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ABSTRACT
In buildings, the thermal functions of heating, ventilation,
air conditioning and domestic hot water production are of-
ten interdependent. Additionally, it is more and more com-
plex to control them, given the increasing use of alterna-
tive energy sources, such as solar thermal collectors or heat
pumps. In this work, we propose an approach allowing to
design and optimize the control of thermal systems in the
buildings, while improving flexibility and reusability. Con-
sumer, producer, distributor and environmental agents are
used to represent the building and its appliances. These
agents’ internal models allow them to compute the energy
needs, energy resources and associated costs, and take into
account the specificities of the thermal systems. Following
this modeling step, a distributed mechanism automatically
controls the system, by combining a multi-criteria selection,
a local optimization and a distributed allocation of the avail-
able resources. This approach was used to control a compact
unit providing heating, ventilation and domestic hot water
production in a low-energy building. The system was eval-
uated using a thermal simulator, and managed to improve
the thermal comfort by 35 % compared to the initial control
system, for only a 2.5 % increase in costs.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence; J.2 [Computer Applications]: Physical Sciences
and Engineering

General Terms
Algorithms, Design, Experimentation

Keywords
Multi-agent system, control, building, energy efficiency, do-
mestic hot water production, heating, cooling

1. INTRODUCTION
Buildings represent an important part of the global en-

ergy consumption (e.g. 43 % in France [2]), and optimizing
this consumption is, therefore, a major issue in the current
energy challenge. To decrease the energy needs, the ther-
mal functions in buildings are increasingly based on alterna-
tive energy solutions, such as solar thermal collectors, heat
pumps or heat recovery ventilation. However, the diversity
of these solutions and their interdependence lead to an in-
creased complexity in the design of the control systems.

The optimization of the energy consumption in buildings
has been widely studied [1, 5, 9, 14]. However, in most of
the existing approaches, no other energy forms than elec-
tricity has been considered, nor the specificities they imply.
For instance, when the energy is turned into heat and trans-
ferred through a fluid (gas or liquid), the distribution costs
are not negligible – due to losses and power consumption
of ventilators or pumps – and the energy transfers are re-
stricted to connections through pipes or air ducts. Other
works have focused on systems where the energy was trans-
ferred as heat, like in district heating systems [6, 16]. How-
ever, such approaches focuses how to control the demand,
and not on how to integrate alternative energy sources. Re-
cent works [13] have taken such sources into account, con-
sidering for instance the use of heat pumps. In this case,
though, the control of more complex systems and the cost
of energy distribution cannot be easily taken into account.

To address these issues, we propose an approach to design
and optimize the control of the energy systems in buildings,
which focuses on the thermal systems: heating, ventilation,
air conditioning and domestic hot water production. The
approach is based on the description of the building as a
multi-agent system, combined with a distributed decision
mechanism that is able to automatically control the build-
ing. The approach is flexible – a device can be easily added
or removed, without having to redesign the whole control
system –, and reusable – an agent designed for a specific
system can easily be reused in another one.

In more details, this work advances the state of the art in
the following ways:

• We present a novel architecture that allows to take into
account the specificities of alternative energy sources
and explicitly represents the energy distribution net-
work, which allows to handle distribution constraints
and costs. Adapted from supply chain management
approaches [8] and from previous works in energy ap-
plications [16], the architecture is based on four agents
types: consumer, producer, distributor and environ-
mental agents. Their internal models are used to com-
pute their needs and resources.

• We propose a generic mechanism to automatically con-
trol a system modeled using the above description.
The mechanism is linked to the building by the repre-
sentation of the real sensors and actuators, and com-
bines a multi-criteria selection of the resources, a local
optimization and a distributed allocation. It enables
to optimize the building operation using different cri-



teria, such as the energy consumption, the operating
cost, or the environmental cost.

• Finally, we apply the approach to design the control
system of a compact unit providing heating, venti-
lation and domestic hot water production in a low-
energy building. Evaluated by a thermal simulator [15],
the control system managed to improve the thermal
comfort by 35 % compared to the initial control, with
only a 2.5 % increase in costs. The approach will soon
be tested on a physical test bench for final validation.

