

2.4 Related Work

Traditional Power Plant Control.

Traditionally, power plants are controlled by some central-
ized control system, which receives information from sensors
distributed across the plant. This type of control typically
requires a thermodynamic model of the system. Processes
taking place in power plants are sufficiently complex that
idealizations are necessary to create these models [5]. As
power plant designs become more complex, system models
become increasingly difficult to generate, and idealizations
lead to inaccurate models. This results in traditional con-
trol methods becoming difficult to implement in new power
generation systems. In a complex plant with no system
model, a decentralized control system with a distributed
sensor network becomes an attractive option. Subsystems
of the plant may be accurately modeled (or models may be
learned), eliminating the need to derive a full system model
for centralized control. An adaptive control strategy and
distributed sensor network implementation becomes more
desirable as power plant complexity increases [3].

Organization for Area Surveillance.

Previous work on distributed sensor networks demonstrated
that a sensor network can self-organize when sensors are de-
ployed with no a priori information regarding the environ-
ment [6]. The sensors use a max-sum algorithm to coordi-
nate their sense-sleep schedule in order to maximize the ef-
fectiveness of the entire sensor network. This research is very
attractive in the context of a power plant, because the com-
plexities associated with the physics model result in a priori
optimal sensor locations being impossible to obtain. Fur-
thermore, as the optimal network policy may change with
system parameters, a distributed sensor network and in a
power plant should be adaptive [7].

Detection of False Readings.

Previous work on analyzing sensor readings yielded an
approach to find false sensor readings in sensor networks
[2]. This is an essential step to take in a sensor network,
because taking actions on false sensor readings can be ex-
tremely costly. One issue with this work is that the world
dynamics are explicitly modeled. In a complex power plant,
this type of model may be impossible to generate. Thus,
rather than attempting to explicitly detect false readings,
the distributed sensor network in the power plant has redun-
dant sensors which act to minimize aggregate attenuation.

3. DCP FOR POWER PLANTS

We apply a slightly modified version of the DCP to a
Rankine cycle power plant. There is a set of sensors X
at each of the four plant states, where s € {1,2,3,4} is
the state of the power plant (see Figure 1). Each sensor
Zs,; € X5 is capable of measuring pressure and temperature,

the two parameters needed to determine the enthalpy of the
working fluid. Sensor x,; also has a temperature attenua-
tion ts;, and a pressure attenuation p,;, an effective tem-
perature operating range [Ts,i min, Ls,i,ma=z), and an effective
pressure operating range [Ps ;. min, Ps,i,maz]. If & sensor mea-
sures values outside of its effective operating range, then the
measurement error increases exponentially with the distance
from the value to the effective operating range bounds.
Each sensor is considered to be an agent. First, each agent
must decide whether to be on or off. If an agent decides
to be on, then it must determine whether it will measure
temperature, pressure, or both temperature and pressure.
The goal of the agents is to collectively take actions which
minimize the aggregate system attenuation. The aggregate
attenuation for temperature at state s is defined as:
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where N is the number of sensors in state s, and ns; €

{0, 1} denotes whether sensor zs ; is on or off. Similarly, the

aggregate attenuation for pressure at state s is defined as:

gr,s =

Ns
Zizd Ns,iPs,i 8
Leimy TaiPot (8)
Zi:1 Ps,i
From equations 7 and 8, if state s has a true temperature of
Ts and true pressure Ps, then the measured values will be:

gps =

Ts,sensed =Ts+ gr,s (9)
Ps,sensed = PS + gP,s (10)

