

VOLTTRON: An Agent Execution Platform for the Electric
Power System

Bora Akyol, Jereme Haack, Selim Ciraci, Brandon Carpenter, Maria Vlachopoulou, Cody Tews

Pacific Northwest National Laboratory, Richland, WA, USA 99352

{bora,jereme}@pnnl.gov

ABSTRACT

Volttron is an agent execution platform that is engineered for

use in the electric power system. Volttron provides resource

guarantees for agents in the platform including memory and

processor utilization; authentication and authorization services;

directory services for agent and resource location; and agent

mobility. Unlike most other agent platforms, Volttron does not

depend on a single agent authoring language. Instead, we chose

to design and implement Volttron as a platform service and

framework that is decoupled from the agent execution

environment. A prototype implementation of Volttron has been

written in Python (using Python v2.7.2) and we have executed

agents written in Python and Java and as shell scripts. The

intended use of Volttron is in the power distribution system for

managing distributed generation, demand-response, and plug-in

electric vehicles.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial

Intelligence—Multi-agent systems

General Terms

Management, Security

Keywords

Multi-Agent systems, Mobile Agents, Agent Security, Electric

Power System, Demand-Response.

1. INTRODUCTION
Volttron is an agent execution platform engineered for use in the

electric power system to support mobile and stationary software

agents to perform both information sensing and control actions.

Devices deployed in the electric power system have to meet very

strict requirements for availability, reliability, and security

which imposes requirements for agent execution platforms as

discussed in greater detail in [3]. To summarize, any agent

platform that is used in the electric power system must provide:

Resource guarantees for agents and the underlying

platform: Agents in the electric power system may perform

both information sensing and control tasks. In order to execute

their tasks reliably, the agents require computational resources.

If the platform cannot provide guarantees for available

processing power, memory, or storage, then the agents may not

be able to complete their tasks. On the other hand, if an agent

consumes too much memory or processing power, it will

adversely impact other agents or even the base platform

functions. Therefore, a platform that provides resource

guarantees for reliable execution of agents is highly desirable.

Authentication and authorization: To meet cyber security

requirements, all agent software that executes in the power

system must be validated before execution is allowed. All data

carried or produced by agents must be protected against

tampering. In addition to these authentication tasks, activities

performed by agents must be authorized according to the

policies instituted by the electric utilities. For example, a

metrology agent may not have a need-to-know to access data in

a smart meter related to power quality measurements or network

authentication credentials.

Directory services: Directory services are used for access to

credentials and for determining nearby resources and devices.

Use of directory services allows us to avoid hard-coding

information into deployed devices and supports the mobility and

assignment of tasks to agents.

An agent mobility service: In order to accomplish their tasks,

mobile agents need to be able to move between different

devices. We chose to incorporate all aspects such as packaging,

transport, determination of destination, and validation of agents

into Volttron. This allowed us to keep the agents as simple as

possible. Volttron not only provides services for agent mobility

but also defines two classes of storage for agents. Mutable

luggage is used for agent data collection; immutable luggage is

used for configuration such as tasking that the agent needs to

carry as it traverses the system. Incorporation of the agent

mobility service into our framework also decouples the mobility

of agents from the choice of a specific agent execution

environment and authoring language. Additionally, an agent’s

migration path is preserved as part of the immutable luggage.

The research presented in this paper creates a distributed agent-

based framework, referred to as Volttron, for use in the electric

power system. Agents can be used to add "intelligence" to the

sensors and controllers used in today’s electric power system in

an elegant and predictable manner.

Our research is significant because it lays the software platform

groundwork for distributed operation and control of the electric

power system, especially at the distribution layer where end

customers are being served. Unlike other agent platforms,

Volttron does not depend on a single agent authoring language.

Instead, we designed and implemented Volttron as a platform

service and framework that is decoupled from the agent

execution environments. A prototype implementation of

Volttron has been written in Python (using Python v2.7.2), and

we have executed agents written in Python and Java and as shell

scripts. The intended use of Volttron is in the distribution system

for managing distributed generation, demand-response, and

plug-in electric vehicles.

This paper presents the results of an ongoing research project

with the goal of introducing our work to a broader community

and getting feedback. The rest of this paper is organized into

four sections. In Section 2, we describe prior work as it relates to

Volttron and present potential use cases and applications to

demonstrate the need for our platform. In Section 3, we present

the detailed design of our software framework. In Section 4 we

focus on agent applications that do or can use Volttron. We

present our future work directions in the conclusion.

2. PRIOR WORK
This section describes work related to our Volttron research.

2.1 Platform Software Options
Several technologies initially appeared promising but on further

investigation had drawbacks for our needs. One is Squawk VM

[18], an open-source platform for wireless sensors. Certified on

the Java Micro Edition Information Module, it provides

developers with a standardized Java language. A major

advantage of Squawk is that it can run directly on hardware

without an operating system. In Squawk, the entire state of an

application (treated as an isolate) is stored as java objects that

can be serialized to disk/stream. However, Squawk had stability

issues and limitations in development environment and

capabilities.

