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ABSTRACT 

Volttron is an agent execution platform that is engineered for 

use in the electric power system. Volttron provides resource 

guarantees for agents in the platform including memory and 

processor utilization; authentication and authorization services; 

directory services for agent and resource location; and agent 

mobility. Unlike most other agent platforms, Volttron does not 

depend on a single agent authoring language. Instead, we chose 

to design and implement Volttron as a platform service and 

framework that is decoupled from the agent execution 

environment. A prototype implementation of Volttron has been 

written in Python (using Python v2.7.2) and we have executed 

agents written in Python and Java and as shell scripts. The 

intended use of Volttron is in the power distribution system for 

managing distributed generation, demand-response, and plug-in 

electric vehicles. 

Categories and Subject Descriptors 

I.2.11 [Artificial Intelligence]: Distributed Artificial 

Intelligence—Multi-agent systems 

General Terms 

Management, Security 

Keywords 

Multi-Agent systems, Mobile Agents, Agent Security, Electric 

Power System, Demand-Response. 

1. INTRODUCTION 
Volttron is an agent execution platform engineered for use in the 

electric power system to support mobile and stationary software 

agents to perform both information sensing and control actions. 

Devices deployed in the electric power system have to meet very 

strict requirements for availability, reliability, and security 

which imposes requirements for agent execution platforms as 

discussed in greater detail in [3]. To summarize, any agent 

platform that is used in the electric power system must provide: 

Resource guarantees for agents and the underlying 

platform: Agents in the electric power system may perform 

both information sensing and control tasks. In order to execute 

their tasks reliably, the agents require computational resources. 

If the platform cannot provide guarantees for available 

processing power, memory, or storage, then the agents may not 

be able to complete their tasks. On the other hand, if an agent 

consumes too much memory or processing power, it will 

adversely impact other agents or even the base platform 

functions. Therefore, a platform that provides resource 

guarantees for reliable execution of agents is highly desirable.  

Authentication and authorization: To meet cyber security 

requirements, all agent software that executes in the power 

system must be validated before execution is allowed. All data 

carried or produced by agents must be protected against 

tampering. In addition to these authentication tasks, activities 

performed by agents must be authorized according to the 

policies instituted by the electric utilities. For example, a 

metrology agent may not have a need-to-know to access data in 

a smart meter related to power quality measurements or network 

authentication credentials.  

Directory services: Directory services are used for access to 

credentials and for determining nearby resources and devices. 

Use of directory services allows us to avoid hard-coding 

information into deployed devices and supports the mobility and 

assignment of tasks to agents.  

An agent mobility service: In order to accomplish their tasks, 

mobile agents need to be able to move between different 

devices. We chose to incorporate all aspects such as packaging, 

transport, determination of destination, and validation of agents 

into Volttron. This allowed us to keep the agents as simple as 

possible. Volttron not only provides services for agent mobility 

but also defines two classes of storage for agents. Mutable 

luggage is used for agent data collection; immutable luggage is 

used for configuration such as tasking that the agent needs to 

carry as it traverses the system. Incorporation of the agent 

mobility service into our framework also decouples the mobility 

of agents from the choice of a specific agent execution 

environment and authoring language. Additionally, an agent’s 

migration path is preserved as part of the immutable luggage. 

The research presented in this paper creates a distributed agent-

based framework, referred to as Volttron, for use in the electric 

power system. Agents can be used to add "intelligence" to the 

sensors and controllers used in today’s electric power system in 

an elegant and predictable manner. 

Our research is significant because it lays the software platform 

groundwork for distributed operation and control of the electric 

power system, especially at the distribution layer where end 

customers are being served. Unlike other agent platforms, 

Volttron does not depend on a single agent authoring language. 

Instead, we designed and implemented Volttron as a platform 

service and framework that is decoupled from the agent 

execution environments. A prototype implementation of 

Volttron has been written in Python (using Python v2.7.2), and 

we have executed agents written in Python and Java and as shell 

scripts. The intended use of Volttron is in the distribution system 

for managing distributed generation, demand-response, and 

plug-in electric vehicles. 

This paper presents the results of an ongoing research project 

with the goal of introducing our work to a broader community 

and getting feedback. The rest of this paper is organized into 

four sections. In Section 2, we describe prior work as it relates to 

Volttron and present potential use cases and applications to 

demonstrate the need for our platform. In Section 3, we present 



 

 

the detailed design of our software framework. In Section 4 we 

focus on agent applications that do or can use Volttron. We 

present our future work directions in the conclusion. 

