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ABSTRACT

Electric vehicles (EVs) will play a central role in future road
traffic. To cope with the limited range and long charging
times of such vehicles, a public fast-charging infrastructure
will be deployed to recharge EV batteries. A challenge in
such an infrastructure is the high costs associated with elec-
trical peak loads; a charging station along a busy highway
may see hundreds of EVs per hour.

Driven by this challenge, we take a first step towards a
multi-agent solution, which coordinates EVs to select fast
charging stations along their route. In this solution, EVs
are represented by EV agents, and charging stations by
CS (charging station) agents. The coordination between
these agents is based on the coordination technique “dele-
gate multi-agent system (dMAS)”, in which ants are used to
delegate charging requirements from EV agents towards CS
agents. These ants are repeatedly send out in order to cope
with a dynamic and uncertain environment.

Our approach is evaluated in a simulation of a highway
segment in Belgium. In this scenario, the delegate MAS ap-
proach is compared to (1) a naive charging strategy and (2)
a TMC (traffic message channel) - based charging strategy.
Results show that our approach achieves significant cost re-
ductions compared to these strategies.
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1. INTRODUCTION

Rising fuel prices and government policies have incen-
tivized large car manufacturers to shift their production
towards EVs (electric vehicles). While HEV (hybrid elec-
tric vehicles) and PHEVs (plug-in hybrid electric vehicles)
still combine a combustion engine and electric motor, BEVs
(battery electric vehicles) solely dependent on an electric
motor and battery as energy storage system. These BEVs
are considered as cars of the future, but have a shorter driv-
ing range, due to their limited battery capacity.

2ELECTA, Department of Electrical Engineering
Katholieke Universiteit Leuven, Belgium
{firstname.lastname}@esat.kuleuven.be

To enable recharging of these EVs !, countries around the
world are starting initiatives for installing public charging
infrastructures. One examples is e-laad [4], a cooperation
between grid operators in the Netherlands, to install charg-
ing stations in cities. Another example is the EV Project [5],
a US initiative to deploy a charging infrastructure in six US
states.

Fast charging technologies will significantly improve the
throughput of EVs at public charging stations. For ex-
ample, to add 120 kilometers to the drive range of Nissan
leaf (24 kWh), level 1 charging (120/230V AC) takes ap-
prox. 22 hours, level 2 charging (208-240V AC) takes ap-
prox. 8 hours and DC fast charging (300-500V DC) takes
approx. 30 minutes [10]. To service the transition from clas-
sic cars to EVs in an ever-growing traffic environment, large-
scale deployment of fast-charging stations will be necessary.

A challenge of operating fast-charging stations is their
high electrical peak loads. While fast charging reduces charg-
ing times, high peak loads will stress the electrical grid and
increase electricity prices. Consequently, the amount of cars
at different charging stations should be carefully balanced.

In this paper, we propose a decentralized approach for se-
lecting fast charging stations along EVs their route, based on
delegate MAS. Delegate MAS is a coordination technique,
which has already been successfully applied in manufactur-
ing control [8], traffic control [13] and PDP (package and de-
livery) problems [2, 7]. Comparable with these application
areas, EV charging can benefit from the ability of delegate
MAS to coordinate in an inherently uncertain and dynamic
environment. The main contributions of this paper are:

1. Description of the problem of charging EVs at pub-
lic fast charging stations along a highway, with charg-
ing station owners and EV owners as main stakeholder
(section 3).

2. Description of a decentralized solution, based on dele-
gate MAS, in which EV agents send ants to delegate
their charging intentions beforehand to fast charging
stations. Through continuous updating of these inten-
tions, uncertainties (such as arrival times at a charging
station) are taken into account (section 4).

3. Evaluation of the MAS solution through comparison
with (1) a naive charging strategy and (2) a TMC-
based charging strategy. Results show that our ap-
proach well outperforms these solutions (section 5).
Furthermore, the influence of different parameters in-
herent to delegate MASs are analyzed (section 5.3).