Another initially promising technology is JADE (Java Agent

Development Framework). JADE is a software framework fully

implemented in Java [4]. It provides a set of Java classes that

allow a developer to build a FIPA-compliant multi-agent system

quite easily. However, resource management, an important

requirement for our platform, is not strongly supported. We also

questioned how well supported JADE currently is because

activity on the JADE website and mailing list seems to have

dropped off.

In general, we were unable to find the combination of security,

scalability, and resource management we needed in other agent

frameworks. This led us to write specifications for our own

platform to handle these issues and provide a language-agnostic

environment to run existing agent frameworks on top of ours.

2.2 Agent-Based Solutions
Software agents provide a powerful method of addressing the

scalability and resilience issues inherent in the power grid as

discussed in [8] and [15]. Several existing projects use this

paradigm for various use cases in the power grid, including [16],

which uses a community of different agent types to diagnose

power system faults.

Many of these projects detail an approach for using agents, but

their demonstration is limited to simulation or proof-of-concept

implementations that would not operate well in the field. Our

research addresses these problems by providing a platform that

handles the security and resource constraints and allows other

researchers to focus on the operation of their agents. Therefore,

any previous work done in the agents field can be

accommodated by our platform. We illustrate this in Section 4

with examples of previous agent systems.

AgentScape [20] was in development at the same time as this

project and provides many interesting parallels with our

research. However, it does not discuss resource management,

which is important in the power system environment. We will be

investigating AgentScape further.

3. VOLTTRON PLATFORM

Figure 3-1: Volttron Platform Components

3.1 Architecture and Design
This section discusses the architecture and design details of the

Volttron agent execution platform. The platform building blocks

are shown in Figure 3-1. The agent execution platform (AEP)

exists between the operating system and the agent execution

environments. As shown in the figure, Volttron supports

multiple agent execution environments (AEEs) such as Java,

Python, and platform-specific binary objects. The Volttron

platform consists of communications services (CS); resource

manager (RM); authentication and authorization (AA); directory

services (DS); agent instantiation and packaging (AIP); and

information exchange bus (IEB) modules. The AA module

includes a policy and trust store as well as an optional policy

manager function. The IEB module includes a local store (LS) to

provide non-volatile storage for agents. To summarize, AIP is

responsible for packaging, instantiation, and coordination of

agents’ movement. The AA module provides validation of agent

payloads, authenticates peer platforms, and handles public and

private credentials. The DS module provides name, resource,

and public credential to location and network identity mappings.

RM is the gatekeeper for the platform. It decides if the platform

has enough resources left to accept the execution of an agent.

RM also manages access controls for AEE “containers.” Finally,

RM monitors use of resources and either warns or terminates

misbehaving agents. The CN module is responsible for reliable

and secure transfer of packaged agents and peer-to-peer

communication between Volttron platforms.

Volttron is currently implemented in Python v2.7 and leverages

many existing Python modules developed by the open source

community. In the remainder of this section, we discuss Volttron

module details focusing on functionality and interfaces.

3.1.1 Agent Instantiation and Packaging
The AIP module controls the workflow for sending and

receiving Agent Transport Payloads (ATP) including their

creation, extraction, and interpretation. ATP contents are

illustrated in Figure 3-2 and include the agent code, the agent

execution contract, immutable, and mutable luggage (read-only

and writable files). In Section 3.1.2, we describe the Scope of

Influence (SOI) concept and also discuss the signatures shown

in the figure. AIP extracts the contents of an ATP and places the

contents of the luggages in the virtual file store in a location

where the agent can access them.

Figure 3-2: Agent Transport Payload

AIP also controls and implements the main workflow of agents

entering and leaving the platform. An agent payload enters the

platform via the communication module and is sent to the AIP

module. The AIP module then performs security and resource

checks. The authorization and authentication information in the

payload is passed to the AA module (as detailed in 3.1.2). If

verified by the AA, the resource requirements of the agent,

detailed in the Execution Contract, are then passed to the

Resource Manager (section 3.1.3). If sufficient resources are

available, then the Resource Monitor returns a process ID for the

agent to track resource usage. If either of these checks fails, then

the agent is rejected and an error notification is returned to the

sending platform. If these checks pass, then the AIP extracts the

agent code, immutable luggage, and mutable luggage. The

immutable luggage contains read-only information, such as

configuration files, provided by the Initiator. The mutable

luggage is a dynamic payload that the agent brings with it to

each host, which helps the agent maintain state (these are the

equivalent of the Agent Containers in AgentScape [20]). After

extraction, the AIP notifies the AEEManager, which will then

start the agent in the appropriate Agent Execution Environment

with the Resource-Manager-supplied process ID.

After an agent finishes its task on a platform, it uses the

Directory Service to find an appropriate platform to move to

based on an itinerary or by searching for certain properties.