2. PRIOR WORK 
This section describes work related to our Volttron research. 

2.1 Platform Software Options  
Several technologies initially appeared promising but on further 

investigation had drawbacks for our needs. One is Squawk VM 

[18], an open-source platform for wireless sensors. Certified on 

the Java Micro Edition Information Module, it provides 

developers with a standardized Java language. A major 

advantage of Squawk is that it can run directly on hardware 

without an operating system. In Squawk, the entire state of an 

application (treated as an isolate) is stored as java objects that 

can be serialized to disk/stream.  However, Squawk had stability 

issues and limitations in development environment and 

capabilities. 

Another initially promising technology is JADE (Java Agent 

Development Framework). JADE  is a software framework fully 

implemented in Java [4]. It provides a set of Java classes that 

allow a developer to build a FIPA-compliant multi-agent system 

quite easily. However, resource management, an important 

requirement for our platform, is not strongly supported. We also 

questioned how well supported JADE currently is because 

activity on the JADE website and mailing list seems to have 

dropped off. 

In general, we were unable to find the combination of security, 

scalability, and resource management we needed in other agent 

frameworks. This led us to write specifications for our own 

platform to handle these issues and provide a language-agnostic 

environment to run existing agent frameworks on top of ours.  

2.2 Agent-Based Solutions 
Software agents provide a powerful method of addressing the 

scalability and resilience issues inherent in the power grid as 

discussed in [8] and [15]. Several existing projects use this 

paradigm for various use cases in the power grid, including [16], 

which uses a community of different agent types to diagnose 

power system faults. 

Many of these projects detail an approach for using agents, but 

their demonstration is limited to simulation or proof-of-concept 

implementations that would not operate well in the field. Our 

research addresses these problems by providing a platform that 

handles the security and resource constraints and allows other 

researchers to focus on the operation of their agents. Therefore, 

any previous work done in the agents field can be 

accommodated by our platform. We illustrate this in Section 4 

with examples of previous agent systems. 

AgentScape [20] was in development at the same time as this 

project and provides many interesting parallels with our 

research. However, it does not discuss resource management, 

which is important in the power system environment. We will be 

investigating AgentScape further. 

3. VOLTTRON PLATFORM 
 

 

Figure 3-1: Volttron Platform Components 

3.1 Architecture and Design 
This section discusses the architecture and design details of the 

Volttron agent execution platform. The platform building blocks 

are shown in Figure 3-1. The agent execution platform (AEP) 

exists between the operating system and the agent execution 

environments. As shown in the figure, Volttron supports 

multiple agent execution environments (AEEs) such as Java, 

Python, and platform-specific binary objects. The Volttron 

platform consists of communications services (CS); resource 

manager (RM); authentication and authorization (AA); directory 

services (DS); agent instantiation and packaging (AIP); and 

information exchange bus (IEB) modules. The AA module 

includes a policy and trust store as well as an optional policy 

manager function. The IEB module includes a local store (LS) to 

provide non-volatile storage for agents. To summarize, AIP is 

responsible for packaging, instantiation, and coordination of 

agents’ movement. The AA module provides validation of agent 

payloads, authenticates peer platforms, and handles public and 

private credentials. The DS module provides name, resource, 

and public credential to location and network identity mappings. 

RM is the gatekeeper for the platform. It decides if the platform 

has enough resources left to accept the execution of an agent. 

RM also manages access controls for AEE “containers.” Finally, 

RM monitors use of resources and either warns or terminates 

misbehaving agents. The CN module is responsible for reliable 

and secure transfer of packaged agents and peer-to-peer 

communication between Volttron platforms.  

Volttron is currently implemented in Python v2.7 and leverages 

many existing Python modules developed by the open source 

community. In the remainder of this section, we discuss Volttron 

module details focusing on functionality and interfaces.  

3.1.1 Agent Instantiation and Packaging 
The AIP module controls the workflow for sending and 

receiving Agent Transport Payloads (ATP) including their 

creation, extraction, and interpretation. ATP contents are 

illustrated in Figure 3-2 and include the agent code, the agent 

execution contract, immutable, and mutable luggage (read-only 

and writable files). In Section 3.1.2, we describe the Scope of 

Influence (SOI) concept and also discuss the signatures shown 

in the figure. AIP extracts the contents of an ATP and places the 

contents of the luggages in the virtual file store in a location 

where the agent can access them. 