!For simplicity, the abbreviation EV instead of BEV is used
in the rest of the paper



2. RELATED WORK

In recent years, several papers have appeared which in-
tegrated EV energy requirements in the domain of traffic
coordination and control. This section gives a representa-
tive selection of these papers.

In [1], an extension to general shortest-path algorithms
is proposed, to address the problem of energy-optimal rout-
ing. The energy requirements in this problem are modeled
as constraints, and the proposed algorithms respects these
constraints with a worst case time complexity of O(n?). The
proposed algorithms were evaluated in a prototypic naviga-
tion system.

In [11], a Multi Constrained Optimal Path (MCOP) ap-
proach is defined, which aims to minimize length of an EVs
route, and meet constraints on total traveling time, total
time delay due to signals, total recharging time, and total
recharging cost. The unconstrained optimization (by trans-
forming the problem to an unconstraint optimization prob-
lem) is performed by using a Particle Swarm Optimization
(PSO) algorithm. Simulation results show that suboptimal
solutions could be found in a limited execution time.

In [9], a new route search method “Assist Route” for EVs is
proposed, which calculates a route with stop-overs at park-
ing stations. In this method, both travel distance and esti-
mated arrival time between charging stations are taken into
account to calculate a valid route.

In summary, these approaches define individual EV rout-
ing and charging as centralized optimization problems, and
solve these problems by using well-known optimization tech-
niques. While individual EV routes are optimized, the effect
of these individual routing and charging decisions on each
other is not clear. In traffic networks, the emergent effects
of individual routes have long been studied [3].

In this paper, we define a distributed problem setting, and
use a decentralized approach for charging electric vehicles.
In our solution, EVs continuously interact through delegate
MAS:s in order to adapt to each others individual decisions.
In the defined problem setting, individual charging decisions
influence the electricity price at different charging stations.

3. PROBLEM DESCRIPTION

The problem of selecting charging stations on an EV’s
route is a problem with many stakeholders and objectives.
For example, car owners quickly want to reach their destina-
tion, while minimizing recharging cost; grid operators want
to limit local grid load; charging station owners want to opti-
mize EV throughput; electricity providers want to minimize
their generation costs... To limit the scope of this paper,
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Figure 1: Problem description

a concrete problem description is provided in this section,
with EV and charging station owners as main stakeholders.

In this problem description, we only consider highway traf-
fic roads (figure 1), which are most likely to be used by long
distance travelers, who require public charging stations. In
our description, charging stations are positioned adjacent to
a highway road, similar to classic gas stations. A charg-
ing station contains multiple fast charging poles, which en-
able simultaneous charging of multiple EVs. In this paper,
we assume both traffic directions are serviced by the same
charging station.

The first stakeholder in this problem description is a charg-
ing station owner. The overall goal of a charging station
owner is to reduce its operating costs. These operating costs
depend on the price for supplying electricity to its EV cus-
tomers. In general, these prices depend on the load of all
EVsin a charging station. In our problem description, we as-
sume each charging station has its own cost function, which
is independent from other charging stations.

The second stakeholder in this problem description is an
EV owner. The overall goal of an EV owner is to travel
from its starting point to destination, while avoiding delays
for charging and minimizing charging costs. In our problem
description, delays are not considered by assuming a charg-
ing station always has sufficient charging poles available. For
an EV owner, charging costs depend on its personal share
of the operating costs of the charging station owner. Conse-
quently, charging at a charging station with a large number
of EVs will cost more than charging at a less occupied charg-
ing station.