Upon finding a target, it requests to move via the IEB which

provides a mechanism for agents written in any language to

communicate with the rest of the platform. When the AIP

receives an agent movement request, it re-packages the agent by

using the same agent code and immutable luggage contents it

received but adding the updated mutable luggage. AIP then uses

the CS Module to send this payload to the target platform.

3.1.2 Authentication and Authorization
When considering the security properties of confidentiality,

integrity, and availability, electric power system utilities place

the highest priority on availability and the lowest on

confidentiality. The security property of integrity (source

integrity/identity and data integrity) contributes to reliable

operation by minimizing the risk of system compromise and by

allowing detection of system compromise that does occur. The

AA module directly addresses integrity while providing the

infrastructure for confidentiality. For the remainder of this

paper, we assume that devices using Volttron have sufficient

computing resources to perform cryptographic authentication,

authorization and trust functions, including asymmetric

cryptography used for identification and integrity. Note that

even low-cost micro-controllers can now be obtained with

hardware cryptography support; therefore, this is not a

burdensome requirement.

3.1.2.1 Usage Scenario
In Section 3.1.1, we discussed how the AA module is used as

part of the workflow of moving agents across the electric power

system. The primary function of the AA module is providing

cryptographic integrity and authentication services to other

modules in the Volttron platform. The AA module performs this

task by using public key cryptography (specifically X509v3

certificates [6]); but instead of a strictly hierarchical system, it

allows for a flatter trust model, which will be described in the

next section. For most commonly seen operations, the public

certificates are retrieved via the directory services module,

which also alleviates the need for an explicit revocation model

that uses a certificate revocation list [9]. Our approach is similar

conceptually to online certificate status protocol with certificate

stapling [7]. It is important to note that Volttron provides

integrity services for agent code; agent tasking and

configuration; and data carried by the agents.

3.1.2.2 Scope of Influence

The electric power system follows a fairly hierarchical

organizational structure. A country is divided into regions. In

each region (simplistically), there are balancing authorities,

regional transmission operators, power generation suppliers, and

distribution utilities. Within a distribution utility, power flows

through distribution lines to distribution substations and then to

feeder lines that deliver power to customer premises. Hence, the

intelligence and distributed computing capabilities used in the

electric power system must follow an organizational structure

close to the way power flows through the system. With this in

mind, we have defined SOI as an organizational boundary

within which a set of software agents can communicate,

cooperate, and exchange information. Each SOI has a unique

identifier.

Figure 3-3: Scopes of Influence

An SOI has one or more non-human initiators (i.e., computing

entities) that are responsible for assigning tasks and dispatching

agents. For this project we have defined a hierarchical structure

composed of five SOIs as shown in Figure 3-3. Within a utility

SOI, there are multiple substation SOIs. Within a substation

SOI, there are multiple feeder SOIs. Within a feeder SOI, there

are multiple customer premises SOIs. Note that while the utility,

substation, and feeder SOIs may be under the same

administrative authority, the customer premises SOI is more

than likely under a different administrative authority; i.e., the

customer. The third-party SOI represents entities that are not

Utility SOI

Substation SOI

Feeder SOI

Customer Premises
SOI

Third-party
SOI (e.g.
Virtual
Power
Plant

Provider)

utilities and not owned by a utility that perform functions within

the power system. An example of a third-party SOI is a virtual

power plant provider. Note that a customer may choose to trust a

third-party SOI, even if the utility serving the customer does not.

The basic properties of the SOI are summarized below:

1. An SOI consists of electric power system devices

(referred to as “devices” in the remainder of the text) that

are capable of hosting software agents.

2. Each SOI has at least one initiator. The SOI initiator

serves as the trust root for the SOI. If the initiator becomes

unreachable, then a new initiator can be selected and all

devices shall continue to operate with credentials cached

in their local trust store. Based on an SOI’s trust policy, an

initiator can extend trust to an external entity by signing

its credentials to form a trust chain very similar to PGP

[1].

3. The human administrators of an SOI can upload/enable

agents to be run within an SOI. Each SOI has a policy for

determining whether an agent is authorized to run within

an SOI. This policy is distributed to all devices within an

SOI. An SOI may ban all external agents or it may choose

to authorize agents received for execution from other SOIs

through policy-based trust negotiation.

4. Initiators are responsible for assigning tasks and

dispatching agents. Each SOI has at least one initiator. If

there is more than one initiator in an SOI, it is assumed

that the initiators collaborate to choose a master initiator

with all other initiators in the SOI serving the master

initiator. The initiators are provisioned by the

administrator of the SOI.

5. Initiators are also responsible for providing ancillary

services to the agents within an SOI. The initiator’s

ancillary services may include (but are not limited to)

agent discovery and directory services, trust services (e.g.,

reputation management and trust negotiation), and

communication between this SOI and its parent SOI. An

initiator may also participate in network services such as

routing and name resolution.

