The Geodise Toolboxes
for Jython

A User’s Guide

Geodise

Release:

Version:

Title:

Authors:

PI:

Web:

Copyright:

GeodiseLabPy v.1.0.2
GeodiseManualPy 1.1.1
The Geodise Toolboxes for Jython — A UsE&sde
Dr Graeme Pound, g.e.pound@soton.ac.uk
Dr Jasmin Wason, j.l.wason@soton.ac.uk
Dr Marc Molinari, m.molinari@soton.ac.uk
Dr Hakki Eres, hakki.eres@soton.ac.uk

Dr Zhuoan Jiao, z.jiao@soton.ac.uk

Prof Simon Cox, s.j.cox@soton.ac.uk

http://www.geodise.org

Copyright © 2005, The Geodise Projeatjvdrsity of Southampton

Acknowledgement:

The development of the Geodise toolboxes for pulgiease has been
supported by the managed programme of the Open |&lidde
Infrastructure Institutehftp://www.omii.ac.uk).

Contents

The Geodise Toolboxes for JYthonuceeiiiiiii e 1
L0 0] (=7 o | £ PP 3
T oo [0 Tox 1 o o S USPPPUT 5
What IS JYTNON? ... 6

L0 S < = 1S S 6
FUNCHON AFQUIMENES. ...ttt eemmmm ettt eeeaaa e e e e e e e e e eaeas 9
INPUE AFQUMENTS ...t ettt e e e e e e e e e e e e na e e e ena s 9
OULPUL AFQUIMENTS ...ttt emmm et e e ettt e e e e e e et e e e e e e eennmnna e eeas 14
Geodise ComMpPUte TOOIDOXuuuiiiiiiiiii e ee e e e eeaeens 16
T oo U Tox 1 o o PRSPPI 16
101 (o = | PRSP SP 18
FUNCLION REIEIENCEvviii it ettt e e e e e e e eeeeaaaaas 28

(o o I o= 1 0 {0 RSP 28

O _CNMOQ....e e e e e e eenaes 29
J0_COMPULE VEISION ..uuuiiiiiiiiiie e e e et i s+ e et e e e e e et it e e e e e eeabaeeeeaaeennnes 31

oo I o3 (== 11=T o] (02RO PUPRPRURRRPPRTPN 32

(oo IR0 (=153 (0] Y/ o] (0)74V NS 33

O FIIEEXISES ... 34

(o [0 I o 1] 111 = PSP 35

o o [T o 41 LIRS PPUUPPPRR 37
OA_JODPOI .. —— 38
O0_JODSIALUS ...vvviicceei e e 39

(o o IR0 0 151U o 1 41 S PP 40

(0 o TR 153 o | PRSPPI 41

O _MAKEAIN ... e —————— 42

(o o I o])74/ 1 1] [J S PP 43

(oo [0100040 [V T=] o VRSP RSSPPP 44

(o [0 T 010 1111 = P 45

o o I 1 10T |1 P STURURPPPRPRPR 47

(o [0 T 01 0111 48

(o o I 41418 a1 o [0 1T [PPN 49

00 SUDMITUNIQUEeee e 50
gd_transferfile ... 52
Geodise Database TOOIDOXcceviiiiiitimmmmmmm e 53
T 0o ¥ Tox 1 o] o PRSPPI 53
IV o = | PRSP 54

FUNCHON REIEIENCE ... oo e e et e e 66

o o = o [0 [N 1S =1 = 66
o o[- 1] 1= R PPPRRN 68
(o o [0 F= 1 e= 1o | (o 11] o J5 72
gd_datagroupadd.............uuueeiiiiiie e ———— 75
oo [0 | 0151 =Y (U1 o S 77
oo I o | o TRV £ (o PSRRI 78
o o [0 1153 o] = V2R PPPPRN 79
gd_mMarkfordeletioN...........oovvvieieii s e e e e e e e ——— 81
o o [0 [U1= Y TR PPPPPN 83
(oo I o [N T=T /0 (=1 =3 (= o PR 90
oo [(=] =3/ PPPPP 93
gd_unmarkfordeletion..............uuueeiiii e 96
XML TOOIDOX ...ttt e e e e e e e s s 98
INEFOAUCTION.....ce it e e e e e e e e e brreeee e e e e e e e e e aans 98
LI 1 = | PR 99
FUNCLION REFEIENCEeviiiiiiiiiiiiiee e ettt eeeeee e 103
XML FOIMAL.. ..o e e e e aaaaae 103
XMI_TOAA oo ————— 106
XM PAISE ..o e e e e e e e e e e e e e e ——————— 108
D LIS Y/ 110
11T TR 111
FUNCLION REFEIENCEvviiiiiiiiiiiiiie e ettt eeeeee e 111
OO NI e ————————————————— 111

Introduction

The Geodise Toolboxes provide a collection of fiomg that provide Grid client
functionality to the Jython scripting environmeiibe Geodise Compute, Database
and XML toolboxes contain routines that facilita@ny aspects of Grid computing
and data management including:

« The submission and management of computational gnbsemote compute
resources via the Globus GRAM service.

« File transfer and remote directory management usiegsridFTP protocol.

» Single sign-on to the Grid with Globus proxy cecttes.

e Storage and grouping of files and variables, ariadtavith user defined
metadata, in an archive.

* Graphical and programmatic interfaces for querying metadata to easily
locate stored files and variables.

e Sharing and reuse of data among distributed ubsers may grant access to
their data to other members o¥atual Organisation.

« Conversion of Jython variables into a non-propngtglain text format
(XML) which can be stored and used by other tools.

Grid computing provides the infrastructure for t@laborative use of computers,
networks, data, storage and applications acros#ribdiled organisations. A
computational job can be run on the Grid to maleafsesources unavailable on the
user’'s desktop, for example to exploit softwareeriges or greater computational
power. The Geodise Compute Toolbox provides Pyfthagtions for submitting and
monitoring jobs on the Grid, transferring filesand from remote compute resources,
and managing the certificates used to identifysiaad authorise use of the resources.

Compute intensive applications often use and predmany data files and data
structures. It can become difficult to find, reuaad share data from various
applications that have been run repeatedly witfediht parameters. The Geodise
Database Toolbox can be used to store additiorextdefined information (called
metadata) describing files and Jython variablesthsd they can be located and
retrieved more easily with metadata queries. Fales variables can also be grouped
together, and data can be shared with other ugegganting access permissions.

XML is a flexible standard data format that is wideised to structure and store
information, and to exchange data between varionspater applications. The XML
Toolbox functions convert and store Jython varialaed structures from the internal
format into XML and vice versa. This allows paraerestructures, variables and
results from computational applications to be stdrea non-proprietary file format,
or in XML-capable databases, and can be used nsferJython variables across the
Grid. The XML toolbox also enables the transpamxthange of data between the
Jython scripting environment and the Matlab teciintomputing environment.

This user guide introduces the reader to the Compieitabase and XML toolboxes,
with tutorials that give an overview of the functaity provided by each of the
toolboxes. The function reference for each toollmmxtains detailed information
about the syntax of its functions.

What is Jython?

Jython is an implementation of the powerful objegented Python scripting
language written in Java. The Python languagehigjla-level programming language
has a clean syntax which allows scientists andneegs to rapidly develop scripts and
workflows. The Jython environment also allows theveloper to exploit the
capabilities of extensive built-in and third padgva libraries. The Jython interpreter
iIs freely available for both commercial and non-coencial use from
http://www.jython.org/

Throughout this manual the terRython refers to the Python scripting language, and
the termJython refers to the Jython scripting environment.

Use Cases

The GeodiseLab toolboxes have applications in @&wihge of scenarios. Here we
will outline three use cases that describe thenistebenefits of Grid computing to
the daily practice of the scientist or engineer.

The use cases that we will discuss are:
* Engineering Design Search and Optimisation
« Data management in computational electromagnetics
» Transparent collaboration between Problem Solvimgranments

Engineering Design Search and Optimisation

Engineering Design Search and Optimisation (EDS@) ¢ompute and data intensive
task which is well matched to Grid computing. Opsiation algorithms are used to
search the parameter space of an engineering prdbleliscover an optimal design
subject to certain criteria. During EDSO the opsation algorithm must repeatedly
evaluate some measure of the quality of a desigs; may involve one or more
lengthy numerical calculations. For example, aniresgy wishing to improve the
aerodynamic performance of a wing design may condigan optimiser to vary key
design parameters, whilst invoking simulations afmutational Fluid Dynamics
(CFD) to determine thquality of alternative geometries.

Depending upon the complexity of the numerical walions and the number of
evaluations required to determine the optimum daedtPSO may be a lengthy and
computationally intensive task. When the evaluatioin the objective function
involves complex simulations (i.e. CFD) numerougjéadata files may be required,
or produced, by the numerous calculations. The G@lieht functionality makes it
straightforward for the engineer to leverage compomal resources available on the
Grid to perform EDSO.

When undertaking EDSO in the Jython scripting eanwinent the engineer may use
the Geodise Compute toolbox to automate the tran$fides, and the submission and
management of computational jobs required durirey @tialuation of a design. By
exploiting Grid resources not only is the enginedle to leverage the greater
computational power available, but he can alsoedairy applications that he requires
on a multitude of platforms from the comfort of kissktop PSE.

Data management in computational electromagnetics

Data management is an issue in a number of sdeaiid engineering application
domains, including that of computational electrometges. For example, when
performing simulations of electromagnetic phenomaarge volume of data may be
generated, typically in the form of the input andtput files. It is a non-trivial
problem for the researcher to store, manage anser¢his data. The investment
associated with the computationally expensive €irldifference Time Domain
modelling technique used to explore the properdfesdectromagnetic devices require
that simulation results are suitably managed foseeat a later data.

At present the most common solution for this proble to store these flat files within
a hierarchical directory structure on a local flesstem. As the volume of data grows

over time this solution is frequently inadequate lfing term storage since it may
become increasingly difficult to locate and reusdadwithin the collection. The
Geodise Database toolbox provides a solution digtat ¢0 a managed data archive on
the Grid.

The Geodise Database Toolbox allows the researtharchive data files to a
managed repository from Jython and annotate thieseviith metadata. In addition to
standard metadata the user may define custom ntatspecific to the problem. The
researcher can then query the metadata to finc thies using a straightforward
syntax within the Jython scripting environment. dddition the Geodise Database
Toolbox supports the archiving of variables fromthdyn. Items in stored the
repository can be associated together into datagroallowing the creation of
annotated hierarchies within which the user's tesisin be organised.

Transparent collaboration between Problem Solving Bvironments

The Geodise XML toolbox provides a collection afagiht-forward functions which
convert variables in the Jython scripting environtnt® and from the external XML
format. Variables in the Jython workspace can eddo and loaded from an XML
file with minimal effort on the part of the reselec. XML is a structured format that
can be interpreted by third party applications.eBgoding the Jython variables in the
XML format there are a number of benefits.

The provision of the Geodise XML toolbox for Matladdlows the transparent
exchange of variables between the Matlab techrioahputing environment and
Jython scripting environment. Variables are mappedthe appropriate built-in
datatypes in the two languages. This allows rekeascworking with these two
Problem Solving Environments to collaborate on stiafatasets.

The Geodise XML toolbox is also leveraged by theodi®e Database Toolbox to
store variables and metadata in a database. Thentsrof variables and metadata in
the database can then be queried and searched.athesGeodise Database toolbox
may be used to share variables stored in the mdrragesitory between members of
a virtual organisation because researchers carorgsghother users to access their
data. When variables are retrieved from the repnsithey will be transparently
converted into the built-in datatypes of that PSE.

Function Arguments

The input and output arguments used by all of tiketions of the Geodise toolboxes
are summarised below.

Input Arguments

Argument Description Used by Functions
attswitch A string specifying whether to xml_format
use attributes (‘on’ = use xml_load

attributes, ‘off’ = no attributes). xml_parse

xml_save
accesstype A string specifying whether to gd_addusers
add access permission for ‘users’
or ‘groups’.
command The absolute path of the chmodgd_chmod
command on the Globus
resource.
datagroupID The unique identifier of a gd_addusers
datagroup. gd_archive
gd_datagroupadd
datagroupname A user defined name for a gd_datagroup
datagroup.
datagrouptype Set to ‘monitor’ if datagroup is gd_datagroup

to be monitored.

datatype Used to override automatic datayd_archive
type selection for archive (‘var’)gd_retrieve
or retrieve (‘metadata’).

datasource Specifies what type of metadatayd_query
or data to query (‘file’, gd_querydeleted
‘datagroup’, ‘varmeta’, ‘var’ or
‘monitor’).
directory The path of a local directory. gd_retrieve
filename The path of a local file. gd_archive

Argument Description Used by Functions
gd_certinfo
gd_retrieve
xml_load
xml_save

files A cell array of filenames. gd_submitunique

filetype A string specifying the GridFTP gd_getfile

transfer type (‘ASCII’ or gd_putfile
‘binary’). gd_transferfile
groups A user group ID string or list of gd_addusers
user group IDs.
host A string specifying the Globus gd_chmod
server to be used. gd_fileexists
gd_getfile
gd_jobsubmit
gd_listdir
gd_makedir
gd_putfile
gd_rmdir
gd_rmfile
gd_rmuniquedir
gd_submitunique
gd_testauthentication
gd_testfiletransfer
gd_testjobsubmission
gd_timeauthentication
gd_timefiletransfer
gd_timejobsubmission
hostl The Globus server that sends thgl_transferfile
file.
host2 The Globus server that receivegyd_transferfile
the file.
hostprompt Indicates whether to prompt useyd_dbsetup

for file host configuration during
setup (1=true, O=false).