4. PUBLIC FAST CHARGING OF EVS
USING DELEGATE MAS

Based on the identified challenges (section I), we propose a
decentralized approach for charging EVs along their route,
using delegate MAS. In this approach, an EV agent man-
ages its EV, while a CS (charging station) agent manages a
charging station. The goal of this solution is to minimize
the charging costs of individual EVs. Consequently, EV
agents individually decide at which charging station they
will charge their EV battery. To guide this decision, EV
agent use delegate MASs.
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Figure 2: A task agent utilizes delegate MASSs,

which consist of light-weight ant agents that ex-
change information with resource agents.
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Figure 3: Exploration delegate MAS

A generic delegate MAS model consists of a swarm of
lightweight ant agents that provide a service for a higher
level task agent, to support this agent in fulfilling its tasks
(figure 2). The ant agents travel in a virtual environment
(a software representation of the real environment) through
resource agents, which represent resources in this environ-
ment. Ant agents arriving at a resource agent can delegate
to the environment by depositing, observing or modifying
information from that respective resource agent. The task
agent may use several delegate MASs simultaneously, each
providing a specific service. Delegate MAS was first pro-
posed in [8].

In our approach, EV agents fulfill the role of task agents,
and CS agents fulfill the role of resource agents. Delegate
MASs are used by the EV agents to execute the task of
charging their EV at the lowest price possible. For this task,
two types of delegate MASs are used; exploration delegate
MAS and intention delegate MAS. Each of these delegate
MASs offers a distinct service.

Exploration dMAS. An EV agent sends out an explo-
ration ant at regular time intervals to explore possible charg-
ing scenarios between an EV’s current location and destina-
tion (figure 3). To explore these scenarios, the exploration
ant is sent along the EV’s route with information about the
EV’s current battery state. At each charging station, the
exploration ant requests the CS agent for different charging
possibilities (not charging, fully charging, partially charg-
ing...). For each possibility, the ant is duplicated and its
battery state updated accordingly. Ants who run out of bat-
tery energy are deleted, while ants who arrive at the EV’s
destination report back to its EV agent with information
about charging times, stations and expected costs. Conse-
quently, EV agents constantly receive alternative scenarios
for charging their battery.

Intention dMAS. When an EV agent has selected a
charging scenario from an exploration ant, this intended sce-
nario is made available to the CS agents by means of an
intention ant (figure 4). This intention ant travels along the
EV’s route, while making reservations at the charging sta-
tions included in the charging scenario. These reservations
contain the expected arrival and departure time of the EV.
Consequently, a new energy price can be calculated, which is
now available for other EV agents (through their exploration
ants).

The described delegate MAS is an approach for informing
EV drivers (similar to SatNav) about future charging costs
at different charging stations, rather than a binding agree-
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Figure 4: Intention delegate MAS
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Figure 5: Highway segment with charging stations
and access points [source: google maps].

ment between EV drivers and CS owners. Consequently, EV
agents are free to change their intentions at any time. For
example, when another charging scenario is more favorable.
To prevent incorrect reservations at charging stations, reser-
vations are expected to be re-confirmed after a certain time
period.

S. EVALUATION

The proposed decentralized approach is evaluated in sim-
ulation experiments of a highway segment in Belgium (sec-
tion 5.1). In the first part of the evaluation, the approach
is compared to alternative charging strategies (section 5.2).
In the second part of the evaluation, the influence of differ-
ent parameters, inherent to the delegate MAS solution, are
analyzed (section 5.3).

5.1 Simulated scenario

The considered scenario is a 100 km long highway seg-
ment (E314), located in Belgium (figure 5). In total, 9 ac-
cess points allow cars to enter and exit the E314 highway.
The assumed charging infrastructure consists of 5 charging
stations, spread out over the whole stretch of highway. Two
charging stations are positioned at existing gas stations, one
at a resting area, and two extra to provide sufficient charg-
ing possibilities. Driving times between charging stations
and access points are based on data from an online route
planner [6].

To experimentally evaluate this scenario, we developed a
microsimulation of the E314 highway. In this microsimula-
tion, EVs are individually modeled by their position, and
drive from a source access point to their destination access
point. EVs are assumed to have a constant speed of 120 km
per hour. At each charging station on their route, an EV
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Figure 6: Distribution of the total cost for each so-
lution as result of a Monte-Carlo experiment.

can decide to charge its battery for a chosen time.