 

 

 

Figure 3-2: Agent Transport Payload 

 

AIP also controls and implements the main workflow of agents 

entering and leaving the platform. An agent payload enters the 

platform via the communication module and is sent to the AIP 

module. The AIP module then performs security and resource 

checks. The authorization and authentication information in the 

payload is passed to the AA module (as detailed in 3.1.2). If 

verified by the AA, the resource requirements of the agent, 

detailed in the Execution Contract, are then passed to the 

Resource Manager (section 3.1.3). If sufficient resources are 

available, then the Resource Monitor returns a process ID for the 

agent to track resource usage. If either of these checks fails, then 

the agent is rejected and an error notification is returned to the 

sending platform. If these checks pass, then the AIP extracts the 

agent code, immutable luggage, and mutable luggage. The 

immutable luggage contains read-only information, such as 

configuration files, provided by the Initiator. The mutable 

luggage is a dynamic payload that the agent brings with it to 

each host, which helps the agent maintain state (these are the 

equivalent of the Agent Containers in AgentScape [20]). After 

extraction, the AIP notifies the AEEManager, which will then 

start the agent in the appropriate Agent Execution Environment 

with the Resource-Manager-supplied process ID. 

After an agent finishes its task on a platform, it uses the 

Directory Service to find an appropriate platform to move to 

based on an itinerary or by searching for certain properties. 

Upon finding a target, it requests to move via the IEB which 

provides a mechanism for agents written in any language to 

communicate with the rest of the platform. When the AIP 

receives an agent movement request, it re-packages the agent by 

using the same agent code and immutable luggage contents it 

received but adding the updated mutable luggage. AIP then uses 

the CS Module to send this payload to the target platform. 

3.1.2 Authentication and Authorization 
When considering the security properties of confidentiality, 

integrity, and availability, electric power system utilities place 

the highest priority on availability and the lowest on 

confidentiality. The security property of integrity (source 

integrity/identity and data integrity) contributes to reliable 

operation by minimizing the risk of system compromise and by 

allowing detection of system compromise that does occur. The 

AA module directly addresses integrity while providing the 

infrastructure for confidentiality. For the remainder of this 

paper, we assume that devices using Volttron have sufficient 

computing resources to perform cryptographic authentication, 

authorization and trust functions, including asymmetric 

cryptography used for identification and integrity. Note that 

even low-cost micro-controllers can now be obtained with 

hardware cryptography support; therefore, this is not a 

burdensome requirement. 

3.1.2.1 Usage Scenario 
In Section 3.1.1, we discussed how the AA module is used as 

part of the workflow of moving agents across the electric power 

system. The primary function of the AA module is providing 

cryptographic integrity and authentication services to other 

modules in the Volttron platform. The AA module performs this 

task by using public key cryptography (specifically X509v3 

certificates [6]); but instead of a strictly hierarchical system, it 

allows for a flatter trust model, which will be described in the 

next section. For most commonly seen operations, the public 

certificates are retrieved via the directory services module, 

which also alleviates the need for an explicit revocation model 

that uses a certificate revocation list [9]. Our approach is similar 

conceptually to online certificate status protocol with certificate 

stapling [7]. It is important to note that Volttron provides 

integrity services for agent code; agent tasking and 

configuration; and data carried by the agents. 

3.1.2.2 Scope of Influence 

The electric power system follows a fairly hierarchical 

organizational structure. A country is divided into regions. In 

each region (simplistically), there are balancing authorities, 

regional transmission operators, power generation suppliers, and 

distribution utilities. Within a distribution utility, power flows 

through distribution lines to distribution substations and then to 

feeder lines that deliver power to customer premises. Hence, the 

intelligence and distributed computing capabilities used in the 

electric power system must follow an organizational structure 

close to the way power flows through the system. With this in 

mind, we have defined SOI as an organizational boundary 

within which a set of software agents can communicate, 

cooperate, and exchange information. Each SOI has a unique 

identifier.  

 

Figure 3-3: Scopes of Influence 

An SOI has one or more non-human initiators (i.e., computing 

entities) that are responsible for assigning tasks and dispatching 

agents. For this project we have defined a hierarchical structure 

composed of five SOIs as shown in Figure 3-3. Within a utility 

SOI, there are multiple substation SOIs. Within a substation 

SOI, there are multiple feeder SOIs. Within a feeder SOI, there 

are multiple customer premises SOIs. Note that while the utility, 

substation, and feeder SOIs may be under the same 

administrative authority, the customer premises SOI is more 

than likely under a different administrative authority; i.e., the 

customer. The third-party SOI represents entities that are not 

Utility SOI

Substation SOI

Feeder SOI

Customer Premises 
SOI

Third-party 
SOI (e.g. 
Virtual 
Power 
Plant 

Provider)



 

 

utilities and not owned by a utility that perform functions within 

the power system. An example of a third-party SOI is a virtual 

power plant provider. Note that a customer may choose to trust a 

third-party SOI, even if the utility serving the customer does not. 