10

Argument Description Used by Functions
ID The unique identifier of a file or gd_addusers
variable. gd_datagroupsadd
gd_retrieve
IDs A cell array which may contain gd_markfordeletion
the unique identifiers of files, gd_unmarkfordeletion
variables and datagroups.
interval Interval (in seconds) at which thgd_jobpoll
status of the job is polled.
jobhandle A Globus GRAM job handle. gd_jobkill
gd_jobpoll
gd_jobstatus
listhidden Indicates whether hidden files gd_listdir
should be listed (1 = true, false
otherwise).
localfile A filename on the local machinggd_getfile
gd_putfile
localpath The path of a local file or gd_retrieve
directory.
maxtime Upper limit (in seconds) for the gd_jobpoll
period over which the job is
polled.
metadata A metadata dictionary containingd_archive
information about a file, variablegd_datagroup
or datagroup.
minvalue The minimum acceptable valuegd_proxyquery
for the property of the proxy
certificate examined (in hours or
bits).
mode Permissions to be set on the filgd_chmod
name Name to use for the root elememinl_format
prompt Indicates whether to overwrite ayd_retrieve

existing file without prompting

11

Argument Description Used by Functions
(‘overwrite’) or prompt the user
(default).
proxyattrib A string specifying the property gd_proxyquery
of the proxy certificate to be
examined (‘time’ or ‘strength’).
gresults List of dictionaries containing gd_display
results returned from a query.
query A query string which compares gd_query
fields (dictionary keys) with gd_querydeleted
values.
remotedir The path of a directory ona gd_listdir
Globus server. gd_makedir
gd_rmdir
gd_rmuniquedir
gd_submitunique
gd_testfiletransfer
gd_testjobsubmission
gd_timefiletransfer
gd_timejobsubmission
remotefile A filename on the remote servegd_chmod
gd_fileexists
gd_getfile
gd_putfile
gd_rmfile
remotefilel The path of the file to be sent. gd_transferfile
remotefile2 The path of the file to be gd_transferfile
received.
resultfields A string specifying selected gd_query

rsl

subdatagroupID

fields (dictionary keys) to returngd_querydeleted
from a query.

A string specifying the propertiegd_jobsubmit
of a Globus GRAM job. gd_submitunique

The unique identifier of a gd_datagroupadd

12

Argument Description Used by Functions
datagroup that is added to
another datagroup.

users A user ID string or list of user gd_addusers
IDs.

v A generic structure or variable. gd_archive
xml_format
xml_save

xmlstr An XML string. xml_parse

13

Output Arguments

Argument Description Used by Functions
datagrouplD The unique identifier of a gd_datagroup
datagroup.

exists

filename

filedetails

files

isdone

isvalid

jobhandle

marktotal

metadata

gresults

status

The existence of the file on the gd_fileexists
Globus server (1 = exists, 0 =
does not exist).

The path of a local file. gd_retrieve

A list containing structures that gd_listdir
describe the details of the files

and directories contained in the

remote directory.

A list of filenames. gd_listdir

The unique identifier of a file or gd_archive
variable.

Indicates whether the job gd_jobpoll
complete successfully (1 = done,
0 = not done).

Indicates whether the proxy gd_proxyinfo,
certificate is valid (1 = valid, O =gd_proxyquery
not valid).

A Globus GRAM job handle. gd_jobsubmit
gd_submitunique

Total number of IDs successfullyd_markfordeletion
marked for deletion.

A metadata structure containinggd_retrieve
information about a file, variable
or datagroup.

List of dictionaries containing gd_query
results returned from a query. gd_querydeleted

The status of the Globus GRAMyd_jobstatus
job.

14

Argument Description Used by Functions
subject The certificate subject line in thgd_proxyinfo
Globus format. gd_certinfo
success The result of the operation or tegt_addusers
(1 = success, 0 = failure). gd_datagroupadd
gd_testauthentication
gd_testfiletransfer
gd_testjobsubmission
time The elapsed time in millisecondgd_timeauthentication
or -1 if failed. gd_timefiletransfer
gd_timejobsubmission
uniquedir The path of the unique working gd_submitunique
directory created on the server.
unmarktotal Total number of IDs successfullyd_unmarkfordeletion
unmarked for deletion.
v A generic structure or variable. gd_retrieve
xml_parse
xml_load
version Version of the Databas¥ML or gd_compute_version
Compute toolbox. gd_db_version
gd_xml_version
xmlstr An XML string. xml_format

15

Geodise Compute Toolbox

Introduction

The Geodise Compute Toolbox exposes the powereoGitid to the Jython scripting
environment. With this toolbox the engineer cangpammatically access Globus
GT2 resources which provide the backbone of manypeational Grids. In this

manner the Geodise Compute Toolbox promotes tlegration of Grid resources into
the complex engineering workflows which can be dbsd in the Python scripting
language.

The Geodise Compute Toolbox provides Python funstiavhich support the job
submission, file transfer and certificate managernrea familiar and intuitive syntax.
* Globus GRAM jobs can be submitted, queried anditeated.
» File transfer and remote directory managementppated using the GridFTP
protocol.
» Single sign-on to the Grid is supported with Glopusxy certificates.

The Geodise Compute Toolbox functions for certtBcananagement are listed in
Table 1. Table 2 lists functions for the submisgioe computational jobs to a Globus
GRAM service, and Table 3 lists the functions feidETP file transfer.

gd_certinfo Returns information about the user's
certificate.

gd_createproxy Creates a Globus proxy certificate.

gd_proxyinfo Returns information about the user's

proxy certificate.

gd_proxyquery Queries whether a valid proxy certificate
exists.
gd_destroyproxy Destroys the local copy of the user's

Globus proxy certificate.

Table 1 Certificate management functions

gd_jobstatus Gets the status of a Globus GRAM job

gd_jobsubmit Submits a compute job to a Globus

16

GRAM job manager.

gd_jobpoll Queries the status of a Globus GRAM
until complete.

gd_jobkill Kills a Globus GRAM job specified by ¢
job handle.

gd_chmod Changes file permissions of a file on a

Globus resource.

gd_submitunique

Submits a GRAM job to a unique

working directory.

Table 2 GRAM job submission functions

gd_getfile

Retrieves a remote file using GridFTP.

gd_putfile

Puts a file on a remote server using
GridFTP.

ob

gd_transferfile Performs a third-party file transfer using
GridFTP.

gd_makedir Creates a remote directory using
GridFTP.

gd_listdir Lists the contents of a directory on a
GridFTP server.

gd_fileexists Tests the existence of files and directories
on a Globus resource.

gd_rmdir Deletes a remote directory using
GridFTP.

gd_rmfile Deletes a remote file using GridFTP.

gd_rmuniquedir

Deletes a remote directory and its
contents.

Table 3 GridFTP file transfer functions

17

Tutorial

Grid Certificates

To access Globus compute resources all users rawithenticated, and must also be
authorised to access the resource. Authenticatmteruthe Globus toolkit is based
upon X.509 certificates. X.509 certificates are itdig tokens that have been
cryptographically signed by a trusted third pathe Certificate Authority (CA), see
Figure 1. Using X.509 certificates the identityaofiser or server can be verified.

It is necessary to obtain a Grid certificate fromCartificate Authority that is

acceptable to the administrators of the Globusurss that you wish to use. For
step-by-step instructions about how to apply forXaB09 certificate, and how to
export it into the format required by Compute Taxipa tutorial is available from the
Geodise web-sitenftp://www.geodise.org/files/tutorials/Obtaining_r@kcates.pdj.

CA Certific.ate
certificate Authority
credentials

cryptographic
signature

user user users)(_.509

certificate | |private key credentials
i
l cryptographic
signature

user user's proxy

Proxy certificate
certificate

Figure 1 - Hierarchy of trust for user credentials

The Globus toolkit authorises users to access ressipy mapping their certificate to
a user account on the resource. Therefore to udBlodus resource to run
computational jobs you must be in possession of.&09 certificate signed by a CA
that is trusted by the administrators of the resedihat you wish to access. You must
then apply for permission to access the resourchadwng the subject line of your
certificate mapped to a user account on that machin

To enable users to delegate their identity, allgn@rid processes to submit jobs and
transfer files on their behalf, the Globus tooldso uses a technology called ‘proxy

18

certificates’. Proxy certificates are temporarityited credentials that can be used to
devolve the user’s identity across the Grid. Incpica proxy certificates also provide
a convenient single sign-on to the Grid; usersrethie passphrase to the private key
of their X.509 certificate just once when genergtime proxy certificate.

Before accessing a Globus resource you should gtner valid proxy certificate,
which will typically expire after 12 hours. The Gise Compute Toolbox provides
Python functions that allow the user to createméRa and destroy Globus proxy
certificates within the Jython scripting environrhen

Before using the Geodise Compute Toolbox you shoaidigure the location of the
credentials on your machine. Your X.509 certificated corresponding private key
should be separately encoded in PEM format (seelitening certificates tutorial for
details). To do this create a file called ‘cog.mujes’ located in a directory ‘.globus’
of the home directory on your workstation. Thenfaire the location of your X.509
certificate and private key, in addition to thetifiates of trusted CAs.

For example the ‘cog.properties’ file on a Windo®G would contain the following
lines:

cacert=C\:\\Documents and Settings\\<sUSER>\\.gldb0621954.0
proxy=C\:\\DOCUME~1\\<USER>\LOCALS~1\\Temp\\509up <USER>
usercert=C\:\\\Documents and Settings\<USER>\\uggblnsercert.pem
userkey=C\:\\Documents and Settings\\<USER>\\.ggblogerkey.pem
proxy.strength=512

proxy.lifetime=12

Please note that throughout this manual the terf8ER)> represents your username
on any given machine.

The properties ‘usercert’ and ‘userkey’ refer todtions of the PEM encoded user
certificate and corresponding private key. The filgcert’ contains the certificate of
the CA which signed the user’s X.509 certificateREM format). Where ‘proxy’ will
be the location of the user's proxy certificate ®nit has been generated by
gd_createproxy . The properties ‘proxy.strength’ and ‘proxy.lifee’ contain
default settings for the cryptographic strength &fedime of the proxy certificate.
Note that the file separator on a Windows PC must defined with double
backslashes, “\\".

19

Once the user’s credentials have been configurddericog.properties’ file they are
accessible to the Geodise Compute Toolbox. To ywehé configuration from the
interactive Jython prompt query the X.509 certiiica

>>> from gdcompute import *
>>> subject = gd_certinfo()

>>> print subject

subj ect: C=UK, C=eSci ence, OU=Sout hanpt on, L=SeSC, CN=sone user
i ssuer: C=UK, O=eSci ence, OU=Aut hority, CN=CA, E=ca-

oper at or @ri d- support. ac. uk

start date: Tue Cct 07 13:00: 31 BST 2003

end date: Wed Cct 06 13:00:31 BST 2004

/C=UK/O=eScience/OU=Southampton/L=SeSC/CN=some user

The details of the user’s certificate are printedhte screen. The subject line returned
by gd_certinfo is in the Globus format and can be used to apmlyatcess to a
Globus resource. By supplying this subject linethe administrator of a Globus
resource your credentials can be mapped to a aseuat on that machine.

To create a proxy certificate thhd_createproxy = command is used:

>>> gd_createproxy()

When this command is entered a GUI will promptaker for the passphrase to their
private key. The details of the proxy certificande configured using the 'Options'’
button. The proxy certificate is generated by presshe 'Create’ button. After the
proxy has been generated, click '‘Cancel' to disthiss€&UI.

Now you may query the details of the proxy ceréfe

>>> (exists, subject) = gd_proxyinfo()

20

Subj ect: C=UK, O=eSci ence, QU=Sout hanpt on, L=SeSC, CN=sone
user, CN=pr oxy

i ssuer: C=UK, O=eSci ence, OU=Sout hanpt on, L=SeSC, CN=sone user
type: full |egacy gl obus proxy

strength: 512 bits

timeleft: 11 h, 59 min, 39 sec

The details printed to the screen indicate thatpituxy certificate will remain valid
for almost 12 hours. We may also query the validify the proxy certificate
programmatically, for example:

>>> jsvalid = gd_proxyquery('time',11)

>>> print isvalid

This indicates that our proxy certificate will reima&alid for at least 11 hours.

Job submission and file transfer

The primary services offered by Globus GT2 resai@e GRAM job submission
and GridFTP file transfer. Typically Globus res@gcan simply be specified by the
machine name, for example:

>>> host = 'serverl.domain.com’
However some Globus computational resources may &fRAM job submission to a
number of alternative job managers or non-defaoitsp These can be specified as
follows:

>>> GRAML1 = 'serverl.domain.com/jobmanager-fork’

>>> GRAM2 = 'serverl.domain.com/jobmanager-pbs'

>>> GRAM3 = 'serverl.domain.com:2119/jobmanager'

Globus resources offering GridFTP will typicallstien on the default port (2811),
however a non-default port can be specified asvidl

>>> GridFTP1 = 'serverl.domain.com:2812'

21

For all examples in this tutorial we will assumatth single Globus resourdeo$t)
is used offering GRAM and GridFTP services on digfparts, and using the default
job manager.

To submit a job to a computational resource vialegb® GRAM service you must
describe the attributes of the job using a Reso@pecification Language (RSL)
string. An RSL string is a list of property/valugsirs each enclosed by brackets (see
the example below). The most frequently used GRABL Rarameters are listed in
Table 4, these and other GRAM RSL parameters ambefiu documented on the
Globus websitehttp://www.globus.orgd!/

executable The name of the executable file to be run. Thihésonly
required parameter.

directory The name of the default working directory.

arguments The arguments to be passed to the executable.

stdin The name of the file containing the standard irfputthe
executable.

stdout The name of the file that will contain the standatdput

from the executable.

stderr The name of the file that will contain the standardor
from the executable.

count The number of times that the executable shoulq
executed.
environment The environment variables to be set. A list of naalgie)

pairs each enclosed by brackets.

maxTime The maximum execution time in minutes.

jobType A string speifying the job types. Possible values incl
“single”, “multiple”, “mpi” and “condor”.

Table 4 GRAM RSL parameters

This example demonstrates the submission of a singll to the Globus GRAM
service orhost . The first argument tgd_jobsubmit is an RSL string that specifies
the file name of the executable to be run, ‘sleepd the argument to be passed to
that executable which specifies that the proceisigep for 1 minute.