The enthalpy of the working fluid is a thermodynamic prop-
erty which quantifies the level of energy in that fluid. En-
thalpy change in a fluid corresponds to the fluid either ab-
sorbing or expelling energy, and is used to determine power
levels in a power cycle. Enthalpy data has been found exper-
imentally, and given pressure and temperature, the enthalpy
of a fluid can be found with empirical thermodynamic tables.
Thus, the measured enthalpy at state s is given by:

hs,sensed = f(Ts,senscd, Ps,sﬁnsed) (11)

where h = f(T, P) is found using thermodynamic tables,
which are based on empirical data. The error in the enthalpy
reading at state s is given as:

hs,e'r'ro'r =hs — hs,sensed (12)

where hs is the actual enthalpy at state s. It is desirable
that we calculate errors in enthalpy reading rather than er-
rors in temperature or pressure readings, because enthalpy
values can be obtained from the plant output. For example,
we control the mass flow rate of the working fluid 72, and we
monitor the power output of the turbine, Wy, by monitoring
the generator, we can determine the true values of hy and hs
with the turbine model. These values can then be compared
to the estimated values provided by the sensor network. One
key issue with implementing the DCP in practice is that it
is assumed that the sensor attenuations are known. This is
rarely the case in real-world problems, so we must use infor-
mation that is actually available in order to determine the
accuracy of the sensor measurements. We can determine the



enthalpy values at each state by monitoring system outputs,
and then use this information to judge the effectiveness of
the sensors measuring pressure and temperature. The ob-
jective of the entire sensor network is to minimize the total
attenuation of enthalpy estimations, given by:

4
G= Z ‘hs,e'rror| (13)
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Intuitively, this simply seems like four separate instantia-
tions of the DCP. Although this is true mathematically, this
does not take into account the coupling between each state
and the components of the system. For example, if states 1
or 4 are measured incorrectly, the amount of heat added to
the boiler is affected, resulting in wasted energy by adding
too much heat or an inefficient cycle by adding too little
heat. In addition, a change in enthalpy at one state will
affect the enthalpy of all other states. Minimizing the total
attenuation at each state will provide the best possible data
to the controllers in the power plant, such that the total
power output of the Rankine cycle may be maximized. The
power output of the Rankine cycle is given by:

E"out = Wt - Wp - an - Q’out (14)

In order to demonstrate that a distributed sensor network is
a viable alternative to a traditional sensor implementation
in the Rankine cycle, certain properties of the sensor net-
work must be demonstrated. First, the sensor network must
measure system parameters with at least the same level of
accuracy as a traditional sensor implementation. If the sen-
sor network gives more accurate measurements than stan-
dard sensors, then system phenomena which go undetected
by standard sensors will be detected by the sensor network.
As the sensors in a sensor network are necessarily less ex-
pensive and accurate than the single sensors they replace, a
policy must be devloped such that a set of inaccurate sen-
sors has a lower aggregate attenuation than a single accurate
sensor. The sensor network must accurately track changing
parameters, in order for the plant controllers to act based on
useful data. Finally, the distributed sensor network must be
shown to be a cost-effective alternative. In order to demon-
strate these properties, a specific model regarding sensor
performance and cost must be developed.

Sensor Model.

When considering replacing a traditional set of sensors with
a distributed sensor network, cost becomes an important
issue. In general, the cost of a sensor increases exponentially
with its accuracy. In this analysis, the cost of a sensor C' is
related to its attenuation A by the following relation [11]:

C(A) = Co(l + ClA_ﬁl) (15)

Where ¢ is the fized cost of a sensor, and the second term
captures the variable cost which decreases as sensor attenua-
tion increases. For the purposes of an optimization problem,
we may assume that cg is 1 without loss of generality. For a
distributed sensor network to be a feasible option to replace
traditional sensors, the accuracy of each individual sensor
must be lower than that of a single sensor, in order to pre-
vent the sensor network from being more expensive than the
standard sensors used. Thus, a distributed sensor network

will contain less accurate sensors than a standard implemen-
tation of sensors. In particular, each sensor in the network
is defined by the values ®min, Pmaz, and a, where:

e &, is the minimum value of the sensor’s operating
range

o &, is the maximum value of the sensor’s operating
range

e ¢ is the attenuation of the sensor while sensing in its
operating range

For example, for a temperature sensor, ®,,;, is the mini-
mum temperature that the sensor can effectively measure,
D02 is the maximum temperature that the sensor can effec-
tively measure, and a is the attenuation of the sensor when
sensing temperatures between @i, and P,qe.. If a sensor
is measuring values outside of its operating range, the error
in its measurement increases exponentially as the parame-
ter being measured moves away from the effective operating
range. The attenuation apr of a sensor measuring values
outside of its effective operating range is:

AOR = |(b - q>bound|2 (16)

where ® is the parameter being measured and ®Ppoung is the
closest bound of the sensor’s operating range to .