6. The task assignment is performed based on the agent

capabilities. An initiator has a task list (signed by an SOI

Administrator) that contains a set of tasks that need to be

performed. For example, a task at a feeder SOI may be to

check power usage to determine whether there is theft of

power on that feeder. The task list at the Initiator may

include tasks that need to be performed periodically. A

task may be composed of other tasks. The agent library

includes a catalog of agent metadata that are organized by

task in order to choose an appropriate set of agents to

perform each task. An agent may be mobile or stationary.

Section 3.1.1 describes the process by which the Initiator

prepares an agent for deployment.

Identification Credentials:

Volttron supports identification of core entities in the system:

SOI organizations, SOI administrators, devices, creators, and

initiators.

 Each SOI Organization will possess an X.509 key pair

(private key and public certificate) intended for

identification and signature use and signed by a

recognized certificate authority. A utility may choose to

be its own trust root and operate a CA.

 Each SOI Administrator will possess an X.509 key pair

intended for identification and signature use and signed by

the SOI-owning organization. The certificate will identify

the owning organization.

 The Initiator will possess an X.509 key pair signed by the

SOI Administrator.

 Each device on which an Agent Platform is installed will

possess a network address and an X.509 key pair. Only

one Agent Platform will be installed per device and they

will share the same identification. The IP address and the

X.509 certificate and public key will be available to other

entities via Directory Service lookup.

 Each Agent Creator will possess an X.509 key pair

intended for identification and signature use and signed by

a certificate authority recognized by the SOI

Administrator.

Each deployed agent will possess an identifier composed of (or

mapped to) the company name, software name, software

version, and an instance ID.

3.1.2.3 Authentication and Authorization Module

Functions

The AA module provides integrity services to the framework

including identification services, source integrity, and agent

transport payload integrity. As described in the AIP workflow in

Section 3.1.1, the AA module is mainly called by AIP and DS

modules. To perform its functions, the AA module

communicates with peer AA modules on other devices that are

part of the SOI. The AA module also uses directory services to

retrieve credentials of devices within an SOI. The AA module

provides programming interfaces to compute a cryptographically

signed hash; to verify a signed hash received from a peer; to

validate requested privileges against configured platform

policies; and to perform credential look-ups using directory

services.

3.1.3 Resource Manager
The RM module is responsible for controlling resources

assigned to an agent process and limiting the use of those

resources based on the contract presented during agent

instantiation. Resources that may be controlled by the RM

include, but are not limited to, CPU, memory, and I/O devices.

An agent that is detected consuming resources above the

contracted amount will be subject to termination if it fails to

correct the action upon notification from the RM. The RM may

use kernel-level, operating-system-dependent methods to

implement the required functions.

3.1.3.1 Usage Scenario

An agent arrives on the platform requesting execution. It passes

validation checks and is unpacked and prepared for execution.

Before reserving the required resources, a check is made against

static capabilities and resources to ensure the platform is capable

of supporting the agent. If the platform can support the agent,

then dynamic capabilities are checked and an attempt is made to

reserve the required resources. If the resources are available and

successfully reserved, the agent is free to execute in the reserved

environment. If the RM detects that the agent is operating

outside the bounds of the execution contract, then the RM

attempts to notify the agent of the contract breach and give it

sufficient time to correct the situation. If the agent fails to

correct the breach of contract in a timely manner, the RM

terminates the agent. In our prototype implementation, RM

manages the following resources: CPU (CPU sets, affinity,

maximum utilization), memory (maximum utilization), I/O

devices (access [read/write], maximum utilization).

3.1.3.2 Agent Execution Contract Definition and

Negotiation

The agent execution contract defines the execution agreement

between the agent and the platform. The agent agrees to provide

some service while executing within the bounds it established

with the platform and the platform agrees to provide the agent

resources as long as it does not abuse or misuse the platform or

the leased resources. Abuse and misuse can be difficult to detect,

but the platform will make its best effort and reserves the right

to terminate misbehaving agents.

Like most contracts, some things are negotiable and some are

not. Non-negotiable items may include the hardware

configuration and other properties that may prevent the agent

from executing its negotiating code. Negotiable items are those

things that may change dynamically or that may not prevent an

agent from executing. Non-negotiable items should be defined

statically and in a common format that can be read, checked, and

given a simple response. Once it is established that an agent has

the ability to execute in a restrictive environment, a negotiation

phase is entered where the agent and the platform are allowed to

banter back and forth to form an agreement. Either party may

terminate negotiations at any time.

Contract terms may be set for three classes of items:

authorization, capabilities, and resources. Authorization may be

thought of as a specialized capability. An example of

authorization is an agent requesting to run with elevated

privileges or to open a privileged port. Capabilities cover the set

of features or services the platform, operating system, or other

software may provide. Resources are physical or virtual devices

on the platform. Capabilities can be broken down further into

two types: hard and soft. A hard capability is one that is unlikely

to change without a modification to the system that would

require the platform to stop hosting agents (e.g., a change

requiring a reboot). Soft capabilities are those that are negotiable

or that may change without stopping the platform service.