22

>>> rs| = '&(executable="/bin/sleep")(arguments="1m)
>>> jobhandle = gd_jobsubmit(rsl,host)

>>> print jobhandle

https://serverl.domain.com:30001/27531/1096385757/

The functiongd_jobsubmit returns a GRAM job handle that can be used tolchec
the status of the job, and if necessary to killjoie In the following example we use
the job handle returned lyy_jobsubmit to query the status of the job. The integer
returned byyd_jobstatus indicates the state of the job, where “2” indisdi®at the
job is active and “3” indicates that the job hampteted.

>>> status = gd_jobstatus(jobhandle)

>>> print status

We can also poll the status of the job until tHe pas completed.
>>> isdone = gd_jobpoll(jobhandle)

In addition to high-performance, high-volume filarisfer GridFTP offers all of the
standard FTP file operations. We can use GridFTE&r@ate a working directory on
the Globus resource.

>>> gd_makedir(host,'’home/<USER>/demao’)

We will now run a second job, piping the outputatdile ‘date.out’ in our working
directory onhost . We will then use the GridFTP commagdl getfile to retrieve
the output to a temporary file on the local machared print the results.

>>> import tempfile

>>> rs| = '&(executable="/bin/date")(arguments="-u")
(directory="/home/<USER>/demo")(stdout="date.out")'

>>> jobhandle = gd_jobsubmit(rsl,host)

>>> print jobhandle

23

https://serverl.domain.com:30001/27531/1096385757/

>>> gd_jobpoll(jobhandle)
>>> |ocalfile = tempfile.mktemp()
>>> gd_getfile(host,'/home/<USER>/demo/date.out',lo calfile)

>>> print open(localfile).read()

Tue Sep 28 16:46:25 BST 2004

We can now use the GridFTP commagdsrmfile andgd _rmdir to clean-up the
file and directory on the server:

>>> gd_rmfile(host,'/home/<USER>/demo/date.out’)
>>> gd_rmdir(host,'/home/<USER>/demo/")

Frequently an engineer may wish to submit and eversl jobs independently upon a
Globus resource, for example when conducting anpatexr sweep. To prevent
conflicts between the input and output parametetlendifferent jobs it is convenient
to run the jobs in separate directories. The fomagd_submitunique handles the
submission of compute jobs into unique directorresyrning a job handle and the
path of the unique directory. In the following exam we use the function
gd_submitunique to submit two concurrent jobs, we will then retgethe results
and delete unique directories and their contentgywsl_rmuniquedir

>>> rs| = '&(executable="/bin/date")(arguments="-u")
(stdout="date.out")'

>>> (jobhandlel,uniquedirl) = gd_submitunique(rsl,h ost,
remotedir="home/<USER>/")

>>> (jobhandle2,uniquedir2) = gd_submitunique(rsl,h ost,
remotedir="home/<USER>/")

>>> print jobhandlel; print uniquedirl

>>> print jobhandle2; print uniquedir2

24

https://serverl.domain.com:30002/27658/1096386586/

/home/<USER>/20040928T164946_176266/

https://serverl.domain.com:30002/27671/1096386587/

/home/<USER>/20040928T164947_405706/

>>> gd_jobpoll(jobhandlel)

>>> |ocalfile = tempfile.mktemp()

>>> gd_getfile(host,uniquedirl+'date.out'localfile)
>>> print open(localfile).read()

>>> gd_rmuniquedir(host,uniquedirl)

Wed Sep 29 12:12:21 UTC 2004

>>> gd_jobpoll(jobhandle2)

>>> |ocalfile = tempfile.mktemp()

>>> gd_getfile(host,uniquedir2+'date.out',localfile)
>>> print open(localfile).read()

>>> gd_rmuniquedir(host,uniquedir2)

Wed Sep 29 12:12:23 UTC 2004

Scripting the Grid

The Geodise Compute Toolbox allows engineers tipts@rid processes in the
Jython scripting environment. Unfortunately dué¢hte dynamic nature of the Grid the
resources that you wish to use may become unaigilab may be more or less
reliable. In these situations, when a function he Geodise Compute Toolbox is
unable to complete its operation, the function tyiically throw an exception with a
diagnostic message.

>>> gd_getfile(host, \tmp\fileDoesNotExist.txt','de mo.txt")

25

Traceback (innernost |ast):
File "<console>", line 1, in ?
File "gdcompute.py", line 348, in gd_getfile

G i dFTPError: Server refused perform ng the request.
Cust om nessage: (error code 1) [Nested exception nessage
Cust om nessage: Unexpected reply: 550
\tnp\fil eDoesNot Exi st.txt: No such file or directory.]

If a Python function throws an error that is noitaoly handled, this will cause the
Python script or function which invoked it to stepecuting. Therefore it is important
if you wish to write a robust Python script or ftina that communicates with the
Grid that you use Python exception handling to @&t errors appropriately if and
when they occur.

Python exception handling is based upgn, except statements. Placing a block of
code between a pair ofy , except statements means that if an exception occurs
when Jython evaluates this code the script will stop executing. Instead the code
inside theexcept block is evaluated and the script continues. Tekaviour is
demonstrated by the example below.

>>> try:
gd_getfile(host,\tmp\fileDoesNotEXxist.txt',’ demo.txt’)

.. except Exception, e:
print 'An error has occurred with the followi ng message:'
print e

An error has occurred with the foll owi ng nessage:

Server refused perform ng the request.
Cust om nessage: (error code 1) [Nested exception nessage:
Cust om nessage: Unexpected reply: 550
/trp/fil eDoesNot Exi st.txt: No such file or directory.]

In this way errors that occur when communicatinghwhe Grid can be ‘caught’ by
the script and dealt with appropriately. Excepticas be classified depending upon
their type, and if appropriate the script can aandi, or stopped by throwing another
exception (usingaise).

26

We recommend that when writing a script or functtbat communicates with the
Grid that you enclose all Grid functions witty , except statements. You should
also consider how the script should behave if aareayccurs; should it tidy up and
exit, or should it continue? This way you will beepared for the unexpected, and
your Python scripts and functions will be more retbas a result.

27

Function Reference

gd_certinfo

Returns information about the user's certificate.

Syntax
subject = gd_certinfo(filename=None)

Description

This command prints information about the user'difemte to the screen. The
command also returns the certificate subject lma format which is suitable for use
in a Globus gridmap file. The default location bétuser's certificate is specified by
the cog.properties file.

subject = gd_certinfo() wheresubject is the certificate subject in
the Globus format.

subject = gd_certinfo(filename) as above, wherélename is the
filename of the certificate to be queried. The iiedte must be encoded in pem
format.

See also
gd_proxyinfo , gd_createproxy , gd_destroyproxy

28

gd_chmod

Changes file permissions of a file on a Globus uesa

Syntax
gd_chmod(host,remotefile,mode,command='/bin/chmod")

Description
gd_chmod(host,remotefile,mode) where host is a string describing
the resource. It could be in one of the followiongniats:

- hostname

- hostname:port

- hostname/service

- hostname:port/service
The second argumem¢motefile is a string describing the full name of the file
starting from root '/'. The final argumembde is a string describing the permissions
of the file. The permission of a file can be eithegsymbolic representation of changes
to make, or an octal number representing the hiepafor the new permissions (see
below).

gd_chmod(host,remotefile,mode,command) as above, except the
argumentommandis a string specifying the absolute path of theatt command on
the Globus resource.

Input arguments
mode The argumentnode may have two alternative forms:

1. Symbolic representation:

A combination of the letters 'ugoa’ controls whigders' access to the
file will be changed: the user who owns it (u),athlisers in the file's
group (g), other users not in the file's group ¢o)all users (a).

The operator '+' causes the permissions selectdmk tadded to the
existing permissions of each file; - causes thefne removed; and '='

causes them to be the only permissions that thd&k.

The letters 'rwxXstugo' select the new permissitorsthe affected
users: read (r), write (w), execute (or access dectories) (x),

29

execute only if the file is a directory or alrediys execute permission
for some user (X), set user or group ID on exeouts), sticky (t), the

permissions granted to the user who owns the dijetbie permissions
granted to other users who are members of the fil@up (g), and the
permissions granted to users that are in neitheheftwo preceding

categories (0).

2. Octal number representation:

A numeric mode is from one to four octal digits 7Q-derived by

adding up the bits with values 4, 2, and 1. Any ttedi digits are

assumed to be leading zeros. The first digit $elde set user ID (4)
and set group ID (2) and sticky (1) attributes. Fbeeond digit selects
permissions for the user who owns the file: reaq \#ite (2), and

execute (1); the third selects permissions for rotisers in the file's
group, with the same values; and the fourth foeotisers not in the
file's group, with the same values.

For example, 0750 gives rwx permissions to the owaed rx
permissions to the group.

Examples
To give read/write/execute permissions to the ovamet read/execute permissions to
the group of a file named ‘'/tmp/foo’ which is on Globus resource called

'server.domain.com’, you can use:

from gdcompute import *
gd_chmod('server.domain.com','/tmp/foo’,'0750")

To remove group execute permissions from the sdengdu can use:

gd_chmod('server.domain.com','/tmp/foo','g-Xx")

Notes
A valid proxy certificate is required to use thimétion.

See also
gd_fileexists , gd_listdir

30

gd_compute_version

Returns the current version of the Geodise Compatdbox.

Syntax
version = gd_compute_version()

Description
version = gd_compute_version() returns the version of the current

Geodise Compute Toolbox release as a string dbtine MAJOR.MINOR.POINT.

See also
README.txt

31

gd_createproxy

Creates a Globus proxy certificate.

Syntax
gd_createproxy()

Description

This command creates a Globus proxy certificatetlfier user's credentials at the
location specified by the cog.properties file. TUser is queried for the passphrase to
their private key by a pop-up window.

Notes
A valid proxy certificate is required to use thimétion.

See also
gd_proxyinfo , gd _proxyquery ,gd certinfo , gd destroyproxy

32

gd_destroyproxy

Destroys the local copy of the user's Globus peedificate.

Syntax
gd_destroyproxy()

Description

This command deletes the local copy of the Glolwsyp certificate for the user's
credentials at the location specified by the capprties file. Returns 1 if proxy
successfully destroyed, otherwise 0.

See also
gd_createproxy ,gd proxyinfo , gd_certinfo

33

gd_fileexists

Tests the existence of files and directories orad@® resource.

Syntax
exists = gd_fileexists(host,remotefile)

Description

exists = gd_fileexists(host,remotefile) returns an integer
exists indicating whether the file or directory specifibg remotefile exists on
the GridFTP server specified by the stringt .

Example
from gdcompute import *

exists = gd_fileexists(‘'server.domain.com’,'/tmp/te st.dat")

Notes
A valid proxy certificate is required to use thimétion.

See also
gd_listdir

34

gd_getfile

Retrieves a remote file using GridFTP.

Syntax
gd_getfile(host,remotefile,localfile,filetype="ASCI 1)

Description

This command retrieves a file from a remote sengng GridFTP. The user must
specify the remote file location on a remote semasad the local destination for the
file. The user can also specify the file type.

gd_getfile(host,remotefile,localfile) transfers the remote ASCII
file remotefile from the machinehost . The file is saved to the path and file
specified by the stringcalfile

gd_getfile(host,remotefile,localfile,filetype) as above
except the strinfjletype sets the file transfer type. Whéletype = = 'ASCII' the
file transfer type will be ASCII (this is the defausetting), alternatively when
filetype = 'binary' the file transfer type is set to binary
Examples

The following command copies the file 'data2.dathf the users home directory on
the remote host 'server' to the local file 'C:/datat’. The file is transferred as a
binary file type.

from gdcompute import *
gd_getfile('server.domain.com’,'data2.dat','C:/data 1.dat',

‘binary’)

This example behaves as above except the filepddrom the subdirectory 'tmp' in
the users home directory.

gd_getfile('server.domain.com’,'tmp/data2.dat’,'C:/ datal.dat',

'binary")

The following example is similar to the first exaegxcept the file is copied from
the subdirectory 'tmp' of the root directory on temote machine.

35

gd_getfile('server.domain.com’,'/tmp/data2.dat’,'C: /datal.dat’,

'binary")

Notes
A valid proxy certificate is required to use GridETSuitable credentials may be

required to transfer files from a remote server.

See also
gd_putfile , gd_createproxy

36

gd_jobkill
Kills a Globus GRAM job specified by a job handle.

Syntax
gd_jobkill(jobhandle)

Description
gd_jobkill(jobhandle) terminates the Globus job specified by the
Globus job handle.

Notes
A valid proxy certificate for the correct user ceetials is required to kill a GRAM
job.

See also
gd_createproxy ,gd jobsubmit , gd jobstatus

37

gd_jobpoll

Queries the status of a Globus GRAM job until ccatgl

Syntax
isdone = gd_jobpoll(jobhandle,interval=5,
maxtime=Infinity)

Description

This command polls the status of a Globus GRAM gpkcified by the job handle
until the job is complete. This function can bedise block the process of a Python
script until a job has finished. If the job fails arror is thrown.

isdone = gd_jobpoll(jobhandle) wherejobhandle is the handle to
a Globus GRAM job. The return valisdone indicates whether the job handle
returned the DONE state (1), or whether polling aiasrted (0).

isdone = gd_jobpoll(jobhandle,interval) where jobhandle is
the handle to a Globus GRAM job aimtkrval s the interval (in seconds) between
polling the job handle.

isdone = gd_jobpoll(jobhandle,interval,maxtime) as above.
The argumeninaxtime allows an upper limit (in seconds) to be placedrenperiod
over which the job is polled.

Notes
The state DONE returned by job handle does notssecdy indicate that the job
completed successfully. A valid proxy certifica&eaequired to query a GRAM job.

See also
gd_jobstatus , gd jobsubmit , gd_jobkill

38

gd_jobstatus

Gets the status of a Globus GRAM job.

Syntax
status = gd_jobstatus(jobhandle)

Description
status = gd_jobstatus(jobhandle) returns an integer value indicating
the status of a Globus GRAM job, whetetus
-1 is UNKNOWN
1 is PENDING
2 is ACTIVE
3 is DONE
4 is FAILED
5is SUSPENDED
6 is UNSUBMITTED

Notes
A valid proxy certificate is required to query a SR job.