The basic properties of the SOI are summarized below: 

1. An SOI consists of electric power system devices 

(referred to as “devices” in the remainder of the text) that 

are capable of hosting software agents. 

2. Each SOI has at least one initiator. The SOI initiator 

serves as the trust root for the SOI. If the initiator becomes 

unreachable, then a new initiator can be selected and all 

devices shall continue to operate with credentials cached 

in their local trust store. Based on an SOI’s trust policy, an 

initiator can extend trust to an external entity by signing 

its credentials to form a trust chain very similar to PGP 

[1].  

3. The human administrators of an SOI can upload/enable 

agents to be run within an SOI. Each SOI has a policy for 

determining whether an agent is authorized to run within 

an SOI. This policy is distributed to all devices within an 

SOI. An SOI may ban all external agents or it may choose 

to authorize agents received for execution from other SOIs 

through policy-based trust negotiation. 

4. Initiators are responsible for assigning tasks and 

dispatching agents. Each SOI has at least one initiator. If 

there is more than one initiator in an SOI, it is assumed 

that the initiators collaborate to choose a master initiator 

with all other initiators in the SOI serving the master 

initiator. The initiators are provisioned by the 

administrator of the SOI.  

5. Initiators are also responsible for providing ancillary 

services to the agents within an SOI. The initiator’s 

ancillary services may include (but are not limited to) 

agent discovery and directory services, trust services (e.g., 

reputation management and trust negotiation), and 

communication between this SOI and its parent SOI. An 

initiator may also participate in network services such as 

routing and name resolution. 

6. The task assignment is performed based on the agent 

capabilities. An initiator has a task list (signed by an SOI 

Administrator) that contains a set of tasks that need to be 

performed. For example, a task at a feeder SOI may be to 

check power usage to determine whether there is theft of 

power on that feeder. The task list at the Initiator may 

include tasks that need to be performed periodically. A 

task may be composed of other tasks. The agent library 

includes a catalog of agent metadata that are organized by 

task in order to choose an appropriate set of agents to 

perform each task. An agent may be mobile or stationary. 

Section 3.1.1 describes the process by which the Initiator 

prepares an agent for deployment.  

Identification Credentials:  

Volttron supports identification of core entities in the system: 

SOI organizations, SOI administrators, devices, creators, and 

initiators. 

 Each SOI Organization will possess an X.509 key pair 

(private key and public certificate) intended for 

identification and signature use and signed by a 

recognized certificate authority. A utility may choose to 

be its own trust root and operate a CA. 

 Each SOI Administrator will possess an X.509 key pair 

intended for identification and signature use and signed by 

the SOI-owning organization. The certificate will identify 

the owning organization.  

 The Initiator will possess an X.509 key pair signed by the 

SOI Administrator.  

 Each device on which an Agent Platform is installed will 

possess a network address and an X.509 key pair. Only 

one Agent Platform will be installed per device and they 

will share the same identification. The IP address and the 

X.509 certificate and public key will be available to other 

entities via Directory Service lookup. 

 Each Agent Creator will possess an X.509 key pair 

intended for identification and signature use and signed by 

a certificate authority recognized by the SOI 

Administrator.  

Each deployed agent will possess an identifier composed of (or 

mapped to) the company name, software name, software 

version, and an instance ID. 

3.1.2.3 Authentication and Authorization Module 

Functions 

The AA module provides integrity services to the framework 

including identification services, source integrity, and agent 

transport payload integrity. As described in the AIP workflow in 

Section 3.1.1, the AA module is mainly called by AIP and DS 

modules. To perform its functions, the AA module 

communicates with peer AA modules on other devices that are 

part of the SOI. The AA module also uses directory services to 

retrieve credentials of devices within an SOI. The AA module 

provides programming interfaces to compute a cryptographically 

signed hash; to verify a signed hash received from a peer; to 

validate requested privileges against configured platform 

policies; and to perform credential look-ups using directory 

services.  

3.1.3 Resource Manager 
The RM module is responsible for controlling resources 

assigned to an agent process and limiting the use of those 

resources based on the contract presented during agent 

instantiation. Resources that may be controlled by the RM 

include, but are not limited to, CPU, memory, and I/O devices. 

An agent that is detected consuming resources above the 

contracted amount will be subject to termination if it fails to 

correct the action upon notification from the RM. The RM may 

use kernel-level, operating-system-dependent methods to 

implement the required functions. 

3.1.3.1 Usage Scenario 

An agent arrives on the platform requesting execution. It passes 

validation checks and is unpacked and prepared for execution. 