The remaining of the paper is organized as follows. In Sec-
tion 2, we present the related works, and Section 3 gives an
overview of the approach. Section 4 details the proposed ar-
chitecture, and Section 5 presents the automated mechanism
that controls the building thermal systems. In Section 6, the
application of the model to a real device is described, as well
as the obtained results. Finally, Section 7 presents the future
works, and Section 8 concludes.

2. RELATED WORKS
The optimization of buildings energy consumption has

been widely studied, and multi-agent systems are now well
recognized for such applications [7]. For instance, Abras et
al. [1] have proposed a building control system based on
a multi-agent architecture, using a two level mechanism:
a reactive level controls the building, and an anticipative
level computes a long term plan. However, the approach is
restricted to electrical systems, and does not improve the
results of previous solutions. Other approaches take into
account the inhabitants’ behaviors [5] or the building archi-
tecture [14] to improve the energy consumption. However,
none of them allow to take into account the specificities in-
troduced by using an energy form other than electricity.

Such constraints have been considered in [16, 6], where the
authors investigate the use of multi-agent systems to control
district heating systems. Their objective is the minimiza-
tion of the energy consumption and respect of the clients’
comfort. The approach takes into account the specific con-
straints of hydraulic networks, such as delayed production
time and thermal inertia. However, it focuses on demand
control and does not allow for an easy integration of alter-
native energy sources, as it does not take into account the
thermal specificities of each sub-system.

Finally, recent works have addressed the issue of integrat-
ing alternative heating systems, such as heat pumps [13].
Using a model of the thermal properties of the building and
weather forecast, the approach enables to optimize the costs
or carbon emissions of the building. However, more complex
sub-systems cannot be easily introduced, and the approach
does not consider the specificities of energy distribution and
associated costs.

3. OVERVIEW OF THE APPROACH
In this section, we first present the context, before describ-

ing the objectives and giving an overview of the approach.

3.1 Context
Our main application field is the control of thermal sys-

tems in buildings, focusing in particular on heating, venti-
lation, air conditioning and domestic hot water production.
Today, the systems installed in buildings often combine dif-
ferent devices:

Heat recovery ventilation

Heat pump

Solar thermal collector

Domestic

Hot Water
Heating

Water Heater

InsideOutside

Electrical

resistance

Figure 1: Simplified diagram of a system providing
heating, ventilation and domestic hot water produc-
tion in a building

• one or more heat pumps, that can be used for domestic
hot water production, heating and/or cooling,

• a heat recovery ventilation, allowing to recover heat
between the building incoming and outgoing air flows,

• a water heater, that can combine different heat sources:
for instance, a solar thermal collector in the bottom
part, an alternative source in the middle part, and an
electrical resistance in the top part. The water heater
can handle the domestic hot water production, and
also contribute to the building heating through spe-
cific heat exchangers,

• other alternative energy sources, such as pellet stoves
or geothermal heating, used directly or in combination
with a water tank,

• energy storage solutions, through thermal storage in
dedicated tanks, or geothermal storage.

In such systems, the devices often simultaneously handle
different functions, which makes their control more com-
plex. For instance, Figure 1 presents the simplified diagram
of a system using some of these devices, and where the heat
pump handles both domestic hot water production and heat-
ing, through the water heater.

In low-energy buildings, companies have developed spe-
cific systems, that handle various functions using a single
compact unit [3, 11]. The proposed approach can be ap-
plied to design the control of such devices. It can also be
applied to combined solar systems, or more generally to any
system involving thermal control issues.

3.2 Objectives and Constraints
Engineers that develop the control of such systems face

more and more complex issues. This work therefore targeted
different objectives:

1. First, allow the use of different optimization criteria.
In most approaches, only the global energy consump-
tion is considered. However, with the introduction of
alternative energies, other criteria become particularly
interesting, such as the operating cost or the environ-
mental cost.



2. Second, take into account the specificities of alterna-
tive energy sources, like heat pumps, which perfor-
mances vary highly depending on environmental con-
ditions.