See also
gd_createproxy ,gd_jobsubmit , gd_jobkill

39

gd_jobsubmit

Submits a compute job to a Globus GRAM job manager.

Syntax
jobhandle = gd_jobsubmit(rsl,host)

Description

This command submits the compute job described bigeaource Specification
Language (RSL) string to a Globus server runningRAM job manager. Upon a
successful submission the command returns a jodl&édahat may be used to query
the status of, or terminate, the job.

jobhandle = gd_jobsubmit(rsl,host) where rsl is a string
describing the submitted job, ahdst is the name of the Globus server. Returns a
GRAM job handle that may be used to query, poltesminate the job. An error is
thrown if job submission is unsuccessful.

Example
from gdcompute import *
jobhandle =

gd_jobsubmit('&(executable=/bin/date)','server.doma in.com’)

Notes
A valid proxy certificate is required to submit &M job. For more information
about RSL seattp://www.globus.org/gram/

See also
gd_createproxy , gd_jobkill , gd_jobstatus

40

gd_listdir

Lists the contents of a directory on a GridFTP serv

Syntax
(files,details) = gd_listdir(host,remotedir=None,
listhidden=0)
Description
(files,details) = gd_listdir(host) returns a tuple containing

fles , a list of the names of files in remotedir, ametails , a list containing
dictionaries describing the details of these fileghe user's home directory on the
GridFTP servehost .

(files,details) = gd_listdir(host,remotedir) wherefiles is a
list containing the filenames of files in the di@y remotedir on the GridFTP
serverhost (if remotedir is empty the contents of the user's home directahjbe
listed).

(files,details) = gd_listdir(host,remotedir,listhid den)
the list of flenames will include hidden files tiie argumentisthidden is true
(equal to 1). Otherwise the names of hidden fildd mot be returned (default
behaviour).

Notes
A valid proxy certificate is required to use GridET

See also
gd_putfile ,gd getfile , gd_createproxy

41

gd_makedir

Creates a remote directory using GridFTP.

Syntax
gd_makedir(host,directory)

Description
gd_makedir(host,directory) Creates a directory specified by the string
directory on the GridFTP server specified by the stiiogt .

Notes
A valid proxy certificate is required to use GridETSuitable credentials will be
required to create a directory on a GridFTP server.

See also
gd_getfile , gd_putfile ,gd_rmdir , gd_rmfile

42

gd_proxyinfo

Returns information about the user's proxy ceetic

Syntax
(exists,subject) = gd_proxyinfo()

Description
This command checks the existence of the user'sypoertificate and prints
information to the screen. The command also rettimessubject line of the proxy
certificate.

(exists,subject) = gd_proxyinfo() Returns a tuple containing
exists , an integer indicating whether the proxy certificaexists at the default
location (otherwise 0), amglibject , the subject line of the proxy certificate.

See also
gd_proxyquery ,gd certinfo , gd _createproxy ,gd_destroyproxy

43

gd_proxyquery

Queries whether a valid proxy certificate exists.

Syntax
isvalid = gd_proxyquery(proxyattrib=None,minvalue=- 1)

Description

This command determines whether a valid proxy fiemte exists for user's
certificate. The strength or time remaining for thexy certificate may also be
queried. The location of the user's proxy certtbcs specified by the cog.properties
file.

isvalid = gd_proxyquery(proxyattrib,minvalue) returns 1 when
the proxy certificate is valid, or meets the requients of remaining lifetime or
cryptographic strength specified bgroxyattrib ~ /minvalue , otherwise 0. If
proxyattrib = 'time' the time remaining for the proxy ceriifie is queried against
minvalue hours. If proxyattrib = 'strength’ the cryptographic strength of the
proxy certificate is queried againsinvalue bits.

Example

The following example returnisvalid = 0 for a proxy certificate of strength 512.

from gdcompute import *

isvalid = gd_proxyquery('strength’,1024)

See also
gd_proxyinfo , gd certinfo , gd createproxy , gd destroyproxy

44

gd_putfile

Puts a file on a remote server using GridFTP.

Syntax
gd_putfile(host,localfile,remotefile,filetype="ASCI 1)

Description

This command puts a local file upon a remote semgarg GridFTP. The user must
specify the remote server name, the local file patil the remote file path. The user
can also specify the filetype.

gd_putfile(host,localfile,remotefile) transfers the ASCII file
localfile to the machin@ost . The file is saved to the path and file specitigd
the stringremotefile

gd_ putfile(host,localfile,remotefile,filetype) as above
except the strinfjletype sets the file transfer type. Whéletype = = 'ASCII' the
file transfer type will be ASCII (this is the defausetting), alternatively when
filetype = 'binary' the file transfer type is set to binary
Examples

The following command places the local file 'C:a&latlat' on the remote host 'server
in the users home directory with the file named@atat'. The file is transferred as a
binary file type.

from gdcompute import *
gd_putfile('server.domain.com’,'C:/datal.dat','data 2.dat',

'binary")

This example behaves as above except the filaceplin the existing subdirectory to
the users home directory; 'tmp'.

gd_putfile('server.domain.com’,'C:/datal.dat','tmp/ data2.dat',

'binary")

This example is similar to the first example excépé file is placed in the
subdirectory to the root directory; ‘tmp'.

45

gd_putfile('server.domain.com’,'C:/datal.dat’,'/tmp /data2.dat’,

'binary")

Notes
A valid proxy certificate is required to use GridETSuitable credentials may be

required to transfer files to remote servers.

See also
gd_getfile , gd_createproxy

46

gd_rmdir

Deletes an empty remote directory using GridFTP.

Syntax
gd_rmdir(host,remotedir)

Description
gd_rmdir(host,remotedir) Deletes an empty directory specified by the
stringremotedir on the GridFTP server specified by the stitiogt .

Notes
A valid proxy certificate is required to use GridETSuitable credentials will be
required to delete a directory on a GridFTP server.

See also
gd_getfile ,gd putfile ,gd makedir , gd rmfile

47

gd_rmfile

Deletes a remote file using GridFTP.

Syntax
gd_rmfile(host,remotefile)

Description
gd_rmfile(host,remotefile) Deletes the file specified by the string
remotefile ~ on the GridFTP server specified by the stiogt .

Notes
A valid proxy certificate is required to use GridETSuitable credentials will be
required to delete a file on a GridFTP server.

See also
gd _getfile ,gd putfile ,gd _makedir ,gd rmdir

48

gd_rmuniquedir

Deletes a remote directory and its contents.

Syntax
gd_rmuniquedir(host,remotedir)

Description

This function deletes a remote directory and thesfthat it contains using GridFTP.
The function will not delete the remote directopesified (or any of its contents) if
the remote directory contains any sub-directoridss is a safety feature which is
intended to mitigate the risks of wildcard dele@m a remote machine.

If the specified directory contains sub-director@@serror will be thrown. Errors will
also be thrown if the directory does not existfgoarmission is denied to delete the
directory or its contents.

gd_rmuniquedir(host,remotedir) where host is the name of the
GridFTP server ancemotedir is the name of the directory to be deleted.

Notes
A valid proxy certificate is required to use GridETSuitable credentials may be
required to delete files on remote servers.

See Also
gd_rmdir ,gd rmfile , gd_submitunique

49

gd_submitunique

Submits a GRAM job to a unique working directory.

Syntax
(jobhandle,uniquedir) = gd_submitunique(rsl,host,
files=None,remotedir=None)

Description

This command creates a unique working directoryadBlobus server, transferring
files as required, and submits the compute jokhéeo GRAM job manager. Upon a
successful submission the command returns a jotlilhamd the name of the unique
directory.

(jobhandle,uniquedir) = gd_submitunique(rsl,host) wherers|
is a string describing the submitted job, dwdt is the name of the Globus server.
Returns a tuple containing the GRAM job handle tnedname of the unique working
directory. Wherejobhandle is the handle for a successfully submitted job and
uniquedir is the location of the working directory createthost .

(jobhandle,uniquedir) = gd_submitunique(rsl,host,fi les) as
above, wherdiles is a list of the files to be transferred to therkiag directory on
thehost .

(jobhandle,uniquedir) = gd_submitunique(rsl,host,fi les,
remotedir) as above, whenemotedir is the directory on thieost within which
the unique working directory is creatdites can be empty if no files are required.

Example

This command creates a directory '20040427T1306484%2' in the user's home
directory on the machinest . The working directory in the user supplied RSiingt
is set to the unique directory.

from gdcompute import *

rsl = '&(executable=/bin/date) (stdout="test.out")'
(jobhandle,dirname) = gd_submitunique(rsl,host)
print jobhandle

print dirname

50

https://host.domain.com:40001/15678/1083067567/

20040427T130607_643492/

Notes
A valid proxy certificate is required to submit &&M job. For more information

about RSL sebttp://www.globus.org/gram/

See also
gd_jobsubmit , gd_createproxy , gd_jobkill , gd_jobstatus

51

gd_transferfile

Performs a third-party file transfer using GridFTP.

Syntax
gd_transferfile(hostl,host2, remotefilel,remotefile2
filetype="ASCII")

Description

gd_transferfile(hostl,host2, remotefilel,remotefile2)
transfers the file specified by the strimgmotefilel on the GridFTP servérostl
to the file specified byemotefile2 ~ onhost2 .

gd_transferfile(hostl,host2, remotefilel,remotefile2 ,
filetype) as above except the strifiggtype sets the file transfer type. When

filetype = 'ASCII' the file transfer type will be ASCII (this the default setting),
alternatively wheriiletype = 'binary' the file transfer type is set to binary
Examples

The following command will transfer a file calletimp/testl’ from 'serverl' to a file
called '/tmp/test2' on 'server2' in ASCIlI mode,:

from gdcompute import *
gd_transferfile('serverl.domain.com','server2.domai n.com’,
‘tmpltestl','/tmp/test2")

Notes
A valid proxy certificate is required to use GridETSuitable credentials may be
required to transfer files to remote servers.

See also
gd_putfile ,gd getfile , gd_createproxy

52

Geodise Database Toolbox

Introduction

The Geodise Database Toolbox consists of client serder tools which enable
distributed users to easily manage, share and teegedata from within the Jython

scripting environment. Users with no database eepee can integrate data
management into their applications by calling threhave, query and retrieve

functions provided by the toolbox. Any data files\@riables can be stored in the
Geodise archive. User defined Python dictionaripscdy additional descriptive

information (metadata), which can be queried tdledgcate data of interest. The
Geodise Database Toolbox allows you to:

* Manage data from the local Jython environment orotely in scripts.

» Store files and variables with customized desacngpthetadata.

* Organise related data into datagroups.

* Query over metadata to easily locate required dlsitag functions or a GUI.

» Retrieve data based on logical data identities)e®x to remember file locations.
» Share data with other distributed users by grarttiegh access permissions.

There are a separate set of server side toolshiorGeodise Database Toolbox.
Variables and metadata are stored in an Oracle 0@ database as XML, converted
using the XML Toolbox. The Geodise Database Toolldarctions call data
management services which utilise Grid, Web Seraiud database technologies with
certificate based authentication and authorisatibine server side tools are not
described in any detail in this document.

53

Tutorial

Getting started

Before using the Geodise Database Toolbox you teedgister your details in the
database by providing your certificate subject to amministrator, who will then
assign you a username. To get your certificateestilgall gd_certinfo from the
Compute Toolbox.

>>> from gdcompute import *
>>> subject = gd_certinfo()

>>> print subject

subj ect: C=UK, C=eSci ence, OU=Sout hanpt on, L=SeSC, CN=sone user
i ssuer: C=UK, O=eSci ence, OU=Aut hority, CN=CA, E=ca-

oper at or @ri d- support.ac. uk

start date: Tue Cct 07 13:00: 31 BST 2003

end date: Wed Cct 06 13:00:31 BST 2004

/C=UK/O=eScience/OU=Southampton/L=SeSC/CN=some user

To setup the Database Toolbox cgl dbsetup which will create a .geodise
directory in your home directory and copy the neaeg configuration files into it.

>>> from gddatabase import *

>>> gd_dbsetup()
You will be prompted for details of your file stohest (wheregd_archive will
store your files). Sehostname to a Globus enabled server you have GridFTP
permission on, and skostdir to an existing directory on that server wheresfitan

be stored. These settings will be savedwme_dir>/.geodise/ClientConfig.xml.

A valid proxy certificate is required to use thet@lzase Toolbox functions, and this
can be created using the functmh createproxy ~ from the Compute Toolbox.

>>> gd_createproxy()

A GUI will appear and prompt you for your certifiegpassphrase. Click the ‘Create’

54

button to generate the proxy certificate. When thiénished click ‘Cancel’ to close
the GUI.

See theCompute Toolbox Tutoriafor more information on certificates and proxy
certificates.

Archiving files

To archive a file from the local filesystem, firsteate a metadata dictionary
containing some information that describes yow. fithis can be any combination of
numbers, strings, lists, tuples, complex numbedssadictionaries.

>>>m = {'product": 25.5431}

>>> m['model'] = {'name":'test_design', 'params":[1 ,4.7,5.3]}

Add some standard informatiolodalName , format , comment, version ortree)
about the file.

>>> m['standard'] = {"comment": "Test design model file'}

>>> m['standard']['version’] = '1.2.0'

The file can then be archived with the metadata.

>>> filelD = gd_archive('C:/file.dat’,m)

>>> print filelD

file_dat_c6afa4b4-03cb-49a4-8c4e-008c38aae413

In addition to the optional metadata structuegl archive takes a string
representing the path and filename of a local filestores this file on a remote file
store (specified in<user_home>/.geodise/ClientConfig.xml). An ID is
returned which is a unique handle that can be tsseetrieve the file.