Likewise, resources can be static or dynamic. As the platform

evolves, there will be different versions of the platform software

as well as the agent execution environments. In a network,

multiple versions of the platform framework will exist.

Therefore, when an agent moves to a new platform, part of the

validation is to ensure that the versions of the AEE and the

platform are compatible with this agent.

The contract must be in a format that is expressive enough to

define the requirements of the agent and the platform while

flexible enough to allow for new features and for skipping items

the agent or platform either does not understand or does not

support. A text format is best suited for this as binary formats

are fragile in the face of change. Therefore, the selected format

of the contract is an RFC 2822 message [11] supporting MIME

multi-part message bodies (RFC 2045 [12]) and non-ASCII

header extensions (RFC 2047 [17]). Requirements are set in the

message headers and may point to sections in the body for

additional flexibility.

3.1.3.3 Implementation on Linux 2.6.x/3.x

The interface above may be implemented on a Linux system

using a combination of cgroups, Linux Containers, Linux

capabilities, procfs, sysfs, fork, and exec. Data needed for

get_static_resources() and check_resources() could be gathered

from procfs, sysfs, and system calls. Agent environments would

be reserved by calling reserve_resources(), which would likely

fork, closing all files; attempt to create a Linux container, which

uses cgroups; set the appropriate capabilities; drop privileges;

and return the child process ID as the reservation_id.

exec_resource() would cause the process to exec the given

executable with the given arguments and environment, which

could be passed to the process using a UNIX domain socket or

set in the virtual file system. cancel_reservation() would notify

the process to continue without giving it an executable, causing

it to terminate without performing further actions.

3.1.4 Communication Services
The CS module provides a remote procedure call (RPC)-based

communication channel to other devices in an SOI as well as to

the initiators of other SOIs. We rely on using the TCP/IP stack

built into our operating system choice (Linux). All platform

modules communicate with their peers using the RPC

mechanism provided by the CS module. The communication

integrity and confidentiality are provided by SSH using public

keys. Just like the X509 certificates used by the AA module, the

SSH public keys are retrieved by querying the directory services

module. To avoid a circular dependency, a small subset of

security credentials are pre-configured for each device as part of

its provisioning and enrollment. In our Python implementation,

we use paramiko [5] for SSH and bjsonrpc for RPC [13].

3.1.5 Information Exchange Bus
The IEB provides a method for agent-to-agent and platform-to-

agent communications. It also provides for local storage and

retrieval of persistent and temporary data. Agents can

communicate with other agents on the same platform or on

remote platforms using a topical publish/subscribe pattern for

the communications. Each agent is automatically subscribed to a

platform-to-agent topic that allows the resource monitor to send

notifications. Since file operations are provided by most

programming languages, the IEB implements a

publish/subscribe system using a virtual file system to ensure

maximum flexibility for interacting with the agents.

Agents do not communicate directly with the IEB Topic

Manager. AEEs have an API for the agents to call into to

subscribe. AEEs go through the AEEManager to talk to the IEB,

which returns a topicID/Filename to the agent. The agent then

works with the file directly or through an AEE-specific API.

3.1.6 Agent Execution Environments
AEEs are where the agents are actually run and can be

implemented in a variety of languages and frameworks. AEEs

are specific to the environment agents require. Our initial

implementation provides an AEE for Java, Python, and

executable as examples for building additional environments.

Each AEE needs to communicate with the AEEManager in

order to enable receiving/sending an agent. They also route

agent requests to the AEEManager via the IEB so that modules

in the platform have a single point of contact with the agents.

When an agent is created, it can be given a standard topic that is

monitored by the AEE. The agent makes movement requests,

gets notified of state changes, etc. via the topic.

3.1.7 Directory Services
The DS module allows an agent to dynamically discover

capabilities (e.g., available software libraries and hardware

sensors) of the devices in the electric power system. Typically,

an agent starts this discovery scenario by sending the list of

required capabilities to the DS. The DS, in turn, executes a

query and returns the list of potential nodes that can host the

agent. Using this list, an agent decides on a node and issues a

transfer request.

To realize the scenario described above, the DS module should

support the following functional and non-functional (FR/NR)

requirements (FR stands for functional requirement, and NR

stands for non-functional requirement):

 FR 1: A publishing mechanism that allows the

platform modules to announce/denounce capabilities

and their network addresses.

 FR 2: A name resolution system for translating the

names of sensor nodes to up-to-date network

addresses.

 FR 3: A mechanism for querying capabilities of a

specific node.

 NR 1: Ability to provide discovery regardless of

isolations: due to disconnections, some sensor nodes

can become isolated. When this happens, the agents

should still be able to discover the capabilities of

these nodes using the DS module.

 NR 2: Ability to work independent of underlying

networking hardware.

 NR 3: Provide scalable publishing/querying.

 NR 4: Support secure communications.