3. Third, take into account the specificities of energy trans-
fers as heat, through fluids or air: in such cases, the
energy can only be transferred between physically con-
nected points, and the transport auxiliaries – such as
ventilators or circulators – have a non-negligible cost.
For instance, in low-energy buildings, they account for
14 to 30 % of the total energy consumption.

4. Finally, ease the designer tasks: control systems are
currently hardly reusable, because each development
is specific to a particular system. However, the global
management and the devices models are often similar,
and could be reused between systems.

One of the objectives of this work was to develop a control
system that would be embedded on an existing industrial
system. This led to different constraints. First, the sensors
had to be limited to those already present in the system.
These sensors are few: on a compact unit for instance, only
ten or so temperature sensors are used. Furthermore, the
control system had to guaranty that the inhabitants’ com-
fort would be respected, with the same level as previous
solutions. Indeed, the system controls the heating, the ven-
tilation and the domestic hot water production: it is not
only unacceptable if any of these functions fails, but some
of them are also constrained by legal regulations.

3.3 Description of the Approach
We consider systems including a set of appliances – that

consume, produce or distribute energy –, a set of sensors,
and a set of actuators. The objective of the control system
is to compute, at each time step, the values that will be
assigned to each actuator at the next time step.

The proposed method combines a modeling step, where
the physical system is described as a multi-agent system, and
a mechanism that automatically handles the control of the
physical system, based on the previous description. Different
agents types compose the multi-agent system (Fig. 2):

• producer agents represent the elements which purpose
is to produce thermal energy,

• consumer agents represent the elements which handle
comfort functions using thermal energy,

• distributor agents represent the elements which impact
the thermal energy transfer: a distributor represents
a subpart of the physical distribution network. It is
associated to a set of clients – consumer agents or
other distributors – and to a set of suppliers – producer
agents or other distributors,

• finally, environmental agents provide additional infor-
mation on the system physical environment.

This description leads to a hierarchical representation of
the physical system: the producers are connected to the con-
sumers through a hierarchy of distributors, that represents
the energy distribution network.

Based on this representation, the control system runs as
following. Using the observations available from the sensors

Consumer 1

Producer Agents

Consumer Agents

Distributor Agents

Control system Building

Sensors

Actuators

Sub‐network 1

Setpoints...

...

...Consumer 2 Consumer n

Sub‐network 2 Sub‐network 3 Sub‐network n

Producer 1 Producer 2 Producer n

Information 1

Environmental Agents

...Information 2 Information n

Figure 2: Overview of the system architecture

in the physical system, the agents build plans of their energy
needs and resources. Through the distributors, a distributed
optimization combines a multi-criteria selection and a local
optimization of the resources between the distributors and
their suppliers, before allocating the resources to the clients.
When this step is completed, producer, consumer and dis-
tributor agents all have a plan of the resources they will
receive and/or have to provide. These plans represent a de-
termined state of all the system actuators.

Finally, the values of the actuators in the multi-agent sys-
tem are assigned to the physical actuators, which controls
the system.

This description and mechanism answer our different ob-
jectives. First, the explicit representation of the distribu-
tion network enables to take into account the costs and con-
straints it induces. Then, the agents embed internal models
that allow them to compute their decisions using their inter-
nal (thermal) constraints. Moreover, the optimization step
allows for the taking into account of various criteria. Finally,
the agent based description increases the system flexibility,
as replacing an agent does not influences the system model-
ing or the control strategy.

4. DESCRIPTION OF THE AGENTS
We now present the architecture of the multi-agent system

used to model the building and its sub-systems. We define
four kinds of agents: producer agents ap ∈ Ap, consumer
agents ac ∈ Ac, distributor agents ad ∈ Ad, and environ-
mental agents ae ∈ Ae. We have A = Ap ∪ Ac ∪ Ad ∪ Ae.

The duration between two control time steps is denoted
∆t. n = hp/∆t is the number of forecast values (with hp

the forecast duration), m = hh/∆t is the number of history
values (hh the history duration).

We first introduce the notion of device d ∈ D. A device
represents information that could be associated to a real
sensor or actuator, a cost, or a virtual sensor. A device
includes an internal model used to update its forecast.