The metadata is stored in a database and can bedjtehelp you find relevant files.
When the file is archived some additional metadstautomatically generated and
stored in thestandard subdictionary, regardless of whether user defimedadata
was also provided. This consists lotalName (the original name of the file),
byteSize , format , archiveDate , createDate (when the original file was
created/modified) andiserlD . Seegd query for further information on these

55

standard metadata fields (dictionary keys). You spgecify your own overriding
values forlocalName andformat if you prefer. You can also include the optional
user defined standard metadata fietdsnment, version andtree . To help data
organisation theree field can be assigned a hierarchy string, sintibaa directory
path, e.g'myuserlD/designs/testmodel’

Querying file metadata

To query file metadata pass a query string togthejuery function. A query takes
the form ‘field.subfield = value' , Where = can be replaced by other
comparison operators. A field is equivalent to @ kea dictionary, and a subfield is
equivalent to a key in a subdictionary. More thae query condition can be included
in the string using& to join them together. A call tgd_query returns a list of
dictionaries, one for each matching result.

>>> result = gd_query(‘standard.version=1.2.0 & pro duct>25.4")

>>> print result[0]

{'standard': {'byteSize". 24, 'localName': 'file.da t
‘comment’; 'Test design model file', 'version': '1. 2.0,
‘archiveDate": '2005-04-13 18:19:39',

'ID": 'file_dat_df89e3cd-675e-454c-a43f-cle71de446f 0,

‘format’: ‘dat’, 'createDate": '2004-09-15 15:25:33
'datagroups’: ", 'userID": 'jlw'},

'model': {'name’; 'test_design’, 'params': [1, 4.7, 5.3]},
'product’: 25.5431}

gd_display is a convenient way to view your query results.

>>> gd_display(result)

56

*** Content of the dictionary 1 (Total dictionaries: 1) ***
st andar d. byt eSi ze: 24
standard. | ocal Narme: file. dat
st andard. comment: Test design nodel file
standard. version: 1.2.0
st andar d. ar chi veDat e: 2004-10-07 11: 03: 10
standard. | D file_dat_ c6afa4b4-03ch-49a4-8c4e-008c38aaedl3
standard. fornat: dat
st andar d. creat eDat e: 2004- 09- 15 15: 25: 33
st andar d. dat agr oups:
standard. userlD: jlw
nodel . nane: test _design
nodel . parans: [1, 4.7, 5.3]
product: 25.5431

*** No nmore results. ***

It is possible to select which metadata fieldsretarned in the query results. This is
done by passing a string containing a comma segghliat of these fields as the third
argument tayd_query . The second argument specifies that we want toydfiles,
but is normally omitted because it is the default.

>>>r = gd_query('product>25','file’,'standard.ID, model.*)

>>> gd_display(r)

*** Content of the dictionary 1 (Total dictionaries: 1) ***
standard. | D: fil e _dat_ c6afa4b4-03ch-49a4-8c4e-008c38aaedl3

nodel . nane: test _design

nodel . parans: [1, 4.7, 5.3]

To search for some text within a metadata valughesdike' operator together with %
to specify any characters, or _ to specify oneattar.

>>> gd_query('standard.comment like %design m_del%')

The * wildcard can be used to represent an anongnsobfield, or any number of
subfields if it appears at the beginning.

>>> gd_query(*.name = test_design’)

57

Use gd_query()

without any input arguments to start the QuerypBieal User

Interface (GUI), see Figure 2. You can set queryddmns for standard metadata by
selecting an operator (=, > etc) from the drop ddsinnext to the relevant metadata
item and typing in a value. Further query condsidor user defined metadata can be
entered in the ‘Query custom metadata or varialited’ field. In the following text

field you can enter a comma separated list to §pechich metadata items are
returned for each matching query result.

Click the ‘Submit Query’ button to run your querfhe correspondingd_query
script command is displayed, followed by the resaftthe query.

= Geodise Duery Gl

Standard Metadata

userID

Operator

Please specify a data source to query:

file

Yalue

Jlw

| ID

j:loc alHame

format

createDate

archiveDate

‘comment

2004-10-07

wversion

dat agroupID

Besults of the query:

Query custom metadata or wvariables:| product=> 25

Subimit Guery k

Data items returned from the query: jmodel_*_ product, standard.ID

| Query command: gd gquery('standard userlD = jlw & standard archiveDate == 2004-10-07 & product > 25', 'file,
‘model. *, product, standard. IDY
Query results: Page 1 (results 1 - 1 of total 1).

=]

*®t Content of the structure {1} { Total 1) ***

standard. ID = file_dat_ctafadb4-03ch-40a4-Bcde-008c38aaed13

model name = test_design
model params =147 5.3

IEdeuct = 255431 [~
Figure 2 The Query GUI can be used to submit querieand view results.
Hyperlinks are provided in the query results fowdtmading and browsing data.

58

Figure 3 demonstrates that a file can be downlodnjedlicking on its standard.ID
hyperlink. In the Save dialog box you can use tatadt file name value (original
name of file) or specify a new file name. Browsithgta is further discussed in the
Grouping data section.

Please specify a data source to query: file
Standard Metadata Operator Yalue
[
userID | = |3 1w |
D | = |
localHame c Save kﬂ
format : o 51 -
Save in: | DatabazeToolbox |’ ¥ B El E
createDate - B
A) .geodize B gd_dbsetup.m
k £ I
archiveDate " “) I cvs |#] ga_chsynem
1 My Recent =) dec |#] gd_display m
Documents Il m o _ojuery m
comment . i
=) arg U gd_retrieve m
version L. 'i) sml_toolbax m GdonfigFile properies
= = :
dat agroupID Desktop |=] clazspath bt lfj goddatabasze jar
!.;] carvert_xml.m i=;| GEQDISE_LICEMSE_SOTOM.TXT
Query custom metad 3 |%] db_testm [Z] Install
,.-j |#] disp_exception.m [Z] TestFiletxt

5] disp_structm] TestFilez txt
H gd_addusers.m

— [®) s

'5 (B] go_srchive.m

__3} |ﬂ gd_datagroup.m
My Cornputer ﬂ gol_datagroupsadd m
|| %] gd_db_helpm

)
- File narne: filer clat IE

Data items returneq My Documents

Results of the quel

Query command: gd_query('sta il
‘model *, product, standard. ID" B man

Places File= of type: a) Filas 5]
Query results: Page 1 (results :

** Content of the structure {13 Total 1) ***

standard. [[= file_dat cﬁafa4b4-D30b-4934-8c4e-0080383Ee413
model hame = test design

model paratns = 1 4.7 5.3

product = 25.5431

Figure 3 Click on a file's standard.ID link to download that file.

Retrieving files

A file can be retrieved to the local filesystemdpecifying its unique ID. This string

is returned bygd_archive when the file is archived, and also appears in the
metadata query results agdhdard ['ID].

>>> |D = result[0]['standard]['ID]

>>> print ID

file_dat_c6afa4b4-03cb-49a4-8c4e-008c38aae413

59

The file can be retrieved to a specific file looati

>>> gd_retrieve(ID,'C:/filesdir/myfile.dat")

'C:ffilesdir/myfile.dat'

Alternatively the file can be retrieved to a spiecifdirectory (the original file name is
used).

>>> gd_retrieve(ID,'C:/filesdir")

'C:\\filesdir\\file.dat'

Archiving, querying and retrieving Jython variables
To archive a variablev] simply pass it tayd_archive with an optional metadata
structure).

>>> v = {'width": 12, 'height"; 6}
>>>m = {'standard'; {comment'; 'measurements vari able'}}

>>> varlD = gd_archive(v,m)

It is possible to query the contents of an archigadionary. Including ‘var’ as the
second argument indicates that you want to queeycibntents of a variable (as
opposed to the metadata of the variable).

>>> result = gd_query(‘height=6','var")
>>> gd_display(result[0])

*** Content of the dictionary ***
st andar d. dat agr oups:
standard. varl D: var_7c73ac04- cb90-4b28-988c- 1e0562e4659d
hei ght: 6
wi dth: 12

The contents of the variable are returned alondp witsmall subset of its metadata
(standard.varID andstandard.datagroups) which may be required for further
queries. You can also query a variable's full matady including ‘varmeta’ as the
second argument.

60

>>>r = gd_query('standard.comment like measure%',' varmeta')

>>> gd_display(r[0])

*** Content of the dictionary ***
standard. | D. var_7c73ac04-cb90-4b28-988c- 1e0562e4659d
st andar d. dat agr oups:
standard. userlD: jlw
st andar d. ar chi veDat e: 2004-10-07 11: 35: 19

st andar d. comment : measurenents vari abl e

A variable can be retrieved into the local Jythaorkgpace by specifying its unique
ID. This string is returned when the variable ishawed (e.gvarID) and also appears
in the variable query results astghdard ‘]['varID '] and in the metadata query
results as §tandard '] ['ID].

>>>v2 = gd_retrieve(varlD)

>>> print v2

{'height": 6, 'width": 12}

Grouping data
Related data can be logically grouped togethemgusidatagroup as follows:

Specify metadata that applies to the whole group.

>>> dgmetadata = {'standard': {comment’: 'Group fo r experiment
123}

Callgd_datagroup to create a datagroup, giving it a name.

>>> datagrouplD = gd_datagroup('Experiment 123',dgm etadata)

Add archived files or variables to the datagroup.

>>> gd_datagroupadd(datagrouplD,fileID)
>>> gd_datagroupadd(datagrouplD,varID)

61

Archive a new file (with no metadata this time) aultl it to the datagroup.
>>> gd_archive('C:/anotherfile.txt',None,datagroupl D)

The datagroup metadata now contains referencdmtfilés and variables it contains.
Datagroup metadata can be queried by includingftaup’ as the second argument.

>>>r = gd_query('standard.datagroupname=Experiment 123,
‘datagroup”)
>>> gd_display(r)

*** Content of the dictionary 1 (Total dictionaries: 1) ***
standard. | D. dg 111385dd- 44b8- 4ac4- 9ec3-f 7f 19af 85e6e
st andar d. dat agr oupnanme: Experinent 123
st andar d. ar chi veDat e: 2004- 10-07 11: 42: 03
standard. userlD: jlw
st andard. comrent: Goup for experinent 123
st andar d. dat agr oups:
st andar d. subdat agr oups:
standard.files.filelD: file_dat_ c6afad4b4-03ch-49a4-8c4e. ..
standard.files.filelD: anotherfil e txt 8886aa7a-5464-48. ..
standard. vars.varl D. var_7c73ac04-cb90-4b28-988c- 1e0562. . .

*** No nmore results. ***

Metadata for the files and variables also contaferences to the datagroup(s) that
they belong to, with astandard.datagroups.datagrouplD field for each
datagroup.

Datagroups can be added to other datagroups tteadaerarchy as follows:

>>> parentDatagrouplD = datagrouplD

>>> childDatagrouplD = gd_datagroup('child datagrou p")
Add the child datagroup (also called a subdatagrtufhe parent datagroup.
>>> gd_datagroupadd(parentDatagrouplD,childDatagrou pID)

Find all the datagroups that are in the parentglatep.

62

>>> children = gd_query('standard.datagroups.datagr

parentDatagrouplID,'datagroup’)

Find all the datagroups that contain the child giatap.

>>> parents = gd_query('standard.subdatagroups.data

childDatagroupID,'datagroup’)

&

Please specify a data source to query:

‘Standard Metadata
userID

datagroup

Operator Yalue

Jlwr

ouplD="'+

groupIlD="'+

ID

datagroupHame

‘archiveDate

wersion

2004-10-01

datagroupID (parent)

subdat agroupID

fileID

warID

Query custom metadata

Data items returned f-:-"'"'

Results of the query:

*+% Clontent of the structure {é} i To

standard. [0 = dg_111385dd-44h8-4ac

standard. datagroupname = Experiment)

standatrd archiveDate = 2004-10-07 11

standard user[D = jlwr

or wariables:

LhnEd Cunit=y

L [B]x)

| standard 1D = var_7c73ac04-ch00-4b28-088c 10562646504

standard. archiveDate = 2004-10-07 11:35:19
standard user]D = jiw
| standard cotnrment = measurements warighle

| standard. datagroups. datagrouplD = dg_111385dd-44h8-4acd-0ec3-f7f1%afioete

Previous

Close window

standard. corment = Group for experitnent 123

standard. subdatagroups datagrouplD =

dg_fal4aflls-dled-4ef7-2634-30c30520d48h

standard. files. filelD = file_dat cafadbd-03ch-40a4-Scde-008c38aaed13
standard. files. file]lD = anctherfile txt 3836aaTa-5464-4828-be83-ba700454 fod?

E|

standatd wars warlD = var ?CT3aCD4—Cb§'D—4b28—988C—1&0552&4559[1{\
g

<]

Figure 4 Using hyperlinks to browse between relatedata in the query GUI.

Using the Query GUI you can browse between reldtgedgroups, files and variables
by clicking on hyperlinks. In Figure 4 a query catafyroup metadata has been made
by selecting datagroup from the drop down list ls¢ top of the window, then

63

specifying the query conditions. The matching datag shown in the figure has
related subdatagroups, files and variables whiehdaplayed as hyperlinks. Clicking
on the standard.vars.varlD link brings up a newdeim containing the metadata for
that variable. Clicking on standard.ID in this wavd will display the contents of the
variable itself.

Granting access to data.

The gd_addusers function allows you to grant other users permissio query
particular files, variables and datagroups that gam. These users may also retrieve
the variables to their local Jython workspace arel files to their local filesystem
(providing they have read permission for the appabde directory on the Globus file
server).

In the following example the user with usernameb’ie given access to an archived
variable.

>>> users = ['bob']

>>> gd_addusers(varlD, users)

Access may also be granted as part of the metadega a file or variable is archived,
or when a datagroup is created.

>>>m = {'access": {'users': ['bob']}}

>>> gd_archive('C:/file.dat',m)
Further information.
All of these functions have help information whichn be viewed by using the

gd_help command in the Jython environment.

>>> gd_help(gd_datagroupadd)

64

NANVE
gd_dat agr oupadd(dat agroupl D, datal D)

DESCRI PTI ON

Add an archived file, variable or subdatagroup to a

dat agr oup.

dat agroupl D -- Unique identifier of the datagroup.
datal D -- Unique identifier of the file, variable
or subdatagroup to add to the datagroup.