There are many different technologies that can address these

requirements. We chose to focus on Lightweight Directory

Access Protocol (LDAP), Simple Service Discovery Protocol

(SSDP), and Distributed Hash Table (DHT) because they are

publically available and are used successfully in software

systems with similar requirements. To help determine which

technology to use, we conducted a trade-off analysis among

these three technologies. In this section we first discuss the

trade-off analysis and how we decided on the technology. We

then discuss the directory service implementation.

3.1.7.1 Trade-off analysis
For the trade-off analysis, we have conducted a survey on three

technologies and categorized their support for the requirements

into the following: i) supported, the requirement is supported

without modifications to the existing implementations/protocols;

ii) Supported with minor modifications, minor extensions are

required to the implementation/protocol for realizing the

requirement; and iii) Not Supported, the technology is either not

designed for the requirement or major modifications are required

to the implementation/protocols. Table 1 summarizes the

categorization of different technologies.

Table 1 Comparison of directory service technologies

Technology FR1 FR2 FR3 NR1 NR2 NR3 NR4

LDAP + + + - + - +

SSDP + * * + - * *

DHT + + * * + + +

Legend: + supported, *supported with minor modifications, -

not supported

LDAP is a protocol for accessing directory services. The LDAP

specification defines an entry of a directory as a set of attributes

with a unique distinguished name. The entries are stored in a

tree-like structure; users can specify what information is

required in an entry through schema definitions. LDAP is tuned

for client-server architectures, although it is possible to

distribute the tree structure among different servers or have

multiple servers that synchronize periodically. Due to the client-

server nature of LDAP, it does not easily meet the isolation and

scalability requirements of Volttron. To address the isolation

requirement, we need to execute more than one LDAP server in

an SOI and have them synchronize; this in turn requires a lot of

synchronization messages and reduces the scalability.

SSDP allows nodes in a local area network (LAN) to advertise

presence and network service information. SSDP does not

define how a node stores (for querying later) these

advertisements. Instead, the protocol focuses on advertisement

exchange without server-based configuration: SSDP

advertisements can be exchanged without configurations. SSDP

achieves this by using multicast in LANs. SSDP does not have

the ability to operate in non-LAN environments.

DHTs [2] are decentralized overlays that provide store, delete,

and lookup operations similar to hash tables. Typically, the DHT

store/lookup operations have a routing depth of O(logn)

increasing the scalability in terms of overlay size. As DHTs

form their own overlays, they can operate with different link-

layer protocols. Most DHTs also provide mechanisms to

compensate for isolations/connection interrupts. DHT

implementations are mainly based on remote procedure calls,

making it easy to implement extensions and provide secure

communications.

Due to their scalability benefits and flexibility in

accommodating our isolation requirement, we decided to use a

DHT-based technology. Specifically, we have chosen Kademlia

DHT [14] as it already supports data replication to compensate

for disconnected (isolated) nodes and the XOR-based distance

calculation in Kademlia is suitable for embedded systems.

3.1.7.2 Directory Services Implementation
Our implementation is based on the Entangled library, an

implementation of Kademlia in Python. Each capability maps to

l keys from the range of keys associated for capabilities. The

capability mapping is pre-defined and stored in each sensor node

(i.e., the same mapping is used by each node). To publish a

capability, the sensor node first retrieves the l keys

corresponding to the capability from the map. Then, it issues a

store request to the Kademlia network for each of these keys.

Here, each store request contains the key and network address of

the sensor node. We associate more than one key per capability

for replication; in this way, more sensor nodes will store the

same value, thus increasing its chances to be found in isolation

conditions (e.g., when a set of nodes becomes isolated from the

Kademlia DHT).

The store operation in Kademlia locates k nodes that are closest

to a given key l1. In our system, this might cause a publish

request for a capability c1 originating from an SOI s1 to be stored

at another SOI. We limit the publication to an SOI by dividing

the key space as shown in Figure 4. The first 40-bits are

assigned to the unique identifiers of the SOI’s. Each sensor node

contains a mapping from SOI name to 40-bit SOI key in their

local stores.

Before joining the DHT, the DS is given the name of its SOI and

the network address of another node in this SOI. With this

information, the service first forms its unique identifier key ln,

where the first 40-bits are the SOI key and the remaining 120

bits are randomly assigned. Then, the node issues a publish

request for ln , node-nam, allowing the node to join to an SOI.

Figure 4. The distribution of the DS key space

Similar to SOI identifiers, each capability is assigned a pre-

defined 112-bit key. These keys are stored at the local stores of

the sensor nodes. Before a publish capability operation, the

service first retrieves the keys associated with the SOI and the

capability from the map. Then it forms the key for the capability

where bits 0-39 are the SOI key, bits 40-47 are the repetition

index of the capability, and bits 48-159 are the key of the

capability. We programmed the directory service such that it

publishes a sensor node’s capability more than once in order to

provide better tolerance against isolation. The repetition index is

a counter that is used for both generating a unique key for each

repetition and identifying which repetition for a capability is

accessed.