Definition 1. A device d is defined by:

• a value vd

• an internal model Md

• a forecast Pd = (vpd,i)1≤i≤n



• an history Hd = (vhd,i)1≤i≤m

Example 1. Suppose we wish to represent the price of
electricity from the electricity network, and associate it to a
forecast and history. We define a device dcelec that will hold
these information.

Among the set of devices, we distinguish the set S ⊂ D
of sensors and the set B ⊂ D of actuators. A sensor is the
software representation of a physical sensor, and an actuator
is the representation of a physical actuator. These elements
enable to interface the control system with the real system.

Example 2. Suppose that a temperature sensor measures
the internal temperature of the building. This physical sensor
can be represented in the multi-agent system by a software
sensor s1 ∈ S.

A producer agent ap ∈ Ap is an agent which purpose is
to produce thermal energy. It holds an internal modelMap

that allows to compute the energy resources ep it can pro-
duce and the energy ec consumed for this production. A
producer also holds a set of devices, and it is responsible for
their update. Among these devices, there could be sensors
and actuators.

Definition 2. A producer agent ap is defined by:

• an internal model Map : (tstart, tend, D)→ (ep, ec)

• a set of devices Dap = {di, di ∈ D}

Example 3. For instance, a heat pump can be represented
by a producer agent. It could update the actuator that con-
trols its start, and be associated to the sensors that measure
the temperature Tevap at its evaporator and the temperature
Tcond at its condenser. Its internal model could for instance
describe the energy produced depending on Tevap and Tcond:

ep = (a · Tevap + b · T 2
evap + c · Tcond + d) ·∆t

with a, b, c and d characteristic values of the heat pump.
The energy consumed for this production (here, electricity),
could be given by ec = Pmax ·∆t, with Pmax the compressor
maximal power.

A consumer agent ac ∈ Ac is an agent which performs a
comfort function using thermal energy. A consumer is asso-
ciated to an objective function oac , for instance a setpoint.
It also holds an utility function uac , which can be used to
evaluate the respect of the objective function. This utility
function can be a simple one, for instance taking into account
the respect or not of the objective, or a more complex one,
for instance varying dynamically depending on the respect
of the objective. A consumer agent also holds an internal
model Mac , that allows to compute the energy needed to
satisfy its objective function. Finally, it holds a set of devices
that could be sensors, but no actuators.

Definition 3. A consumer agent ac is defined by:

• an objective function oac

• a utility function uac

• an internal model Mac : (tstart, tendD)→ eb

• a set of devices Dac = {di, di ∈ D − B}

Example 4. For instance, the thermal comfort in the build-
ing can be represented by a consumer agent. The objective
function could be to maintain a fixed setpoint Tcons at 19°C,
and its internal model could represent a thermal model of the
building, allowing to compute the energy required to reach the
setpoint, such as:

eb = Cb · (Tcons−Tint)+UA ·
(

3

2
· Tint −

Tcons

2
− Text

)
·∆t

with Cb the building heat capacity (in J/K), and UA the
building losses coefficient (in W/K).

A distributor agent ad ∈ Ad is an agent which function is
to impact the energy transfers in the building. A distribu-
tor represents a subpart of the distribution network: the set
of distributors represents the whole network of connections
between appliances. A distributor holds an internal model,
that allows to take into account the constraints and costs
associated to the energy distribution, such as heat losses or
the energy consumption of a ventilator. A distributor holds
a set of clients – consumer agents or other distributors–, and
a set of suppliers – producer agents or other distributors. By
definition, a producer can only be the supplier of an unique
distributor, and, similarly, a consumer can only be the client
of an unique distributor. This definition leads to a hierar-
chical description of the system. Finally, a distributor holds
a set of devices that could be sensors as well as actuators.