Before reserving the required resources, a check is made against 

static capabilities and resources to ensure the platform is capable 

of supporting the agent. If the platform can support the agent, 

then dynamic capabilities are checked and an attempt is made to 

reserve the required resources. If the resources are available and 

successfully reserved, the agent is free to execute in the reserved 



 

 

environment. If the RM detects that the agent is operating 

outside the bounds of the execution contract, then the RM 

attempts to notify the agent of the contract breach and give it 

sufficient time to correct the situation. If the agent fails to 

correct the breach of contract in a timely manner, the RM 

terminates the agent. In our prototype implementation, RM 

manages the following resources: CPU (CPU sets, affinity, 

maximum utilization), memory (maximum utilization), I/O 

devices (access [read/write], maximum utilization). 

3.1.3.2 Agent Execution Contract Definition and 

Negotiation 

The agent execution contract defines the execution agreement 

between the agent and the platform. The agent agrees to provide 

some service while executing within the bounds it established 

with the platform and the platform agrees to provide the agent 

resources as long as it does not abuse or misuse the platform or 

the leased resources. Abuse and misuse can be difficult to detect, 

but the platform will make its best effort and reserves the right 

to terminate misbehaving agents. 

Like most contracts, some things are negotiable and some are 

not. Non-negotiable items may include the hardware 

configuration and other properties that may prevent the agent 

from executing its negotiating code. Negotiable items are those 

things that may change dynamically or that may not prevent an 

agent from executing. Non-negotiable items should be defined 

statically and in a common format that can be read, checked, and 

given a simple response. Once it is established that an agent has 

the ability to execute in a restrictive environment, a negotiation 

phase is entered where the agent and the platform are allowed to 

banter back and forth to form an agreement. Either party may 

terminate negotiations at any time. 

Contract terms may be set for three classes of items: 

authorization, capabilities, and resources. Authorization may be 

thought of as a specialized capability. An example of 

authorization is an agent requesting to run with elevated 

privileges or to open a privileged port. Capabilities cover the set 

of features or services the platform, operating system, or other 

software may provide. Resources are physical or virtual devices 

on the platform. Capabilities can be broken down further into 

two types: hard and soft. A hard capability is one that is unlikely 

to change without a modification to the system that would 

require the platform to stop hosting agents (e.g., a change 

requiring a reboot). Soft capabilities are those that are negotiable 

or that may change without stopping the platform service. 

Likewise, resources can be static or dynamic. As the platform 

evolves, there will be different versions of the platform software 

as well as the agent execution environments. In a network, 

multiple versions of the platform framework will exist. 

Therefore, when an agent moves to a new platform, part of the 

validation is to ensure that the versions of the AEE and the 

platform are compatible with this agent.  

The contract must be in a format that is expressive enough to 

define the requirements of the agent and the platform while 

flexible enough to allow for new features and for skipping items 

the agent or platform either does not understand or does not 

support. A text format is best suited for this as binary formats 

are fragile in the face of change. Therefore, the selected format 

of the contract is an RFC 2822 message [11] supporting MIME 

multi-part message bodies (RFC 2045 [12]) and non-ASCII 

header extensions (RFC 2047 [17]). Requirements are set in the 

message headers and may point to sections in the body for 

additional flexibility. 

3.1.3.3 Implementation on Linux 2.6.x/3.x 

The interface above may be implemented on a Linux system 

using a combination of cgroups, Linux Containers, Linux 

capabilities, procfs, sysfs, fork, and exec. Data needed for 

get_static_resources() and check_resources() could be gathered 

from procfs, sysfs, and system calls. Agent environments would 

be reserved by calling reserve_resources(), which would likely 

fork, closing all files; attempt to create a Linux container, which 

uses cgroups; set the appropriate capabilities; drop privileges; 

and return the child process ID as the reservation_id. 

exec_resource() would cause the process to exec the given 

executable with the given arguments and environment, which 

could be passed to the process using a UNIX domain socket or 

set in the virtual file system. cancel_reservation() would notify 

the process to continue without giving it an executable, causing 

it to terminate without performing further actions. 

3.1.4 Communication Services 
The CS module provides a remote procedure call (RPC)-based 

communication channel to other devices in an SOI as well as to 

the initiators of other SOIs. We rely on using the TCP/IP stack 

built into our operating system choice (Linux). All platform 

modules communicate with their peers using the RPC 

mechanism provided by the CS module. The communication 

integrity and confidentiality are provided by SSH using public 

keys. Just like the X509 certificates used by the AA module, the 

SSH public keys are retrieved by querying the directory services 

module. To avoid a circular dependency, a small subset of 

security credentials are pre-configured for each device as part of 

its provisioning and enrollment. In our Python implementation, 

we use paramiko [5] for SSH and bjsonrpc for RPC [13]. 