For a lookup operation, the agent supplies the directory service

name of the SOI and the capability to search. The directory

service, in turn, forms the key for the first repetition of the

capability (repetition index=0). The service then initiates the

lookup operation. If the lookup operation does not yield any

results, the service increments the repetition index, forms the

new key with this index, and restarts the lookup operation. By

default, only three repetitions for a capability can be published;

hence, the search terminates after three look-ups. The value of

the repetition index is configurable.

4. APPLICATIONS USING VOLTTRON
Volttron is a platform that is useful in many contexts within the

electric power system. Agents deployed on Volttron can be used

to manage resources in the distribution system, increase

situational awareness in the transmission system, and diagnose

faults in the bulk generation system. A series of agent

applications were discussed in previous ATES workshops

(http://users.ecs.soton.ac.uk/acr/ates2011/) and certainly will be

discussed in ATES2012. We will therefore pick two applications

and discuss how they can be implemented using Volttron.

4.1 Plug-in Electric Vehicle Charging
Our first example application was published in ATES2010 and

is concerned with the management of charging of plug-in

electric vehicles (PEVs) [19]. In this application, a multi-agent

system (MAS) is compared to centralized optimal scheduling for

managing charging of PEVs. To summarize, the MAS depicted

in [19] relies on two types of agents: transformer agents that

want to smooth out the load in the feeder and prevent

overloading and PEV agents that control the charging of the

vehicles. The PEV agents signal their intentions to the

transformer agent. The transformer agents then determine the

maximum allowed power consumption for each transformer by

using peer-to-peer negotiation. Once the maximum allowed

power consumption for each transformer is determined, the

transformer agents publish the agreed charging power and

schedule information to the PEV agents. The MAS depicted in

[19] also allows for charge energy reservation requests from

PEVs and requires periodic refresh of PEV agent reservations.

We now map the functionality required by this MAS scenario to

Volttron capabilities. Volttron provides directory services so that

the transformer and PEV agents can discover each other

dynamically by searching for each other. Once the discovery

process is completed, secure communication channels are

established by the provided communication services module. If

data are collected via a PEV data collection agent, then the

collected data can be packaged with the data collection agent

and transported securely using the mutable luggage services

provided by Volttron. Additionally, on the same transformers,

we may have other agents that are managing the demand

patterns of other high power-draw appliances. Resource

management capabilities built into Volttron ensure that all

agents have appropriate resources to execute their tasks. If a

programming error or malicious intent causes an agent to

consume an unreasonable amount of resources, then the Volttron

resource manager will detect and take appropriate actions to

restore fairness. If we were to extend the concept proposed in

[19] to allow for communication between the PEV agents

directly collaborating to accomplish their goals, then we can use

a mobile agent that transfers information between the different

PEVs. This mobile agent will take advantage of both immutable

and mutable luggage functionality as well as the integrity

services provided by our platform. Finally, Volttron supports

multiple agent execution environments that allow MAS

developers to not be constrained to a single authoring language.

4.2 Fault Location
Our previous example used mainly stationary agents to control

the charging of PEVs. In this example, we discuss an application

that solves an important problem in electric power system

operations: The location of distribution-level fault by leveraging

agents embedded within power system devices. The use of MAS

in the protection of a shipboard power system was demonstrated

in [10] as a distributed network of handheld computers

connected to an emulated power system. The authors discuss a

method by which MAS can detect and diagnose faults within the

shipboard power system and provide an example of a MAS-

based system reconfiguration. Extending MAS fault detection

and diagnosis to a terrestrial power system introduces the

additional constraints of geographically disperse resources,

varying communication technologies, and multiple state holders

which Volttron can accommodate.

 Assuming that the devices (hosting the agents) maintain low

data rate communications over the same wires that are used for

transporting electricity, we can envision a scenario where a

utility would like to know the location of a fault condition on the

distribution network. To accomplish this goal, a utility

operations center (UOC) will task agents to travel between

intelligent electric devices and collect both the path and the

device information and bring it back. The collected information

can then be imported into UOC systems to find devices that no

longer have a communication path. Characterizing the devices

without communication can provide an automated method of

zeroing in on the common effected area, and the fault location.

In this example, all capabilities of Volttron are used. As they

jump between devices, agents make use of directory services to

decide where they want to go next. AIP module is used to

transport agents between devices. Agent code integrity is

provided. Agent configuration and tasking orders are stored

inside the immutable luggage, and collected agent data are

stored inside the mutable luggage. Resource management is

used to ensure that agents have adequate resources. Finally,

secure communication channels are provided by the CS module.