Definition 4. A distributor agent ad is defined by:

• an internal model Md : (tstart, tend, D)→ eb

• a set of clients Cad ⊂ Ac ∪ Ad with:

∀c ∈ Cad , c ∈ Ac ⇒ (@ad1 ∈ Ad − {ad}, c ∈ Cad1
)

• a set of suppliers Fad ⊂ Ad ∪ Ap with:

∀f ∈ Fad , f ∈ Ap ⇒ (@ad1 ∈ Ad − {ad}, f ∈ Fad1
)

• a set of devices Dad = {di, di ∈ D}

Example 5. For instance, the heat distribution network
between a solar thermal collector and a storage tank can be
represented by a distributor agent. This agent will have one
supplier, the solar thermal collector, and one client, the stor-
age tank. The distributor can be associated to the actuator
that circulates the fluid in the network. Its internal model
could reflect the energy consumption induced by this distri-
bution:

eb = Pmax · γ ·∆t
with Pmax the pump maximal power (in W) and γ the control
signal between 0 and 1.

Finally, an environmental agent represents complemen-
tary information on the environment of the physical system.
These information are represented through devices. Among
these devices, there could be sensors, but no actuator.

Definition 5. An environmental agent ae is defined by
a set of devices Dae = {di, di ∈ D − B}

Example 6. For instance, the cost of the electricity from
the electricity network can be represented by an environmen-
tal agent aelec, that would handles the update of a device
dcelec representing this cost.

Each device is associated with an unique agent, that is in
charge of its update: ∀d ∈ D, ∃!a ∈ A, d ∈ Da.
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Figure 3: Main control loop

5. AUTOMATED CONTROL SYSTEM
This description of the physical system as a multi-agent

system allows for the use of an automated control mecha-
nism. In this section, we first present the main loop of the
control system, before focusing on the optimization step.

5.1 Main Control Loop
The main loop of the control system handles all the op-

erations executed at each time step, resulting in the control
of the physical system. Figure 3 graphically presents the
different stages involved.

The time step begins with the reception of updated in-
formation from the physical system (i.e. updated sensors
values). The initial value of each of the sensor is updated
using the value measured by the corresponding physical sen-
sor. Then, each agent a ∈ A computes the forecast of the
sensors it is in charge of, using the sensor internal model.

Using its internal model, each consumer agent then builds
a plan describing its energy needs, and the corresponding
utility. Similarly, each producer agent builds a plan describ-
ing the resources it is able to produce, and the associated
costs. Based on these data, a distributed optimization step
takes place, based on the distributors. This step, further de-
tailed in Section 5.2, combines different algorithms allowing
to select, optimize, and allocate the resources according to
the chosen criteria. This step builds for each producer, con-
sumer and distributor agent a plan of the resources they will
receive and/or have to provide. Using the actuators internal
models, these plan are converted to a determined state of all
the actuators in the system.

The actuators values for the next step are then assigned
to the physical system actuators, which controls the system.

5.2 Distributed Optimization
The distributed optimization step is based on the distribu-

tor agents. The objective of this step is to maximize the cho-
sen criteria, while taking into account the specificities of the
physical system. For instance, when low cost resources are
available, such as heat produced by a solar thermal collector,
they have to be used before more expensive resources, such

as those produced by an electrical resistance. Moreover, the
mechanism has to anticipate the production of the resources,
allowing for instance to wait before using the resistance if a
solar production has been forecasted.

The proposed mechanism presents the following charac-
teristics: it allows to select the cheapest (in terms of the
chosen criteria) resources on the forecast duration; it al-
lows to simultaneously optimize interdependent appliances
(for instance, in Fig. 1, the heat pump performance depends
on the internal temperature, the heat recovery ventilation
performance, the air flow, and the water heater middle tem-
perature, that all dynamically change over time); it allows
to take into account the cost of the auxiliaries; and finally,
it allows to respect the inhabitants’ comfort specifications.

To build this mechanism, we combined resources selection,
resources optimization, and resources allocation algorithms.
The mechanism runs as follows. At each time step, a dis-
tributor first retrieves the needs of each of its clients. When
all the information have been received, it updates its own
needs plan, consolidating the data from its clients and com-
puting a local utility. This consolidation is done by adding
the needs of each client and the additional cost introduced
by the distributor, computed using its internal model:

∀i ∈ [1, n], e(i) =
∑

c∈Cad

eb(c, i) +Mad(ti, ti + ∆t, D)

The utility associated to each of these needs is the maximum
of the clients utilities at this time step. This plan is then
available for the suppliers of the distributor, allowing for an
automated hierarchical update of the plans. Similarly, the
distributor retrieves the resources plan from its suppliers.