3.1.5 Information Exchange Bus 
The IEB provides a method for agent-to-agent and platform-to-

agent communications. It also provides for local storage and 

retrieval of persistent and temporary data. Agents can 

communicate with other agents on the same platform or on 

remote platforms  using a topical publish/subscribe pattern for 

the communications. Each agent is automatically subscribed to a 

platform-to-agent topic that allows the resource monitor to send 

notifications. Since file operations are provided by most 

programming languages, the IEB implements a 

publish/subscribe system using a virtual file system to ensure 

maximum flexibility for interacting with the agents. 

Agents do not communicate directly with the IEB Topic 

Manager. AEEs have an API for the agents to call into to 

subscribe. AEEs go through the AEEManager to talk to the IEB, 

which returns a topicID/Filename to the agent. The agent then 

works with the file directly or through an AEE-specific API. 

3.1.6 Agent Execution Environments 
AEEs are where the agents are actually run and can be 

implemented in a variety of languages and frameworks. AEEs 

are specific to the environment agents require. Our initial 

implementation provides an AEE for Java, Python, and 

executable as examples for building additional environments. 

Each AEE needs to communicate with the AEEManager in 

order to enable receiving/sending an agent. They also route 



 

 

agent requests to the AEEManager via the IEB so that modules 

in the platform have a single point of contact with the agents. 

When an agent is created, it can be given a standard topic that is 

monitored by the AEE. The agent makes movement requests, 

gets notified of state changes, etc. via the topic. 

3.1.7 Directory Services 
The DS module allows an agent to dynamically discover 

capabilities (e.g., available software libraries and hardware 

sensors) of the devices in the electric power system. Typically, 

an agent starts this discovery scenario by sending the list of 

required capabilities to the DS. The DS, in turn, executes a 

query and returns the list of potential nodes that can host the 

agent. Using this list, an agent decides on a node and issues a 

transfer request. 

To realize the scenario described above, the DS module should 

support the following functional and non-functional (FR/NR) 

requirements (FR stands for functional requirement, and NR 

stands for non-functional requirement): 

 FR 1: A publishing mechanism that allows the 

platform modules to announce/denounce capabilities 

and their network addresses. 

 FR 2: A name resolution system for translating the 

names of sensor nodes to up-to-date network 

addresses. 

 FR 3: A mechanism for querying capabilities of a 

specific node. 

 NR 1: Ability to provide discovery regardless of 

isolations: due to disconnections, some sensor nodes 

can become isolated. When this happens, the agents 

should still be able to discover the capabilities of 

these nodes using the DS module. 

 NR 2: Ability to work independent of underlying 

networking hardware. 

 NR 3: Provide scalable publishing/querying. 

 NR 4: Support secure communications. 

There are many different technologies that can address these 

requirements. We chose to focus on Lightweight Directory 

Access Protocol (LDAP), Simple Service Discovery Protocol 

(SSDP), and Distributed Hash Table (DHT) because they are 

publically available and are used successfully in software 

systems with similar requirements. To help determine which 

technology to use, we conducted a trade-off analysis among 

these three technologies. In this section we first discuss the 

trade-off analysis and how we decided on the technology. We 

then discuss the directory service implementation. 

3.1.7.1 Trade-off analysis 
For the trade-off analysis, we have conducted a survey on three 

technologies and categorized their support for the requirements 

into the following: i) supported, the requirement is supported 

without modifications to the existing implementations/protocols; 

ii) Supported with minor modifications, minor extensions are 

required to the implementation/protocol for realizing the 

requirement; and iii) Not Supported, the technology is either not 

designed for the requirement or major modifications are required 

to the implementation/protocols. Table 1 summarizes the 

categorization of different technologies. 

 

 

Table 1 Comparison of directory service technologies 

Technology FR1 FR2 FR3 NR1 NR2 NR3 NR4 

LDAP + + + - + - + 

SSDP + * * + - * * 

DHT + + * * + + + 

Legend: + supported, *supported with minor modifications, - 

not supported 

 

LDAP is a protocol for accessing directory services. The LDAP 

specification defines an entry of a directory as a set of attributes 

with a unique distinguished name. The entries are stored in a 

tree-like structure; users can specify what information is 

required in an entry through schema definitions. LDAP is tuned 

for client-server architectures, although it is possible to 

distribute the tree structure among different servers or have 

multiple servers that synchronize periodically. Due to the client-

server nature of LDAP, it does not easily meet the isolation and 

scalability requirements of Volttron. To address the isolation 

requirement, we need to execute more than one LDAP server in 

an SOI and have them synchronize; this in turn requires a lot of 

synchronization messages and reduces the scalability.  