5. CONCLUSION AND FUTURE WORK
Volttron is an agent execution platform that is engineered for

use in the electric power system. Volttron provides resource

guarantees for agents and the platform including memory and

processor utilization; authentication and authorization services;

directory services for agent and resource location; and agent

mobility. Unlike other agent platforms, Volttron does not

depend on a single agent authoring language. Instead, we chose

to design and implement Volttron as a platform service and

framework that is decoupled from the agent execution

environment. A prototype of Volttron has been written in Python

v2.7.2, and we have executed agents written in Python and Java

and as shell scripts. Some of our design choices were

independently confirmed by another project that was developed

within the same timeline as our project [20]. As part of Volttron

development, we have also created a trust model that is suitable

for use in the electric power system. In the near future, we will

be publishing Volttron source code as opensource and looking

for opportunities to work with other developers in the MAS field

to port their applications to run on Volttron. We expect that

capabilities similar to Volttron will be integrated into devices

that are either part of or interact with the electric power system.

6. REFERENCES
[1] A. Abdul-Rahman. The pgp trust model. EDI-Forum: The

Journal of Electronic Commerce. 10(3): 27-31, 1997.

[2] S. Androutsellis-Theotokis and D. Spinellis. A survey of

peer-to-peer content distribution technologies. ACM

Computing Surveys, 36(4): 335-371, 2004.

[3] Anonymous, 2011.

[4] F. Bellifemine, A. Poggi, and G. Rimassa. JADE: A

FIPA2000 compliant agent development environment.

Proceedings of the Fifth International Conference on

Autonomous Agents. ACM, New York, 2001.

[5] R. Pointer. The paramiko project website. Accessed

February 2012 at http://www.lag.net/paramiko/

[6] W. Burr, N. Nazario, and W. Polk. A proposed federal PKI

using x.509 v3 certificates. National Institute of Standards

and Technology. 1996. Accessed February 2012 at

http://csrc.nist.gov/nissc/1996/papers/NISSC96/paper042/p

kipap1.pdf

[7] R. Deacon and R. Hurst. Internet Engineering Task Force.

RFC 5019, The lightweight online certificate status

protocol (OCSP) profile for high-volume environments.

2007. Accessed February 2012 at http://www.rfc-

editor.org/rfc/rfc5019.txt

[8] G. Heydt, C. Liu, A. Phadke, and V. Vittal. Solution for the

crisis in electric power supply. IEEE Computer

Applications in Power. 14(3), 22-30, 2001.

[9] R. Housley, W. Polk, W. Ford, and D. Solo. Internet

Engineering Task Force. RFC 3280, Internet x.509 public

key infrastructure certificate and certificate revocation list

(CRL) profile. 2002. Accessed February 2012 at

http://www.rfc-editor.org/rfc/rfc3280.txt.

[10] K. Huang, S. Srivastava, D. Cartes, and L. Li. Agent

solutions for navy shipboard power systems. Proceedings

of IEEE International Conference on System of Systems

Engineering. San Antonio, TX, pp. 1-6, 2007.

[11] Internet Engineering Task Force. P Resnick, ed. RFC 2822,

Internet message format. 2001. Accessed February 2012 at

http://www.rfc-editor.org/rfc/rfc2822.txt

[12] Internet Engineering Task Force. N Freed and N

Borenstein, eds. RFC 2045 Multipurpose Internet Mail

Extensions (MIME) Part One: Format of internet message

bodies. 1996. Accessed February 2012 at http://www.rfc-

editor.org/rfc/rfc2045.txt

[13] D. Martinez. The bjson project website. Accessed February

2012 at http://deavid.github.com/bjsonrpc/

[14] P. Maymounkov and D. Mazieres. A peer-to-peer

information system based on the xor metric. Peer-to-Peer

Systems: Lecture Notes in Computer Science. 2429: 53-65,

2002.

[15] S. McArthur, E. Davidson, V. Catterson, A. Dimeas, N.

Hatziargyriou, F. Ponci, and T. Funabashi. Multi-agent

systems for power engineering applications—Part I:

Concepts, approaches, and technical challenges. IEEE

Transactions on Power Systems. 22(4), 1743-1752, 2007.

[16] S. McArthur, E. Davidson, J. Hossack, and J. McDonald.

Automating power system fault diagnosis through multi-

agent system technology. Proc. of the 37th Annual Hawaii

International Conference on System Sciences, Big Island,

HI, 2004.

[17] K. Moore. Internet Engineering Task Force. MIME

(multipurpose internet mail extensions) part three: Message

header extensions for non-ASCII text. 1996. Accessed

February 2012 at http://www.rfc-editor.org/rfc/rfc2047.txt

[18] D. Simon and C. Cifuentes. The squawk virtual machine:

JAVA™ on the bare metal. Proceedings of 20th Annual

ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications.

ACM, New York, 2005.

[19] S. Vandael, N. Boucke, and T. Holvoet. Decentralized

demand side management of plug-in hybrid vehicles in a

smart grid. Proc. of the First International Workshop on

Agent Technologies for Energy Systems, Toronto, pp. 67-

75, 2010.

[20] M. Warnier, M. Oey, R. Timmer, and F. Brazier. Enforcing

integrity of agent migration paths by distribution of trust.

International Journal of Intelligent Information and

Database Systems. 3(4): 382-396, 2009.

http://deavid.github.com/bjsonrpc/