The objective is then to select, among the available re-
sources, those which optimize the chosen criteria, while meet-
ing the clients needs. To do so, the following process is used:

1. if the global needs are not covered by the total set of
available resources, we select all of them and compute
the resource allocation phase. If not, we go to step 2,

2. the distributor and its suppliers compute a local opti-
mization of the resources, that allows to take into ac-
count the effect of energy distribution on energy pro-
duction. Using their internal models, they converge
on a solution maximizing their performance, but that
could not satisfy the clients needs. If the obtained
resources cover the needs, we compute the resource
allocation. If not, we go to step 3,

3. to obtain a set of resources as close as possible of the
needs, we start from the initial resources set of step 1,
and progressively increase the performance of each pair
of distributor and supplier (increasing the performance
decreases the size of the available resources), until the
set of resources is as close as possible from the needs.

At the end of this phase, the plan of the distributor holds
the selected resources, which have been optimized with its
suppliers. The next phase it to allocate these resources to its
clients. For each time step of the plan, the selected resources
are attributed depending on their utility and needs.

According to the results presented in [12], we chose to use
flexible and social agents’ behaviors, to achieve the most
efficient result. This allocation builds a production plan
for each supplier of the distributor, and a supplier plan for



Sensors Twtt Storage tank temperature (top)
Twtm Storage tank temperature (middle)
Twtb Storage tank temperature (bottom)
Tsol Solar thermal collector temperature
Text External temperature
Tint Building temperature
Told Outgoing air temperature
Tnew Incoming air temperature

Actuators chp Heat pump (stop, start)
csol Solar pump (between [0, 1])
cres Electrical resistance (stop, start)
cvent Ventilator (between [0, 1])
cheat Heating pump (between [0, 1])

Table 1: Sensors and actuators of the device

each of its clients. The hierarchical description of the sys-
tem guaranties the convergence of the mechanism. Here, we
suppose that all agents can be trusted, and that they an-
swer to all information requests. Indeed, since the goal is
to provide a mechanism able to produce results as good as
existing solutions, we do not take into account these possi-
bilities, which could be added in future versions.

At the end of the process, the distributors and the pro-
ducers have all an updated production plan, and the final
step of the main control loop can be successfully executed,
leading to the control of the system.

An important advantage of this process is that it is fully
automated, once the agents have been defined. In particular,
specific rules for each appliance do not have to be defined,
and the mechanism automatically adapts to modifications
in the agents organization.

6. APPLICATION
In this section, we present the application of the proposed

approach to a compact unit that provides heating, ventila-
tion and domestic hot water in a low-energy building. We
first describe the modeling of the system, before presenting
experimental results.

6.1 System Modeling
The objective was to design the control system of a com-

pact unit similar to the one introduced in Sect. 3.1, Fig. 1.
The available sensors and actuators are described in Table 1.

The unit combines a heat recovery ventilation, a storage
tank, a heat pump, a solar thermal collector and a heating
electrical resistance. We model these elements as follows
(Fig. 4): the heat pump, the solar thermal collector and the
electrical resistance are producer agents; the thermal and
domestic hot water comfort are consumer agents.

We use the heat pump internal model presented in Ex-
ample 3. For the electrical resistance, ep = ec = Pmax ·∆t
(with Pmax the resistance power in W ), and, for the solar
thermal collector (from standard [10]):

ep = S ·G ·

(
η0 − a1 ·

Tm − Ta

G
− a2 ·G ·

(
Tm − Ta

G

)2
)
·∆t

with S the collector surface (m2), G the solar irradiation
(W.m2), η0 the optical factor, a1 and a2 loss coefficients
(W.m−2.K−1), Tm the collector mean temperature and Ta

the external temperature (K). The collector does not con-
sume energy, therefore ec = 0.