3.1 Agent Learning

For the enthalpy measurement and tracking, we use a mul-
tiagent reinforcement learning algorithm, where each agent
keeps an individual value table and updates using the dif-
ference reward. The state is the sensed temperature and
pressure Tsensed and Psensed, and the action is whether the
sensor is off, measures temperature, measures pressure, or
measures both temperature and pressure. Action selection is
completed with an e-greedy policy. Thus, each agent selects
the best action with probability 1 — € and a random action
with probability €. The reinforcement learning algorithm is
standard Q-learning, and is shown in Algorithm 1.

Algorithm 1 Reinforcement Learning Algorithm

Each agent i generates a randomly seeded Q-table Q;;
episode = 1;
while episode < maxEpisodes do
1. Each agent i measures system state s; = {Ts, Ps,i };
2. Each agent selects an action from Q-table using e-
greedy;
3. Calculate total enthalpy attenuation G(2);
4. Calculate difference reward for each agent D;;
5. Q-update: Q;(s,a) < Q(s,a)(l —a) + aD;;
6. episode = episode + 1;
end while

4. EXPERIMENTAL SETUP

The following sections detail the experiments conducted in
order to show the effectiveness of distributed sensor networks
in a power plant. First, we determine if the distributed sen-
sor network can accurately estimate enthalpy by measur-
ing temperature and pressure. Next, we determine if sensor
failures in the network can be compensated for. Next, we



use the distributed sensor network to track a changing en-
thalpy profile, to determine if the sensor network can detect
changes in the system during transient operation. Finally,
we analyze the cost versus performance of a distributed sen-
sor network to determine the cost-effectiveness of the sensor
network against traditional sensor implementations.

4.1 Enthalpy Measurement

For the first experiment, a single state of the Rankine
cycle is randomly selected in order to determine if the en-
thalpy value can be accurately estimated with a distributed
sensor network. Suppose we have a state with actual tem-
perature, pressure, and enthalpy values of Tuctual, Pactuals
and hgetual- A set of N sensors is placed in the state, and
the sensors can choose to measure temperature, pressure,
or both temperature and pressure. Given the sensor atten-
uations, the measured values of temperature and pressure
are:

Treasured = Lactual + gr (17)
Pmeasured = Pactual +gpP (18)

Where gr and gp are the aggregate attenuations defined in
Equations 7 and 8. Thus, the measured enthalpy of the state
based on the measurements is:

hestimated - f(Tmeasured, Pmeasured) (19)

where f(T, P) is based on empirical thermodynamic data.
The objective function to be minimized for single state en-
thalpy estimation is given by the error in enthalpy estima-
tion:

Gl (2) = |hactual - hesti’mated‘ (20)

In this case, hactual is determined by the system mode}, given
the knowledge of the control inputs Wy, Qin, and Qout, as
well as the total power output of the plant W;. The task of
the sensor network is to select a subset of sensors to measure
temperature, and a subset of sensors to measure pressure, in
order to minimize the error in the enthalpy reading. Each
agent is given the difference reward as a learning signal. The
difference reward for this experiment is derived as follows:

Ng Ns
X msgtsg 2ty Tsgteys
gr,—i = N, - Ns (21)
Z]‘:1 Ns,j Zj:l LI
Tmeasured,fi = Tactual + gr,—i (22)
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(23)
Pmeasured,fi = Pactual + gp,—i (24)
hmeasured,fi = f(Tmeasured,fh Pmeasu'red,fi) (25)
Gl (2—1) = |hactual - hmeasured,fi‘ (26)
Di(Z-:) = G1(2) — G1(2-s) (27)

The difference reward for agent ¢ is simply the error in the
enthalpy measurement minus the error in the enthalpy mea-
surement if agent ¢ was sensing nothing. Note that by defini-
tion, an agent whose action is to sense nothing has a differ-

ence reward of zero. In other words, an agent which senses
nothing has no effect on the system performance at all.