Returns 1 if the operation was successful and 0 if it

failed (for exanple if the datagroup does not exist).

Further descriptions and examples for each funai@navailable in the next section
of this document.

65

Function Reference

gd_addusers

Grants an array of users or user groups permigsiagcess some data (file, variable
or datagroup).

Syntax
success = gd_addusers(ID,users,accesstype='users’)
success = gd_addusers(datagrouplD,users,
accesstype='users")

Description

success = gd_addusers(ID,users) grants other users permission to
query or retrieve a file or variable, specifieditsyID. A userlID for each user should
be provided in thesers list. Alternatively a single user can be spedifés a string.

success = gd_addusers(datagrouplD,users) is similar but grants
other users permission to query a datagroup, seed its ID.

success = gd_addusers(ID,groups,'groups’) grants a group of
users permission to query or retrieve a file oralde, specified by its ID. A grouplD
for each user group should be provided in ¢ghaups list. Alternatively a single
group can be specified as a string. Every regidteser is a member of the built in
group 'allusers' and other user groups can bepsey the database administrator.

success = gd_addusers(datagrouplD,groups,'groups') is similar
but grants a group of users permission to quetagioup, specified by its ID.

The function returns 1 if successful, or O if fdilfor example if one of the users
already has access permission or does not existjalid userlDs or groupsIDs in the
list will be granted permission, and a warning ragsswill be displayed for any that
fail.

Example
Grant users with user IDserl anduser2 access to an archived file.

from gddatabase import *
filelD = gd_archive('C:/file.dat")

66

users = ['userl','user2’]

gd_addusers(filelD,users)
Grant all registered users access to an archiled fi
gd_addusers(filelD,'allusers','groups")

Notes
You must be the owner of the data to give othersy®sion to access it.

A valid proxy certificate is required (segd_createproxy from the Geodise

Compute Toolbox).
Your certificate subject must have been addeddaththorisation database.

See also
gd_archive ,gd datagroup ,gd query , gd createproxy

67

gd_archive

Stores a file or variable with some metadata iheoarchive.

Syntax
ID = gd_archive(filename,metadata=None,datagrouplD= "
ID = gd_archive(v,metadata=None,
datagrouplD=",datatype=")

Description

ID = gd_archive(filename) takes a string representing a filename and
archives that file in a file store (specified irt@lientConfig.xml file). Some standard
information about the file (metadata) is automadtycgenerated and can be later
queried withgd query . A unique identifier I0) for the archived file is returned
which can be used to retrieve the file with retrieve

ID = gd_archive(filename,metadata) archives a file with some user
definedmetadata which can later be queried witid_query . Standard metadata
about the file is also generated.

ID = gd_archive(filename,metadata,datagroupID) archives a file
and adds it to a datagroup specifieddayagrouplD . A datagroup is used to group
together a collection of related files, variablesdaother datagroups, see
gd_datagroup and gd_datagroupadd . To specify adatagrouplD without
including user defined file metadata, use a keywangliment for datagrouplD, e.g.
gd_archive(myfilename, datagrouplD=mydatagroupID)

ID = gd_archive(v) takes a variable and archives it in a database
(accessible via the webservices specified in then@onfig.xml file).v can be of
type string, integer, float, complex, dictionangt, or tuple. Some standard metadata
about the variable is generated automatically aad be later queried with
gd_query . A unique identifier 0) for the archived variable is returned which can b
used to retrieve the variable to the workspace withretrieve . A variable can
also be assigned user defin@dtadata and added to a datagroup by supplying a
datagrouplD in the same way as a file.

ID = gd_archive(v,metadata,datagrouplD,'var’) should be used
when archiving a variable that is a string.vifhas any other type it will be

68

automatically detected, but when it is a stringvaust be specified to indicate it is a
variable and not a filename. If there is no usdindd metadata or datagrouplD
use a keyword argument for datatype, gdg archive(v,datatype='var')

Input Arguments

metadata

Examples

The keys (referred to as fields) in thetadata dictionary must be
strings but the values can contain any combinaiforariables (string,
integer, float, complex, dictionary, list, or tupleecessary to describe
the data. There are two special subdictionastesdard and

access , which may only contain certain values.

Some metadata is automatically generated (even whenetadata is
passed to the function) and stored indtamdard subdictionary of
themetadata dictionary. For files and variables this constD ,
userID andarchiveDate , and for files onlybyteSize , format ,
localName (the original name of the file) arteateDate (when
the original file was created/modified). Optiomalmment, version
andtree fields can be added ttandard and overriding values for
localName andformat can also be specified. Thee value is a
string which can be used to represent a user akfirarchy for the
data, similar to a directory path, e.g.

'myuserlD/designs/testmodel’ . Seegd _query for further
information on these standard fields. Any otheldBeset in the
standard subdictionary will be overwritten or removed.

Theaccess subdictionary ofmetadata controls who may query and
retrieve the data. The person who archived thealatamatically has
access to it and does not need to be addedss can contain two
fields, each of which can be a single string astadf strings:

users User ID strings specifying which users may acchss t
data.
groups Group ID strings specifying which groups of useesym

access the data (currently a group must be créated
the database by an administrator).

Archive a file with no user defined metadata.

69

from gddatabase import *
ID = gd_archive ('C:/file.dat")
print ID

file_dat ce868f40-8de0-445e-8ae5-36c05eec25a9

Archive a file with some metadatan (user defined metadata and a standard
comment), and give access permission to userl sem@.u

m = {'model" {'name": 'test_design'}}

m['params’] =[1, 4.7, 5.3]

m['iterations’] = 9000

m['standard’] = {comment’: ‘Comment about file'}
m['access’] = {'users": ['userl’,/'user2']}

gd_archive('C:/file.dat',m)

Archive a file and add it to a datagroup, with rs@udefined metadata.

dID = gd_datagroup(‘design opt 2004-09-03")
gd_archive('C:/file.dat',datagrouplD=dID)

Archive a structure with some user defined metadata

v.width = 12
v.height = 6
m.standard.comment = 'measurement variables'

gd_archive(v,m)

Notes
A valid proxy certificate is required to archive #le or variable (see
gd createproxy from the Geodise Compute Toolbox).

You must have access to the host machine the Wiidsbe archived on. Your
certificate subject must be added to the gridmdp én the host and to the
authorisation database.

70

See also
gd_addusers ,gd retrieve ,gd _query ,gd datagroup ,gd datagroupadd ,

gd_createproxy

71

gd_datagroup

Creates a new datagroup, used to group togethdrvad files, variables and
subdatagroups.

Syntax
datagrouplD = gd_datagroup(datagroupname,metadata=N one,
datagrouptype=")
Description
datagroupID = gd_datagroup(datagroupname) creates a new, empty

datagroup with a datagroup name. HBaeéagroupname argument can act as a user
defined identifier for the datagroup, although @ted not have to be unique. Some
standard information about the datagroup (metadata)so generated which can be
later queried witlgd_query . A unique identifier datagrouplD) is returned which
can then be used to add files and variables tod#ttagroup while they are being
archived withgd_archive . Files, variables and other datagroups alreadyhén
archive can be added to a datagroup withdatagroupadd

datagrouplD = gd_datagroup(datagroupname,metadata) creates a
new, empty datagroup with a datagroup name and seeredefined metadata which
can later be queried witld_query . Standard metadata about the datagroup is also
generated.

datagrouplD = gd_datagroup(datagroupname,metadata,
'monitor’) is useful for monitoring a group of data produtyda computational
job. It is similar to an ordinary datagroup butrst extra index information that
allows a user ofid_query to easily find the datagroup associated with tineast
recent job, or the most recent job meeting cena@tadata criteria. This functionality
is provided for convenience so that the user doéfhiave to remember any particular
metadata field names or values, or what time thagilaup was created.

Input Arguments

metadata The keys (referred to as fields) in thetadata dictionary must be
strings but the values can contain any combinaiforariables (string,
integer, float, complex, dictionary, list, or tupleecessary to describe
the datagroup. There are two special subdictiosat@andard and
access , which may only contain certain values.

72

Some metadata is automatically generated (even whenetadata is
passed to the function) and stored indtamdard subdictionary of
themetadata dictionary. For datagroups this consist$iof userlD
andarchiveDate . Optionalcomment, version andtree fields can
also be added tstandard . Thetree field is a string which can be
used to represent a user defined hierarchy foddte, similar to a
directory path, e.gmyuserID/designs/testmodel’ . See
gd_query for further information on these standard fieldsy other
fields set in thetandard subdictionary will be overwritten or
removed.

Theaccess subdictionary ofnetadata controls who may query the
datagroup. The person who created the datagroopatitally has
access to it and does not need to be addedss can contain two
fields, each of which can be a single string astadf strings:

users User ID strings specifying which users may acchss t
datagroup.
groups Group ID strings specifying which groups of useesym

access the datagroup (currently a user group neust b
created in the database by an administrator).

Examples
Create a datagroup with some metadatquser defined metadata and a standard
comment), and give access permission to userl sem@.u

from gddatabase import *

m = {"expnum': 123}

m['standard’] = {'comment': 'Data for experiment 12 3%
m['access'] = {'users": ['userl','user2']}

datagrouplD = gd_datagroup('design opt 2004-09-03', m)
print datagroupID

dg_ce868f40-8ds0-455e-9ae5-36c05epc25a9

73

Add a file to the datagroup when it is archived.
gd_archive('C:/file.dat', datagrouplD=datagroupID)

Add a variable to the datagroup after it has beehized.
v = {'width": 12}
varlD = gd_archive(v)
gd_datagroupadd(datagrouplD,varlD)

Create a monitored datagroup and find it with argue
monID = gd_datagroup(‘design job 2004-09-03',
datagrouptype="monitor")
gd_datagroupadd(monID,varlD)

gd_query('standard.joblndex = max','monitor’)

Further examples are givendd_datagroupadd andgd_query .

Notes
A valid proxy certificate is required (segd_createproxy from the Geodise

Compute Toolbox).
Your certificate subject must have been addeddaththorisation database.

See also
gd_datagroupadd , gd_archive ,gd retrieve ,gd query , gd createproxy

74

gd_datagroupadd

Adds an archived file, variable or subdatagroua ttatagroup.

Syntax

success = gd_datagroupadd(datagrouplD,ID)

success = gd_datagroupadd(datagrouplD,subdatagroupl D)
Description

success = gd_datagroupadd(datagrouplD,ID) adds a file or variable

to a datagroup. The datagroup is specified byntque identifierdatagrouplD and
the identifier of the file or variable to add isesffied withID. The datagroup must
have been created withd datagroup and the file or variable must have been
archived usingyd_archive . The function returns 1 if successful, or O ifiddi (for
example if the datagroup does not exist).

success = gd_datagroupadd(datagrouplD,subdatagroupl D) adds
a datagroup s{ibdatagrouplD) to another datagroupddtagrouplD). The
datagroup to be added is known as a subdatagrap. d&tagroups must have been
created withgyd datagroup

Examples
Add a file and a variable to a datagroup after thaye been archived.

from gddatabase import *

datagrouplD = gd_datagroup('design opt 2004-09-03")

filelD = gd_archive('C:/file.dat")
gd_datagroupadd(datagrouplD,filelD)

v = {'width": 12}
varlD = gd_archive(v)
gd_datagroupadd(datagrouplD,varlD)

Add a datagroup to another datagroup

datagrouplD = gd_datagroup('parent datagroup’)
subdatagrouplD = gd_datagroup(‘child datagroup')

75

gd_datagroupadd(datagrouplD,subdatagroupID)

Notes
Only the owner of a datagroup can add data to it.

Attempting to add a file, variable or subdatagrdwjre to the same datagroup will
cause an error,

Attempting to add a datagroup to another datagtbap it is already the parent or
ancestor of will cause an error. E.g. If datagraups added to datagroup, and
datagroug is added td, thena cannot be added toorc.

A valid proxy certificate is required (segd_createproxy from the Geodise
Compute Toolbox).

Your certificate subject must have been addeddaththorisation database.

See also
gd_datagroup ,gd archive ,gd retrieve ,gd _query , gd createproxy

76

gd_dbsetup

Creates and populates the .geodise directory witfiguration files.

Syntax
gd_dbsetup(hostprompt=1)

Description

gd_dbsetup() creates a .geodise directory in the user’'s homecidiry if
one does not exist then copies the necessary coafign files into it. The user is
prompted to configure the name of the Globus seamdrdirectory where gd_archive
will store data files and this information is sawedgeodise/ClientConfig.xml.

Example locations for the .geodise directory are:

Windows C:\Documents and Settings\your_usernamedige

Linux $HOME/.geodise

gd_dbsetup(0) creates a .geodise directory as above but doeprootpt
for the name of the Globus server and directoryrevigel_archive will store data files,
using default values instead. The default settiaugs either taken from a previous
copy of ClientConfig.xml in .geodise or from Cli€unfig.xml in the distribution.

Notes
The file .geodise/ClientConfig.xml can be editedrianually configure settings such

as which Globus file store to archive files on, sestallation document for more
information.

77

gd_db_version

Gets the Geodise Database Toolbox version number.

Syntax
version = gd_db_version()

Description

version = gd_db_version() returns the version of the current Geodise
Database Toolbox for Jython release as a strinigeoform MAJOR.MINOR.POINT.

78

gd_display

Displays the results of a query (a list of dictines), or a single dictionary.

Syntax
gd_display(gresults)
gd_display(gresults{i})

Description
gd_display(gresults) can be used to display a list of dictionaries, e.g.
the results of a call to thed query or gd querydeleted function. This is a

convenient way of viewing dictionaries to get areiwew of their contents.

gd_display(gresults{i}) displays the contents of a dictionary, e.g. a
single result from a query wheiras the index of a dictionary in the list.