SSDP allows nodes in a local area network (LAN) to advertise 

presence and network service information. SSDP does not 

define how a node stores (for querying later) these 

advertisements. Instead, the protocol focuses on advertisement 

exchange without server-based configuration: SSDP 

advertisements can be exchanged without configurations. SSDP 

achieves this by using multicast in LANs. SSDP does not have 

the ability to operate in non-LAN environments. 

DHTs [2] are decentralized overlays that provide store, delete, 

and lookup operations similar to hash tables. Typically, the DHT 

store/lookup operations have a routing depth of O(logn) 

increasing the scalability in terms of overlay size. As DHTs 

form their own overlays, they can operate with different link-

layer protocols. Most DHTs also provide mechanisms to 

compensate for isolations/connection interrupts. DHT 

implementations are mainly based on remote procedure calls, 

making it easy to implement extensions and provide secure 

communications. 

Due to their scalability benefits and flexibility in 

accommodating our isolation requirement, we decided to use a 

DHT-based technology. Specifically, we have chosen Kademlia 

DHT [14] as it already supports data replication to compensate 

for disconnected (isolated) nodes and the XOR-based distance 

calculation in Kademlia is suitable for embedded systems. 

3.1.7.2 Directory Services Implementation 
Our implementation is based on the Entangled library, an 

implementation of Kademlia in Python. Each capability maps to 

l keys from the range of keys associated for capabilities. The 

capability mapping is pre-defined and stored in each sensor node 

(i.e., the same mapping is used by each node). To publish a 

capability, the sensor node first retrieves the l keys 

corresponding to the capability from the map. Then, it issues a 

store request to the Kademlia network for each of these keys. 

Here, each store request contains the key and network address of 

the sensor node. We associate more than one key per capability 

for replication; in this way, more sensor nodes will store the 

same value, thus increasing its chances to be found in isolation 



 

 

conditions (e.g., when a set of nodes becomes isolated from the 

Kademlia DHT). 

The store operation in Kademlia locates k nodes that are closest 

to a given key l1. In our system, this might cause a publish 

request for a capability c1 originating from an SOI s1 to be stored 

at another SOI. We limit the publication to an SOI by dividing 

the key space as shown in Figure 4. The first 40-bits are 

assigned to the unique identifiers of the SOI’s. Each sensor node 

contains a mapping from SOI name to 40-bit SOI key in their 

local stores.  

Before joining the DHT, the DS is given the name of its SOI and 

the network address of another node in this SOI. With this 

information, the service first forms its unique identifier key ln, 

where the first 40-bits are the SOI key and the remaining 120 

bits are randomly assigned. Then, the node issues a publish 

request for ln , node-nam, allowing the node to join to an SOI. 

 

Figure 4. The distribution of the DS key space 

Similar to SOI identifiers, each capability is assigned a pre-

defined 112-bit key. These keys are stored at the local stores of 

the sensor nodes. Before a publish capability operation, the 

service first retrieves the keys associated with the SOI and the 

capability from the map. Then it forms the key for the capability 

where bits 0-39 are the SOI key, bits 40-47 are the repetition 

index of the capability, and bits 48-159 are the key of the 

capability. We programmed the directory service such that it 

publishes a sensor node’s capability more than once in order to 

provide better tolerance against isolation. The repetition index is 

a counter that is used for both generating a unique key for each 

repetition and identifying which repetition for a capability is 

accessed. 

For a lookup operation, the agent supplies the directory service 

name of the SOI and the capability to search. The directory 

service, in turn, forms the key for the first repetition of the 

capability (repetition index=0). The service then initiates the 

lookup operation. If the lookup operation does not yield any 

results, the service increments the repetition index, forms the 

new key with this index, and restarts the lookup operation. By 

default, only three repetitions for a capability can be published; 

hence, the search terminates after three look-ups. The value of 

the repetition index is configurable.  

4. APPLICATIONS USING VOLTTRON 
Volttron is a platform that is useful in many contexts within the 

electric power system. Agents deployed on Volttron can be used 

to manage resources in the distribution system, increase 

situational awareness in the transmission system, and diagnose 

faults in the bulk generation system. A series of agent 

applications were discussed in previous ATES workshops 

(http://users.ecs.soton.ac.uk/acr/ates2011/) and certainly will be 

discussed in ATES2012. We will therefore pick two applications 

and discuss how they can be implemented using Volttron.  