4.2 Enthalpy Measurement with Sensor Fail-
ures

In a distributed sensor network, there is a nonzero prob-
ability that some subset of sensors will fail due to lack of
proper maintenance or manufacturing defects. It is impera-
tive that sensor failure does not result in significant loss of
performance. A set of sensors will be trained to accurately
measure system enthalpy, and then some subset of those
sensors will fail. The remaining sensors will then continue
learning in order to compensate for the loss of sensors. This
experiment will give insight into how robust the distributed
sensor network is.

4.3 Enthalpy Tracking

The third experiment involves tracking enthalpy as it changes

over time. Suppose that the enthalpy at the boiler output
is being measured. The heat input to the boiler is generally
created by a combustion process with a mixture of fuel and
air [5]. During transient startup processes, the heat input to
the boiler gradually increases over time, which results in the
enthalpy of the working fluid at the boiler output to gradu-
ally increase over time. It is imperative that this increase in
enthalpy is accurately tracked in order to properly control
the system. In the case of rising temperature and pressure,
different sensors will need to be on at different times, as the
temperature and pressure values enter and leave effective
operating ranges of specific sensors. Thus, for accurate en-
thalpy tracking, different sensors will need to learn to turn
on or off at different times in response to changing system
parameters as well as the activation levels of other sensors.
For the enthalpy tracking experiment, the difference reward
is the same as that in the enthalpy measurement experiment
(Equation 27). For this experiment, the enthalpy profile as
a function of time is given in Figure 2.

| — Enthalpy Profile

Figure 2: Enthalpy profile to be tracked. The en-
thalpy rises from h,,in to hm.: as time progresses,
with oscillations occuring during the rise.

The oscillations seen in Figure 2 are artificially added, in or-
der to make the tracking problem more complex, and would
not generally be seen in an actual power plant. Tracking a
profile such as that in Figure 2 has one key difficulty given



the sensor model used. Each sensor has an effective tem-
perature operating range, and this range is a subset of the
range AT = Tiaz — Tmin. Different sensors must learn to
turn on and off depending on the state of the system. As
an example, consider the case where some sensors are accu-
rate between 0°C' and 50°C, and other sensors are accurate
between 50°C and 100°C. In order to accurately track a
temperature profile that ranges from 0°C and 100°C, dif-
ferent sensors should be activated at different times. More
generally, if the network of sensors has different sensors with
n effective temperature operating ranges, each of which is a
subset of the range [Timin, Tmaz], then a policy which maps
the temperature of the system to which sensors are activated
is necessary for accurate tracking. The same principles hold
for tracking pressure. Both temperature and pressure must
be tracked accurately in order to properly track the rising
enthalpy of the working fluid at the turbine outlet.

4.4 Cost Analysis

In order to show that a distributed sensor network can
have performance similar to standard sensor implementa-
tions while remaining cost-competitive, we repeat the en-
thalpy measurement experiment while varying the value of
(1 in the sensor cost model (Equation 15). The single sen-
sor is assigned an atteuation asingie, and the sensors in the
distributed sensor network will be assigned an average at-
tenuation Gnetwork > Usingle. Lhe single sensor attenuation
will be used to develop a cost of the sensor based on the
cost model and the value of 81. Given the value of 81 and
the attenuation of network sensors anetwork, the size of the
distributed sensor network will be determined such that the
sensor network has an equivalent fiscal cost as the single
sensor. For each value of (1, the aggregate error of the
distributed sensor network is compared to the error of the
single sensor. The purpose of this experiment is to show
the difference in performance between the standard sensor
implementation and a distributed sensor network as a func-
tion of the sensor cost model. This will give insight as to
when distributed sensor networks are financially feasible for
implementations in power plants.