Example
Display all the results from a query.

from gddatabase import *
r = gd_query(iterations = 9000")
gd_display(r)

*** Content of dictionary 1 (Total dictionaries: 2) ***
standard. I D: file_dat_66830074-e749-4de0- b976- 61f 4d32
standard. | ocal Nanme: file. dat
st andar d. byt eSi ze: 245
standard. fornat: dat
st andar d. creat eDat e: 2004- 08-23 10: 40: 33
st andar d. ar chi veDat e: 2004- 09- 03 15: 25: 45
standard. userlD: jlw
st andard. corment: Comment about file
st andar d. dat agr oups:
nodel . nane: test_design
parans: [1, 4.7, 5.3]
iterations: 9000

Press ENTER to continue ..., g to quit:

79

To display just one result from a query use thatiltés index.

gd_display(r[0])

See also
gd_query , gd_querydeleted

80

gd_markfordeletion

Marks data for deletion from the archive.

Syntax
marktotal = gd_markfordeletion(ID)
marktotal = gd_markfordeletion(IDs)

Description

marktotal = gd_markfordeletion(ID) takes an ID string and marks
the corresponding file, variable or datagroup feletdon from the archive. The
function returns 1 if successful or 0 if failed,vimich case the reason is displayed in a
warning message (for example the ID does not ex@tjce data is marked for
deletion it is no longer visible usingl_query , gd_retrieve or any other Database

Toolbox functions (apart frongd_unmarkfordeletion or gd_querydeleted).
The data is then eligible for permanent deletiombyadministrator.

marktotal = gd_markfordeletion(IDs) is similar but takes a list of ID
strings and marks the corresponding files, varmbled datagroups for deletion from
the archive. The function returmsarktotal , the total number of IDs successfully
marked for deletion, and displays warning mességahose that were unsuccessful.

Examples
Mark a single file for deletion from the archive.

from gddatabase import *
ID = gd_archive('C:/file.dat")
marktotal = gd_markfordeletion(ID)

print marktotal

Query variable metadata, and then mark the correbpg variables for deletion from
the archive.

g = 'standard.archiveDate > 2004-12-01 & a.b < -500

gresults = gd_query(q, 'varmeta')
IDs =]

81

for i in range(len(gresults)):

IDs.append(qgresults|i]['standard]['ID")

marktotal = gd_markfordeletion(IDs)

print marktotal

Notes
Only the owner of the data (the person who architjechn mark it for deletion.

A valid proxy certificate is required (segd_createproxy from the Geodise
Compute Toolbox).

See also
gd_unmarkfordeletion , gd_querydeleted , gd_createproxy

82

gd_query

Performs queries over metadata or Python dictiesatiored in the archive.

Syntax
gresults = gd_query(query=None,datasource="file',
resultfields="*")

Description

gd_query() with no input arguments starts the query GUI, apBical User
Interface for querying metadata and structures kvhiso allows hyperlink browsing
between related data. See the Geodise Databadeokoblitorial for more details.

gresults = gd_query(query) sends aquery string to the database
requesting all file metadata that meets the catspecified in the string. A query
takes the fornffield.subfield = value' , Where= can be replaced by other

comparison operators. A field is equivalent to @ kea dictionary, and a subfield is
equivalent to a key in a subdictionary. More thae query condition can be included
in the string usingk to join them together. The function returns a éétmetadata
dictionaries, one for each matching result.

gresults = gd_query(query,datasource) sends ajuery string to the

database requesting matching archived variablesnetadata of a certain type,
depending on the value of theatasource string. To query metadata set
datasource to ‘file’ (default), ‘varmeta’ (metadata about \ables), ‘datagroup’ or
‘monitor’. A list of matching dictionaries is retued, one for each result. To query
variables stored in the database dmhsource to ‘var. In this case the function
will return a list of matching variables. The ongriables that can be queried in this
way are dictionaries, because they contain naneddkfithat can be searched for.

gresults = gd_query(query,datasource,resultfields) sends a
query string to the database as above but only retuetected fields for each
matching result. Theesultfields string is a comma separated list indicating
which fields should be returned for each result,éwample just thatandard.ID
fields (i.e.{standard"{ID"id_value}}). The default*, returns all fields.
To view the query results, use functiga display .

83

Input Arguments

query A query takes the fornffield.subfield = value' where
field is a key in the archived metadata/variable dietignand
subfield is a key in a subdictionary, for examjikrations or
standard.ID . Thevalue is an alphanumeric value the field should
contain, and can also be thought of as the valuegdaa dictionary
entry. The operatak (meaning ‘and’) can be used to specify more than
one search condition.

The following operators can be used to comparddiglith values:

= Equal to

I= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to
like Similar to

not like Not similar to

Similarity matches withlike and not like use the following
wildcards:

Matches any single character.

% Matches any string of any length (including 0).

For example,'standard.localName like %dat%' will match
strings containing the phrase ‘dat’, danadel.name like _est%'

will match strings starting with any character do¥led by ‘est’ and
then any string. To search for the characters _%ngrecede them
with the \ escape character.

The operators do case sensitive comparison whed w#h string

values. To make an operator case insensitive suilr@uwith two #
characters. For example, #=#, #=#, #like#, #noke#i

84

Another wildcard, *, provides flexibility in destiing the field path.
For example model.name

specific search.

can be replaced byname for a less

In addition to user defined metadata fields, tik¥ing standard
metadata fields can be queried:

standard.ID

standard.datagroupname

standard.localName

standard.byteSize

standard.format

standard.createDate

standard.archiveDate

standard.userID

standard.comment

standard.version

standard.tree

standard.files.filelID
standard.vars.varlD

standard.
subdatagroups.
datagroupID

standard.datagroups.

85

ID that uniquely identifies a file,
variable or datagroup.

Name of datagroup. Only used when
guerying datagroups.

Name of a local file before it was
archived.

Size in bytes of a file.

Format of file (default is its
extension).

Date the file was created/modified.

Date the file or variable was archived,
or the datagroup was created.

ID of the user who archived the data
or created the datagroup.

Comment about the file, variable or
datagroup.

User defined version number for the
file, variable or datagroup.

String representing a user defined data
hierarchy, similar to a directory path.

Each file in a datagroup.
Each variable in a datagroup.

Each subdatagroup in a datagroup.

Each datagroup a file, variable or

datagrouplD subdatagroup belongs to.

Datagroups are collections that can contain filasiables or other
datagroups, segl datagroup andgd datagroupadd

The fields in an archived dictionary variable césode queried in
conjunction with the standard metadata fields fiat variable.

datasource The data source indicates which type of data teryguand can be
specified by one of the following strings (the défadatasource

value is 'file"):

‘file’ Metadata about files.

‘datagroup’ Metadata about datagroups.

‘monitor’ Metadata about monitorable datagroups.
‘varmeta’ Metadata about Jython variables.

‘var’ Jython variables.

A datagroup that was created with the ‘monitorgftzan be queried as
an ordinary datagroup, or as a collection of datauaa computational
job, by settingdatasource to ‘monitor’. This provides a quick and
easy query mechanism for finding a user’s mostrrgiod, or the latest
job meeting certain other metadata criteria. It povided for
convenience so that the user does not have to rbereamy particular
field names, values, or what time the datagroup weested. In
addition to standard.ID , standard.userlD and user defined
metadata, the following standard metadata can bd tegether with
‘monitor’ to query a job monitoring datagroup.

standard.joblndex Job index. Special query syntax
jobindex =max gets the highest
index (most recent job).

standard.jobName Name of job (same as datagroupname).

standard.startDate Start date of job (when the datagroup
was created).

86

Examples
Query file metadata to find files archived on oteaf™ September 2004 where
iterations = 9000. A datasource argument is natired because ‘file’ is the default.

from gddatabase import *
g = 'standard.archiveDate>=2004-09-01 & iterations= 9000
gresults = gd_query(q)

print len(gresults)

print gresults[0].keys()

['standard’, 'model’, 'iterations', 'params']

print gresults[0]

{'standard":
{'byteSize": 24,
'localName': file.dat',
‘comment’: 'Comment about file',
‘archiveDate'": '2004-09-03 15:25:45',
'ID": 'file_dat_66830074-e749-4de0-b976-61f4d32' ,
‘format': 'dat’,
‘createDate': '2004-08-23 10:40:33',
‘datagroups': ",
‘useriD": 'jlw'},
‘'model': {name’: 'test_design'},
'iterations’: 9000,
'‘params": [1, 4.7, 5.3]}

The above output has been formatted for this doatint®eegd display for an
example of displaying the full contents of quergulés in an easy to read format.

print gresults[0]['standard’]['archiveDate"]

87

2004-09-03 15:25:45

Query to find files which have a name field equaltest_design’ in their metadata
and only return the fields standard.ID and params.

g = "*.name = test_design'
gresults = gd_query(q,'file','standard.ID, params’)

print gresults[0]

{'standard":
{ID"; 'file_dat_66830074-e749-4de0-b976-61f4d32' }
'params':[1, 4.7, 5.3]}

Query to find datagroups with comments containhmegtext ‘experiment’.

g = 'standard.comment like %experiment%'

r = gd_query(q,'datagroup’)

Query variable metadata to find the metadata fovaaiables that are in a particular
datagroup.

g = 'standard.datagroups.datagroupID = dg_ce868f40- 8ds0-455...

r = gd_query(q,'varmeta’)

Query variables to find dictionaries where the eabf field width is between 9 and 14
inclusive.

r = gd_query(width >= 9 & width <= 14', ‘var’)

Find files that have a comment in their metadatng ™ (two double quotes) to
indicate an empty value.

r = gd_query(‘'standard.comment != ")

Find the latest job monitoring datagroup then fine latest job monitoring datagroup
which matches some other criteria.

88

m = {'modelver": 0.6}; m2 = {'modelver": 0.71}
gd_datagroup(‘design model job xyz',m,'monitor")
gd_datagroup(‘design model job abc',m,'monitor’)

gd_datagroup(‘design model job 999',m2,'monitor")

rl = gd_query('standard.joblndex = max','monitor")
print r1[0]['standard']['jobName']

design model job 999

r2 = gd_query('standard.joblndex = max & modelver < =0.6,
‘'monitor")

print r2[0]['standard’]['jobName']

design model job abc

Notes

When querying standard date informatianckhiveDate or createDate), specify
the date/time using the International Standard [Rawg Time Notation (ISO 8601)
which is: "YYYY-MM-DD hh:mm:ss" (hh:mm:ss is optiaf).

Only results for data you are authorised to acoesk be returned. Function
gd_addusers can be used to grant access to others.

A valid proxy certificate is required to query thatabase (seed_createproxy
from the Geodise Compute Toolbox).

Your certificate subject must have been addeddatlthorisation database.

See also
gd_display ,gd createproxy ,gd archive ,qgd retrieve ,gd datagroup |,

gd_datagroupadd , gd_addusers

89

gd_querydeleted

Performs queries over metadata or Python dictiesamarked for deletion in the
archive.

Syntax
gresults = gd_querydeleted(query,datasource="file',
resultfields="")

Description

gresults = gd_query(query,datasource,resultfields) has
exactly the same functionality as_query but performs the queries over data that
has been marked for deletion using thel markfordeletion function.
gd_querydeleted returns a list of metadata dictionaries, one fache matching

result. The['standard]['ID"] value from each result can be passed to the
gd_unmarkfordeletion function, which can recover data that was misthken

marked for deletion. This function will only returesults for data that has not already
been permanently deleted from the archive by anrastrator.

A brief description of the input arguments is givegre, segyd query for further
information. To view the query results, use functd_display .

Input Arguments

query A query takes the fornfield.subfield = value' where
field is a key in the archived metadata/variable diergnand
subfield is a key in a subdictionary, for examipeations or
standard.ID . The value is an alphanumeric value the field
should contain, and can also be thought of as #éheevpart of a
dictionary entry. The operat& (meaning ‘and’) can be used to
specify more than one search condition.

datasource The data source indicates which type of data &ryquand can be
specified by one of the following strings (the défalatasource

value is ‘file"):

“file’ Metadata about files.

‘datagroup’ Metadata about datagroups.

90

‘monitor’ Metadata about monitorable datagroups.

‘varmeta’ Metadata about Jython variables.

var Jython variables.

resultfields The resultfields string is a comma separated fhidicating which
fields should be returned for each result, for epi@must the
standard.ID fields (i.e.{'standard":{ID"id_value}}).
The default}, returns all fields.

Examples

Query variable metadata that has been marked fietiae and then unmark the
corresponding variables so that they are no loradigible for deletion from the
archive.

from gddatabase import *

g = 'standard.archiveDate > 2004-12-01 & a.b < -500
gresults = gd_querydeleted(q, varmeta')

IDs =]

for i in range(len(gresults)):

IDs.append(qresults[i]['standard]['ID")

unmarktotal = gd_unmarkfordeletion(IDs)

print unmarktotal

Notes

When querying standard date informatianckhiveDate or createDate), specify
the date/time using the International Standard [Rawg Time Notation (ISO 8601)
which is: "YYYY-MM-DD hh:mm:ss" (hh:mm:ss is optiaf).

Only results for data marked for deletion and owbgdhe user (i.e. data the user
archived/created) will be returned.

If the marked data has been permanently deletexl fihe archive by an administrator
it cannot be queried.

91

A valid proxy certificate is required (segd createproxy from the Geodise
Compute Toolbox).

Your certificate subject must have been addeddaththorisation database.

See also
gd_unmarkfordeletion , gd_markfordeletion ,gd_display ,gd query ,

gd_createproxy

92

gd_retrieve

Retrieves a file, variable or metadata from thdiaecto the local machine.