Weather
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Thermal comfort

Tint, Tcons
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Electricity
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Told, Tnew
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cvent

Hydraulic network
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Heating network
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Heat pump
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Figure 4: Modeling of the system using the proposed
architecture

The consumer agents represent comfort functions. The
building thermal comfort is represented by a setpoint fixed
at 19°C during the [0h, 10h] and [18h, 24h] periods of week
days, at 16°C between 10h and 18h, and at 19°all days dur-
ing weekends. The parameters Cb and UA of the building
model were learned using a least squares method and a ther-
mal simulator of the building [15]. The domestic hot water
comfort is represented by a fixed 50°C setpoint at the top
of the water heater, which reflects the comfort provided by
existing systems.

The following distributor agents model the energy distri-
bution network:

• an agent represents the ventilation network, including
the ventilators and the heat recovery exchanger. It has
one client, the storage tank, and one supplier, the heat
pump. Its internal model represents the ventilators
energy consumption:

eb = Pmax · (a0 + a1 · γ + a2 · γ2) ·∆t

with Pmax the ventilator maximal power (W ), a0, a1,
a2 characteristic values of the ventilator and γ the com-
mand between 0 and 1,

• an agent represents the hydraulic network between the
solar thermal collector and the water heater. It has
one client, the storage tank, and one supplier, the so-
lar thermal collector. Its model is similar to the one
described in Example 5,

• an agent represents the storage tank. It has two clients,
the domestic hot water comfort and the heating net-
work, and three suppliers, the ventilation network, the
electrical resistance and the solar hydraulic network,

• finally, an agent represents the heating network be-
tween the storage tank and the building incoming air-
flow. It has one client, the thermal comfort, and one
supplier, the water heater. It includes a pump, which
model is similar to the one presented in Ex. 5.

Two environmental agents represent the system external-
ities: the first one represents the weather forecast, corre-
sponding to the external temperature sensor; the second one
provides the operating and environmental costs for the elec-
tricity coming from the electricity network.



Figure 5: Sensors and actuators values of the com-
pact unit controlled by the multi-agent system dur-
ing a one day period, as measured in TRNSYS

The internal models for the sensors are based on persis-
tence or historical models, except for the inbound and out-
bound airflows, which use the heat recovery exchanger per-
formance factor. The actuators internal models represent
the implementation of the production plan of the agents.

6.2 Experimental Results
The compact unit presented here represents an existing

prototype. During the design of this prototype, power sys-
tems and control engineers have used a dedicated thermal
simulation tool, trnsys [15], to design the system and its
control. To validate the proposed approach, we compared
its results with those of the existing control system.

To do so, the multi-agent system and trnsys were linked
together: at each time step, trnsys computes the thermal
simulation of the building and compact unit, and updates
the sensor values; using these values, the multi-agent sys-
tem computes the next actuators values, and sends them to
trnsys; these values are then used by trnsys during the fol-
lowing time step. The multi-agent system was implemented
in Java, using the interface of Repast to visualize results.

Figure 5 illustrates the obtained results. It represents the
outputs of trnsys for a one day period. The first graphics
represents the sensor values – for instance, the external tem-
perature Text varies between -4°C and 6°C –, and the second
one represents the actuators values. We observe oscillations
of the heat pump command, corresponding to periods when
heating is needed, with periodical freezing due to the envi-
ronmental conditions. The heat pump uses a 6 minutes short
cycle timer, but has to be stopped regularly to launch a de-
frost cycle. Between 10h and 18h, the setpoint decreases:
heating is not needed any more, and the heat pump remains
stopped. The variations of the ventilator command result
from the optimization of the heat pump performance and
the ventilation distributor.

To validate the interest of the approach, we compared the
results of different control systems:

Figure 6: Results of one year simulations of the com-
pact unit operating in a low-energy building with
different controls, using TRNSYS

1. a basic control system, based on reactive rules using
temperature setpoints,

2. an optimized control, designed by power systems en-
gineers to take into account the unit specificities. It
includes in particular a mechanism to anticipate the
heating needs, and a linear control of the actuators to
optimize the energy transfers,

3. the multi-agent control system.