The parameters from all simulated EVs are taken from
the Nissan Leaf [10]. This car has a 24 kWh battery pack,
and a total driving range of 110 km under highway driv-
ing conditions. Consequently, the Leaf consumes around
218 Wh per kilometer. For recharging, the Nissan leaf has
a TEPCO connector for DC fast charging, with an average
charging rate of 50 kW [12]. In this paper, we assume that
all charging stations provide DC fast charging capabilities.

Charging costs of an EV i are calculated using a cost func-
tion C;(t), which represents the EV’s share of the total costs
Ciot(t) for generating electricity at the utilized charging sta-
tion. In this paper, we assume the cost function is quadratic,
based on a typical cost function for thermal generators [14].
For each charging station:

N

Ci(t) = Ei(t) - > En(t)

n=1

vie{l,.,N} (1)

N

Ciot(t) = Zci (t) (2)

i=1
where:

e C;(t) are the charging cost of EV i at timestep t.

e Cot(t) are the total charging cost of a charging station
at timestep t.

e N is the total amount of electric vehicles charging at
the considered charging station.

e FE;(t) is the energy off-taken by EV ¢ at time step ¢.
e E,(t) is the energy off-taken by EV n at time step ¢.

5.2 Comparison with alternative strategies

In this section, our approach is benchmarked against a
naive charging strategy and a TMC-based charging strategy.
In the naive charging strategy, each EV chooses a random
charging station, without prior knowledge. In the TMC-
based charging strategy, EVs receive continuous updates of
real-time prices at charging stations. E.g., through a traf-
fic message channel (TMC). Based on this information, EVs
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Figure 7: Distribution of the total cost for each EV
trip as result of a Monte-Carlo experiment.

select the charging station with the lowest price. Price up-
dates are assumed without delay.

The total charging costs are assessed in a simulation of
100 EVs accessing the highway at a random time within
the same hour. Both source and destination access points
are randomly chosen. Furthermore, each EV arrives at the
highway with a random initial battery level, from a normal
distribution with mean 14 kWh and a variance of 2 kWh.
Given all these random values, each solution is simulated
hundred times in a Monte-Carlo experiment.

In figure 6, a histogram is shown with the distribution of
the total costs of these simulations. While the naive and
TMC strategy have a short and wide cost distribution, our
dMAS-based approach has a short and thin cost distribu-
tion. Furthermore, the mean of the dMAS cost distribution
is 47% lower than the naive cost distribution, and 30% lower
than the TMC cost distribution.

In figure 7, a histogram is shown with the distribution
of the costs for all 10,000 EV trips (100 EV trips in each
of the 100 simulations). For the naive strategy, there is a
large difference between cheapest and most expensive charg-
ing trip. This difference is much smaller in our approach.
Even though our approach is defined as a competitive multi-
agent system, with EV agents competing for resources from
CS agents, the considered cost function is defined in a way
that an EV cannot disadvantage another EV without paying
more itself.

5.3 Delegate MAS parameters analysis

In this section, the different parameters of the delegate
MASs are described, and their influence on the efficiency
of our approach evaluated in simulation experiments. For
each parameter, the rationale behind their chosen value in
previous experiments is explained.

5.3.1 Parameter 1: exploration probability

The exploration probability expresses the chance that an
EV will send out an exploration ant (and reviews its inten-
tions) at a particular time point. In this paper, exploration
probability (instead of exploration frequency) is used, to
avoid potential oscillations caused by synchronized behav-
ior.

The influence of the exploration probability is analyzed
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Figure 8: Charging costs resulting from different
exploration probabilities.

in a scenario of 100 EVs. For each exploration probability
value, 100 simulations are performed. Exploration probabil-
ity values range from 1/100 to 1/10,000, which indicate the
exploration probability per second in the simulation.