S. RESULTS

The following sections give the results for each experi-
ment. For all reinforcement learning processes, the explo-
ration parameter € is set to 0.05. Each experiment was run
for 50 statistical runs, and the error bars reported are the
standard error in the mean (o/+/(N)), where o is the sam-
ple standard deviation of the dataset and N is the number
of statistical runs.

5.1 Enthalpy Measurement

For the enthalpy measurement experiment, a network of
sensors was developed using the sensor cost model (Equation
15), where ¢1 and (1 were set to 2. A sensor network was
created with 200 sensors that had attenuations drawn from
a normal distribution with a mean of 0.0 and a standard
deviation of 0.5. This network is compared with a single
sensor with an attenuation drawn from a normal curve with
a mean of 0.0 and a standard deviation of 0.01. Given the
cost model for the sensors, the single sensor is 100 times
more expensive than the network of sensors. The experiment
ran for 3000 learning episodes. The aggregate attenuations
for the sensor network compared with the single sensor are

shown in Figure 3.
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Figure 3: Comparison of a single sensor and a sen-
sor network. After training, a network of 200 sensors
with high error are more accurate than a single sen-
sor with low error

The reason that the mean attenuation for the single sensor
is not zero is that the attenuation reported is the magnitude
of attenuation. In terms of performance, a sensor with an
error of § is equivalent to a sensor with an error of —¢. The
sensor network learned a policy with much lower error in
the enthalpy reading. This means that a distributed sensor
network with fairly inaccurate sensors can learn a policy
such that enthalpy measurements are more accurate than a
single accurate sensor, in addition to being cheaper than the
single sensor. Because the error in measurement is lower for
the distributed sensor network, this network is capable of
detecting minute parameter changes that are not detectable
by the single sensor. For example, if there was a slight leak
in a pipeline that transports the working fluid, and the drop
in pressure associated with that leak was smaller than the
single sensor could detect, the distributed sensor network
could still detect that leak. Thus, the distributed sensor
network is capable of detecting problems in the system that
a single sensor could not. This is especially important in
the context of leaks in the fluid pipelines, because these leaks
need to be detected before they grow and cause catostrophic
failures in the system.

5.2 Enthalpy Measurement with Sensor Fail-
ures

The sensor failure experiment was run with the same sen-
sor network utilized in the enthalpy measurement experi-
ment. After 3000 training episodes, 40 of the 200 sensors
failed, leaving 160 functional sensors. The sensors then re-
trained for 2000 episodes, and the resulting performance was
determined. This experiment was repeated for 500 statisti-
cal runs, with the error in the mean being reported (o/v/'N).
The results for the sensor failure experiment are shown in
Figure 4.

As seen in Figure 4, the distributed sensor network is able to
regain over 99% of lost performance after 20% of the sensors
fail. This demonstrates that the distributed sensor network
is robust to sensor failure. This is an extremely important
property for a sensor network operating in a power plant,
because extreme temperatures and pressures create a harsh
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Figure 4: Sensor failure results. A system with
200 sensors is trained and 40 sensors fail at train-
ing episode 3000. over 99% of system performance is
regained. The error bars are smaller than the plot
symbols, and are thus omitted.

environment which is more difficult for sensors to survive
in. It is important to note that in a power plant, network
training would most likely occur in an offline manner, such
that the plant would need to be shut down if a large portion
of sensors failed.

5.3 Enthalpy Tracking

For the enthalpy tracking experiment, an oscillatory rise
in enthalpy from ho to hfina was tracked. There were four
sets of 200 sensors, each of which had an effective operating
range of one-fourth the total change in pressure and tem-
perature. Thus, sensors needed to learn to turn on or off
depending on the system state. The sensors were allowed
to train on random states (s = {temperature,pressure})
for 3000 episodes using the Q-learning policy, and then the
learned policy was used to control the sensors while mon-
itoring the temperature and pressure profiles. The actual
enthalpy compared to the measured enthalpy as a function
of time is shown in Figure 5.