Figure 6 presents the results obtained with a one year sim-
ulation of the device in a low-energy house, using trnsys.
The total duration of a one-year simulation is 9 minutes,
using a control time step of 6 minutes. On a real system,
the control time step is usually 1 minute (1 Hz vs the 160
Hz obtained here). The multi-agent control system increases
the heating comfort by 35 % (-14h/year of discomfort) com-
pared to the optimized control system. Compared with a
basic regulation, the improvement is even higher: +71 %,
65h/year. Moreover, using the multi-agent control, the num-
ber of hours when high deviations from the setpoint occur
(more than 1°C) decreases by a factor 2. As for the domestic
hot water comfort, it is respected in all solutions.

When we consider the annual electrical consumption, the
multi-agent control leads to a 0.7 % increase (+15 kWh/year)
compared to the optimized control. A more detailed anal-
ysis shows that the ventilation consumption decreases by
4 %, when heating increases by 1 % and domestic hot water
production by 3.3 %. Note that the optimization of the aux-
iliaries consumption that we observe here was not possible
in previous control systems. However, the domestic hot wa-
ter production increases its use of the electrical resistance,
which leads to a global consumption increase.

Finally, the operating cost incurs a 2.5 % increase over the
year when using the multi-agent control system (+5.2 euros).
The cost of the ventilation and heating decreases by respec-
tively -1.5 % and -2.8 %, but provides an improved heating
comfort. However, the cost of the domestic hot water pro-
duction significantly ponders the results, with a +19 % in-
crease. Indeed, the current comfort function does not enable
anticipations that could improve the energy consumption.

To conclude, the multi-agent control system managed to
significantly improve the thermal comfort in the building,
with a limited increase of the operating costs. Considering
the additional value of the enhanced reusability and flexibil-



ity of the system, these results are very interesting. More-
over, the control patterns produced by the multi-agent con-
trol system are different of those obtained using state-of-
the-art control techniques, which means that similar results
could be achieved with very different strategies. This leads
to consider future interesting complementary optimizations.

7. DISCUSSION AND FUTURE WORKS
As the first industrial application of the approach led us to

implement it on a centralized automaton, the proposed ap-
proach was not evaluated in a distributed context. It would
be interesting to do so, to increase the number of potential
applications. We also consider extending the approach for
home management systems, by handling electrical appliance
as well as thermal ones.

Moreover, the approach was designed to be easily ex-
tended. Therefore, we plan to introduce new features, in
particular regarding the prevision of the inhabitants’ behav-
iors [9, 4]. Indeed, such models can easily be introduced
using a combination of agents’ internal models and environ-
mental agents.

When we consider the thermal comfort function used in
this paper, its objective is to maintain a specific tempera-
ture setpoint in the building. Indeed, one of our goals was to
provide at least the same comfort level as the existing con-
trollers, which use such a function. In future works, we plan
to explore the use of more complex functions, which could
lead to improve the trade-off between comfort and energy
consumption.

Finally, at the application level, upcoming improvements
include the evaluation of dynamic variations of the electric-
ity prices, and the introduction of self-adaptation capabili-
ties in the agents. The objective is to allow an autonomous
adjustment of their internal models to the environment they
are deployed in.

8. CONCLUSION
In this work, we proposed an approach to design and opti-

mize the control of thermal systems in buildings, focusing on
functions such as heating, ventilation, air conditioning and
domestic hot water production. This approach combines a
modeling step that describes the building as a multi-agent
system, and a mechanism that automatically controls the
building, based on this description.

The physical system combines sensors, actuators, and var-
ious devices, which are modeled as producer, consumer, dis-
tributor and environmental agents. Using the agents’ inter-
nal models, the control mechanism determines their needs
and resources. Then, it combines the selection, the opti-
mization, and the allocation of the resources to optimize the
chosen criteria. At the end of the process, the actuators state
is fixed. To control the system, these values are assigned to
the physical actuators.

We applied this approach to the control of a compact
unit that provides heating, ventilation and domestic hot-
water production in a low-energy building. The proposed
approach managed to improve the previous control system
results, leading to a 35 % increase of the thermal comfort,
with a 2.5 % increase in costs. The approach will soon be
evaluated on a physical test bench to validate these results
in experimental conditions.
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