In figure 8, the total cost is shown for each exploration
probability. On the far right side of the graph (p = 1/100),
the cost for the highest exploration probability is shown. Be-
yond this point, there are no further cost reductions, because
EV agents review their intentions quick enough to cope with
dynamics in the environment. In figure 6, the same cost dis-
tribution is shown, as this exploration probability was used
in the foregoing experiments.

On the far left side of the graph (p = 1/10,000), the cost
of the lowest exploration probability is shown. At this point,
EV agents explore charging scenarios once when they access
the highway, without taking into account further changes
in the environment. The cost distribution of these one-shot
reservations are comparable to the cost distribution of the
TMC-strategy (figure 6).

5.3.2  Parameter 2: ahead exploration period

The ahead exploration period is the period before an EV
enters the highway, in which exploration and intention ants
were sent out. In figure 9, the total cost is shown for each
ahead exploration period from 0 to 60 minutes. At 0 min-
utes, EVs send out their ants for the first time when entering
the highway. Around 30 minutes, the cost converges and re-
mains stable.

In the previous experiments, the ahead exploration pe-
riod is assumed to be the time between departure with a
full battery, e.g at home, and entering the highway. The
ahead exploration period was calculated by using the fol-
lowing formula:

Etot - Eenter

Atahead = T P 3)

where:
e Fi.: is the total battery capacity.

® Fenier is the battery level when entering the highway.

® Pirive is the average power consumption while driving.
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Figure 9: Charging costs resulting from different
ahead exploration periods.
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Figure 10: Charging costs resulting from different
division strategies.

Our previous simulations ( figure 9 ) also resulted in a total
cost with a mean of 260. Consequently, this proved to be a
reasonable choice for the ahead exploration parameter.

5.3.3 Parameter 3: charge division

The charge division parameter indicates to which degree
an EV is willing to charge at multiple charging stations.
While the previous parameters are one-dimensional, the charge
division can consist of several EV preferences: maximum
number of charging stations per driving distance, minimum
charging energy per charging station... These preferences
are used to select a charging scenario after exploration ants
have returned to the EV.

In all previous simulations, EVs only selected one charging
station, considering the relative short distance of the high-
way segment (100 km). In view of large-scale simulations
in future work, an initial simulation on charging at multiple
charging stations is performed. In this simulation experi-
ment, full charging at one charging station is compared to
equally dividing charge time between two charging stations,
in a simulation of 100 EVs. Results are shown in figure 10,
and indicate a slight difference between both solutions. Con-



sequently, charging costs can be reduced further, depending
on the willingness of EV drivers to stop at multiple charging
stations.

There are several parameters which significantly influence
our dMAS-based approach. While these parameters can be
set to values that ensure low energy costs, additional con-
straints have to be taken into account in an actual charging
environment. For example, the rate of sending out explo-
ration ants will be limited by communication constraint.

6. CONCLUSIONS AND FUTURE WORK

In this paper, a decentralized approach is presented for
selecting charging stations along EV’s their route. In this
approach, delegate MASs are used by EV agents to explore
possible charging scenarios (exploration dMAS), and make
their intentions available for other EVs (intention dMAS).
One advantage, compared to centralized optimization meth-
ods, is the natural mapping of our approach onto a dis-
tributed environment. Another advantage is that EV agents
cope with a dynamic environment by continuously reviewing
their intentions, based on exploratory information from the
environment.

Our approach was evaluated in simulations of a highway
segment in Belgium. These simulations show a significant
improvement over a naive strategy, where EVs select a ran-
dom charging location, and a TMC-based strategy, where
EVs select a charging location based on real-time pricing
information.

Current and future work will focus on the evaluation of
our approach in large-scale scenarios, where a larger part of
the road network will be included. Furthermore, we will be
looking at the combination of delegate MAS for both routing
and charging EVs.
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