As seen in Figure 5, the enthalpy profile is accurately tracked.
The distributed sensor network learned an adequate policy
which determines when each sensor should turn on and off
dependent upon the temperature and pressure of the system.
This is critical to proper control of a power plant, especially
during transient operation. The error in measurement at
each time step is also of interest. As the temperatures and
pressures go from the effective operating range of one set of
sensors to another, it is important that jumps in error do
not occur as one set of sensors shuts off and another set of
sensors turns on. The error in enthalpy measurement as a
function of time is shown in Figure 6.

As seen in Figure 6, the error in the enthalpy measurement
does not drastically increase at any point, indicating that the
transition of one set of sensors being activated to another
set being activated does not cause discontinuous jumps in
enthalpy estimation, an important property with regards to
system control.

5.4 Cost Analysis

| —=— Enthalpy Profile
—+— Measured Enthalpy Profile

Figure 5: Temperature profile versus the sensed
temperature profile. There is a negligible difference
between the two profiles

—=— Error in Measurement

Enthalpy Attenuation (J)

Figure 6: Sensing error as a function of time during
enthalpy tracking. Although the error varies with
time, it never exceeds 0.0011J

An analysis of the cost model was completed to analyze

the financial feasability of the sensor network. The vari-
able 81 in the cost model (Equation 15) dictates how sensor
prices vary as a function of their attenuation. Given a spe-
cific attenuation for a sensor, the cost increases with 8. The
performance of a single sensor and an equivalent priced sen-
sor network was tested as a function of 8. The results for
this analysis are shown in Figure 7.
As seen in Figure 7, as long as $1 > 0.621, the equiv-
alently priced distributed sensor network outperforms the
single sensor. As (31 continues to increase, the distributed
sensor network outperforms the single sensor by a wider mar-
gin. Thus, for the sensor cost model given in Equation 15,
we have developed a threshold which tells us when a dis-
tributed sensor network is a financially viable alternative to
the traditional sensor implementation in a power plant.

6. DISCUSSION

This paper demonstrates that there are multiple bene-
fits to installing distributed sensor networks to replace stan-
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Figure 7: Performance of single sensor versus equiv-
alently priced distributed sensor network as a func-
tion of cost variable ;. As long as (51 > 0.621, the
distributed sensor network outperforms the single
sensor

dard sets of sensors in power plants. First, a distributed
sensor network of inexpensive and fairly inaccurate sensors
can measure and track system parameters more accurately
than single, expensive sensors. Because the sensor network
has more accurate aggregate measurements, small changes
in system parameters that go undetected by standard sen-
sors can be detected by distributed sensor networks. Small
system changes such as diminutive fluid leaks which would
previously go undetected can now be detected. This is im-
portant from the standpoint of plant health, because it is
desirable that these problems be detected early before they
grow into larger problems. The sensor network is also ro-
bust to sensor failures, with 20% failures resulting in less
than 1% loss in performance. This is extremely important
in harsh environments where sensor failure probabilities are
increased. Finally, a distributed sensor network is shown to
be cost-competitive with standard sensor implementations
in a power plant, and the parameters for determining when
distributed sensor networks are financially viable were de-
fined. This method could be extended to any sensor cost
model, in order to determine the cost-effectiveness of spe-
cific types of sensors.

The experiments in this paper show that a distributed
sensor network is a cost-effective and functional alternative
to standard sensor implementations in power plants. By
demonstrating that a distributed sensor network is worth
implementing in a power plant, work can begin on specific
implementations in a model power plant. More specifically,
future work will involve installing a distributed sensor net-
work across an entire power plant, in order to test how
such a network may be used in conjunction with plant con-
trol. Another important area to research involves determin-
ing how a distributed sensor network could communicate
such that a controller could be informed of disturbances in
one plant state and compensate before the disturbances pro-
pogate through all other plant states. We also plan to ana-
lyze more complex sensor models, where attenuation is not
constant, but either has a measure of randomness or changes
over time. Finally, we will construct or more realistic plant
model (e.g. without the adiabatic assumptions) in order

to test the sensor network on a more complex and realistic
domain.
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