4.1 Plug-in Electric Vehicle Charging 
Our first example application was published in ATES2010 and 

is concerned with the management of charging of plug-in 

electric vehicles (PEVs) [19]. In this application, a multi-agent 

system (MAS) is compared to centralized optimal scheduling for 

managing charging of PEVs. To summarize, the MAS depicted 

in [19] relies on two types of agents: transformer agents that 

want to smooth out the load in the feeder and prevent 

overloading and PEV agents that control the charging of the 

vehicles. The PEV agents signal their intentions to the 

transformer agent. The transformer agents then determine the 

maximum allowed power consumption for each transformer by 

using peer-to-peer negotiation. Once the maximum allowed 

power consumption for each transformer is determined, the 

transformer agents publish the agreed charging power and 

schedule information to the PEV agents. The MAS depicted in 

[19] also allows for charge energy reservation requests from 

PEVs and requires periodic refresh of PEV agent reservations.  

We now map the functionality required by this MAS scenario to 

Volttron capabilities. Volttron provides directory services so that 

the transformer and PEV agents can discover each other 

dynamically by searching for each other. Once the discovery 

process is completed, secure communication channels are 

established by the provided communication services module. If 

data are collected via a PEV data collection agent, then the 

collected data can be packaged with the data collection agent 

and transported securely using the mutable luggage services 

provided by Volttron. Additionally, on the same transformers, 

we may have other agents that are managing the demand 

patterns of other high power-draw appliances. Resource 

management capabilities built into Volttron ensure that all 

agents have appropriate resources to execute their tasks. If a 

programming error or malicious intent causes an agent to 

consume an unreasonable amount of resources, then the Volttron 

resource manager will detect and take appropriate actions to 

restore fairness. If we were to extend the concept proposed in 

[19] to allow for communication between the PEV agents 

directly collaborating to accomplish their goals, then we can use 

a mobile agent that transfers information between the different 

PEVs. This mobile agent will take advantage of both immutable 

and mutable luggage functionality as well as the integrity 

services provided by our platform. Finally, Volttron supports 

multiple agent execution environments that allow MAS 

developers to not be constrained to a single authoring language. 

4.2 Fault Location 
Our previous example used mainly stationary agents to control 

the charging of PEVs. In this example, we discuss an application 

that solves an important problem in electric power system 

operations: The location of distribution-level fault by leveraging 

agents embedded within power system devices. The use of MAS 

in the protection of a shipboard power system was demonstrated 

in [10] as a distributed network of handheld computers 

connected to an emulated power system. The authors discuss a 

method by which MAS can detect and diagnose faults within the 

shipboard power system and provide an example of a MAS-

based system reconfiguration. Extending MAS fault detection 

and diagnosis to a terrestrial power system introduces the 

additional constraints of geographically disperse resources, 

varying communication technologies, and multiple state holders 

which Volttron can accommodate.  



 

 

 Assuming that the devices (hosting the agents) maintain low 

data rate communications over the same wires that are used for 

transporting electricity, we can envision a scenario where a 

utility would like to know the location of a fault condition on the 

distribution network. To accomplish this goal, a utility 

operations center (UOC) will task agents to travel between 

intelligent electric devices and collect both the path and the 

device information and bring it back. The collected information 

can then be imported into UOC systems to find devices that no 

longer have a communication path. Characterizing the devices 

without communication can provide an automated method of 

zeroing in on the common effected area, and the fault location. 

In this example, all capabilities of Volttron are used. As they 

jump between devices, agents make use of directory services to 

decide where they want to go next. AIP module is used to 

transport agents between devices. Agent code integrity is 

provided. Agent configuration and tasking orders are stored 

inside the immutable luggage, and collected agent data are 

stored inside the mutable luggage. Resource management is 

used to ensure that agents have adequate resources. Finally, 

secure communication channels are provided by the CS module. 

5. CONCLUSION AND FUTURE WORK 
Volttron is an agent execution platform that is engineered for 

use in the electric power system. Volttron provides resource 

guarantees for agents and the platform including memory and 

processor utilization; authentication and authorization services; 

directory services for agent and resource location; and agent 

mobility. Unlike other agent platforms, Volttron does not 

depend on a single agent authoring language. Instead, we chose 

to design and implement Volttron as a platform service and 

framework that is decoupled from the agent execution 

environment. A prototype of Volttron has been written in Python 

v2.7.2, and we have executed agents written in Python and Java 

and as shell scripts. Some of our design choices were 

independently confirmed by another project that was developed 

within the same timeline as our project [20]. As part of Volttron 

development, we have also created a trust model that is suitable 

for use in the electric power system. In the near future, we will 

be publishing Volttron source code as opensource and looking 

for opportunities to work with other developers in the MAS field 

to port their applications to run on Volttron. We expect that 

capabilities similar to Volttron will be integrated into devices 

that are either part of or interact with the electric power system. 
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