Syntax
filename = gd_retrieve(ID,localpath=None,datatype=N one,
prompt=")
metadata = gd_retrieve(ID,localpath=None,datatype="' D)
v = gd_retrieve(ID)
Description
The ID needed to retrieve some data can be found in ittadata as
['standard’]['ID] , and is also returned loyl_archive .
flename = gd_retrieve(ID,filename) retrieves a file from the

archive based on its unique identifiéd | and saves it to a local file specified by the
flename string. The function returns the retrieved filelsw location as a string,
which is equal to thélename argument in this case. If a file exists with tizng
name a prompt will appear asking whether to oveenti

flename = gd_retrieve(ID,directory) retrieves a file from the
archive based on its unique identifié § and saves it to a local directory specified by
the directory string. The original name of the flél be used, which is determined by

the ['standard]['localName'] property in the file's metadata, see
gd_archive andgd query . The function returns the retrieved file’s newdtion as
a string.

filename = gd_retrieve(ID,filename,prompt="overwrit e

will retrieve a file and save it to the local fisystem. If a file exists with the same
name it will be overwritten without prompting. This also the case when a
directory is given as the second argument.

metadata = gd_retrieve (ID,datatype='metadata’) will return a
metadata structure which corresponds to the féeiable or datagroup identified by

ID . This is a shortcut, as the same result can hieshusingyd_query .

v = gd_retrieve(ID) returns a variable from the archive to the Jython
workspace based on its unique identifiér)(

93

Examples
Retrieve a file and save it with a specific filema
from gddatabase import *

filelD = gd_archive('C:/file.dat")
gd_retrieve(fileID,'C:/filesdir/myfile.dat")

'C:/filesdir/myfile.dat'

Retrieve a file to a directory and use its originame.

gd_retrieve(fileID,'C:/filesdir")

'C:\\filesdir\\file.dat'

Retrieve a variable to the Jython workspace.

v = {'width": 12, 'height": 6}
varlD = gd_archive(v)
x = gd_retrieve(varlD)

print x

{'height": 6, ‘'width": 12}

Retrieve some metadata about a file.
m = gd_retrieve(fileID,datatype="metadata’)
Notes
You can only retrieve data that you archived ort @meone else has given you

permission to access.

A valid proxy certificate is required to retrievefide, variable or metadata (see
gd_createproxy from the Geodise Compute Toolbox).

94

You must have access to the host machine the vilbshbe retrieved from. Your
certificate subject must be added to the gridmde €én the host and to the
authorisation database.

See also
gd_archive ,gd datagroup ,gd datagroupadd ,gd query , gd createproxy

95

gd_unmarkfordeletion

Recovers data marked for deletion, if it has natrb@ermanently deleted by an
administrator.

Syntax
unmarktotal = gd_unmarkfordeletion(ID)
unmarktotal = gd_unmarkfordeletion(IDs)

Description

unmarktotal = gd_unmarkfordeletion(ID) takes an ID string and
unmarks the corresponding file, variable or datagreo it is no longer marked for
deletion from the archive. This is a safety measoirecover data that was mistakenly
marked for deletion. This function is only appli@bor data that has not already been
permanently deleted from the archive by an admatist. The function returns 1 if
successful or 0 if failed, in which case the reaisodisplayed in a warning message
(for example the ID does not exist). If data iscassfully unmarked it is visible again
togd query ,gd retrieve and other Database Toolbox functions.

unmarktotal = gd_unmarkfordeletion(IDs) is similar but takes a list
of ID strings and unmarks the corresponding filegjables and datagroups so they
are no longer marked for deletion from the archivEhe function returns
unmarktotal , the total number of IDs successfully unmarked detetion, and
displays warning messages for those that were aasaful.

Examples
Unmark a single file so that it is no longer eligifor deletion from the archive.

from gddatabase import *

ID = gd_archive('C:/file.dat")
gd_markfordeletion(ID)

unmarktotal = gd_unmarkfordeletion(ID)

print unmarktotal

Query variable metadata that has been marked fietiae and then unmark the
corresponding variables so that they are no loradigible for deletion from the

96

archive.

g = 'standard.archiveDate > 2004-12-01 & a.b < -500
gresults = gd_querydeleted(q,' varmeta')

IDs =]

for i in range(len(gresults)):

IDs.append(qgresults|i]['standard]['ID")

unmarktotal = gd_unmarkfordeletion(IDs)

print unmarktotal

Notes
Only the owner of the data (the person who architjechn unmark it for deletion.

If the marked data has been permanently deleted fin@ archive by an administrator
it cannot be recovered.

A valid proxy certificate is required (segd_createproxy from the Geodise
Compute Toolbox).

See also
gd_markfordeletion , gd_querydeleted , gd createproxy

97

XML Toolbox

Introduction

The XML Toolbox for Jython allows users to convemd store variables and
structures from the Jython workspace into the plext XML format, and from this
XML format to Jython. This XML format can be usexidtore parameter structures,
variables and results from engineering applicationson-proprietary files, or XML-
capable databases, and can be used for the traofsttata across the Grid. The
toolbox contains bi-directional conversion routingeplemented as four small
intuitive and easy-to-use Python functions. As aldittonal feature, this toolbox
allows the transparent transfer of data from thialy scripting environment to the
Matlab Problem Solving Environment and vice versa.

« Jython structures and variables can be stored XM format and used by
other tools.

» XML representations can be stored and queried usiegunctions provided
by the Geodise Database Toolbox.

 The ability to leverage XML and database techn@sgmakes the data
available beyond the Jython environment, and fatds data sharing and
reuse between users, e.g. with those of the XMUBmofor Matlab.

* Access to XML data-driven tools such as Web Sesvibecomes more
transparent to engineering users.

The size of data structures the XML Toolbox canl de¢h is only limited by the
available memory; as an indication, 60MB large datauctures can be easily
converted on a 256MB PC running Jython.

xml_format() Converts Jython data to an XML string
xml_parse() Converts an XML string into Jython datal
xml_load() Loads an XML file and returns Jython data
xml_save() Saves Jython data into an XML file
gd_help() Displays help for the xml_* functions

Table 5 XML Toolbox functions

98

Tutorial

The XML Toolbox for Jython can be used independemif the Compute and
Database Toolboxes. No proxy certificate is requieemake use of its functionality.
Two jar archives (which are included in thb subdirectory) are required for it to
work: jdom.jar and jnumeric-0.1a3.jar (or a simN&rsion).

Getting started
Before using the Geodise XML Toolbox in the Jythemvironment, you need to
import thegdxml module. There is an example in theemo_xml.py script.
Use either
D) >>> import gdxml
and then, for example, to call xml_format() use:
>>> gdxml.xml_format(...)

or
2) >>> from gdxml import xml_format
and then, for example, to call xml_format() use:
>>> xml_format(...)
or

3) >>> from gdxml import *
and then, for example, to call xml_format() use:
>>> xml_format(...)

Converting Python data types to XML

All common Python built-in data types can be cotegrinto XML (with or without
data type attributes) with the simple-to-use comunanl_format . We highlight the
differences in XML output structure in the followgithree examples.

>>>v = {}

>>>v['al = 1.2345

>>>y['b"] = 'This is a string.'

>>> y['c'] = (‘alpha’,'beta’)

>>> v['d'] = 12345

>>> y['e'] = {'sub' : {'subsub’ : 'subsubsub'}}

This first example shows the formatting of the &bkt v with no additional input
parameters specified. The XML is formatted in swaclway that any subsequent
parsing of the created XML string wiml_parse reconstructs an exact copy of the
original Jython data structure.

>>> xmistr = xml_format(v)
>>> print xmlstr

99

<root idx="1" type="struct" size="1 1" xml_tb_versi on="1.0-py">
<b idx="1" type="char" size="1 17">This is a stri ng.
1.2345
<e idx="1" type="struct" size="1 1">
<sub idx="1" type="struct" size="1 1">
<subsub idx="1" type="char" size="1 9">subsub sub</subsub>
</sub>
</e>
<d idx="1" type="integer" size="1 1">12345</d>

<item idx="1" type="char" size="1 5">alpha</ite m>
<item idx="2" type="char" size="1 4">beta</item >
</c>
</root>

The XML attributesdx , type andsize , which allow the exact reconstruction of the
data types in Jython, can be turned off by spewfythe second parameter in the
xml_format function call as 'off'. This results in a more gea formatting of the
structure, however, the XML contents are now imetgd purely as strings when
parsed back into Jython as type and size informatie lost:

>>> xmlstr = xml_format(v,'off")
>>> print xmlstr

<root>
This is a string.
<a>1.2345
<e>
<sub>
<subsub>subsubsub</subsub>
</sub>
</e>
<d>12345</d>
<C>
<item>alpha</item>
<item>beta</item>
</c>
</root>

The user can write the XML representation of a dythariable immediately into an
XML file using the commandml|_save . This command uses the same XML format
as the functioml_format

Converting XML to Python data types

As XML can contain any arbitrary contents as losgtlzey follow the W3C XML
Recommendation (www.w3.0rg), parsing and trangiatih these constructs into a
Jython-specific environment can be complex. Thection xml_parse allows the
conversion of XML strings in two ways into Jythoatd structures. These correspond
to the techniques shown above feml_format with and without the XML
attributes.

100

If the XML contains specific type attributes, sua$ created byml_format with
attributes switched on (i.e. thiwx , type , size attributes), the XML Toolbox will be
able to re-create the Python data type and codtsaribed by the XML string.

For example,

xmlstr = '<root idx="1" type="integer" size="1 1">4 2</root>'

can be parsed using the command

>>> v = xml_parse(xmistr)

and returns the variable

>>> print v

42

As a more complex example,

Paste this assignment into a Python script and ru nit:
xmlstr = """
<root xml_tb_version="3.1" idx="1" type="struct" si ze="11">
1.2345
<b idx="1" type="double" size="24">1 52637 4 8
<c idx="1" type="char" size="1 17">This is a stri ng.</c>
<d idx="1" type="cell" size="1 2">
<item idx="1" type="char" size="1 5">alpha</ite m>
<item idx="2" type="char" size="1 4">beta</item >
</d>

<e idx="1" type="boolean" size="1 1">0</e>
<f idx="1" type="struct" size="1 1">
<subl idx="1" type="struct" size="1 1">

<subsubl idx="1" type="double" size="1 1">1</ subsubl1>
<subsub?2 idx="1" type="double" size="1 1">2</ subsub2>
</subl>
</f>

<g idx="1" type="struct" size="1 2">
<aa idx="1" type="cell" size="1 2">

<item idx="1" type="char" size="1 5">glaal</i tem>
<item idx="2" type="char" size="1 5">glaa2</i tem>

</aa>

<aa idx="2" type="cell" size="1 1">
<item idx="1" type="char" size="1 5">g2aal</i tem>

</aa>

</g>
</root>

101

can be parsed using the command
>>> v = xml_parse(xmistr)
and returns the (immutable, non-sorted) data stract

>>> print v

{b" [[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0]],

'a's 1.2345,

'g": [{'aa" ['glaal’, 'glaa2?l}, {'aa": ['g2aal’] 1,
'f': {'subl": {'subsubl 1.0, 'subsub2': 2.0}},

‘e 0,

'd": ['alpha’, 'beta,

'c": "This is a string."}

which corresponds exactly to the Jython variabledus xml_format to create the
XML string.

If we use the same commanahl_parse , but tell the parser to ignore the attributes
with the command

>>>v_wo_att = xml_parse(xmlstr,'off")

>>> print v_wo_att

we obtain a dictionary where types and sizes ofdtita will not be adapted to match
standard Python data types, that means that daalpneric content will be returned
as strings.

{b:'15263748,

'a"; '1.2345',

'g": [{'aa": 'glaa2', {'aa". 'g2aal}],

'f: {'subl": {'subsubl' '1', 'subsub2': '2'}},
‘e 0,

'd"; 'beta’,

'c": 'This is a string."}

The structural information (in fields andg) is still preserved, although nested list
contents, such as in field and numeric values, such as in fieddande, are returned
as pure strings.

102

Function Reference

xml_format

Converts a Jython variable into an XML string.

Syntax
xmistr = xml_format(v,attswitch="on',name="root’)

Description
xml_format converts Jython variables and data structuresu@img deeply nested
data structures) into XML and returns the XML asmst

Input Arguments
v Jython variable of type int, float, long, strirdictionary, list,
tuple, complex

attswitch ~ optional, default="on'":
‘'on’ writes header attributéx , size , type for identification
by Jython when parsing the XML later;
‘off* writes "plain" XML without header attributes.

name optional, give root element a specific name, ‘prgject'.
Output Arguments
xmlstr string, containing XML description of the variabie

The root element of the created XML string is chll®ot’ by default but this can be
overwritten with thename input parameter. A defaultnl_tb_version attribute of
"X.Y-py "is added to the root element unlegswitch is set to 'off' X andY are
Version numbers which identify the toolbox used.

If attswitch Is set to 'on' (by default), the attribuids , type , andsize will be
added to the XML element headers. This allem$ parse to parse and convert the
XML string correctly back into the original Jytheariable or data structure.

If attswitch is set to 'off', some of the information is lostdasubsequently the
contents of XML elements will be read in as strimgsen converting back using

103

xml_parse (see tutorial section).
Examples

This example shows how to convert a simple numiser an XML string. Note that
we could have usednl_format(5.0) instead.

from gdxml import *
v=>5.0
xmlstr = xml_format(v)

print xmistr

<root xml_tb_version="0.1-py" idx="1" type="double"

size="1 1">5</root>

We can tell the command to ignore all the attributed obtain the following XML:
xmistr = xml_format(v, off")

print xmlstr

<root>5</root>

The root elements can be assigned a different fgnaelding this as third parameter
to thexml_format function:
xmistr = xml_format(v,'off','myXmINumber")

print xmistr

<myXmINumber>5</myXmINumber>

Strings can also be converted into XML:

v = 'The Hitchhikers Guide to the Galaxy"'
xmlstr = xml_format(v)

print xmlstr

<root xml_th_version=" 0.1-py "idx=" 1"type=" char "size=" 135">

The Hitchhikers Guide to the Galaxy</root>

104

One of the most powerful ways to use the XML Toalli®to convert whole deeply
nested data structures into XML:

v = {'project’ : {'name' : 'my Project no. 001}
v['project’]['date’] = '2005-01-01'
v['project']['uid’] = '208d0174-a752-f391-faf2-45bc 397"

v['comment'] = 'This is a new project'

xmlstr = xml_format(v,'off")

print xmistr

<root>
<project>
<name>my Project no. 001</name>
<date>2004-09-09 16:18:29</date>
<uid>208d0174-a752-f391-faf2-45bc397</uid>
</project>
<comment>This is a new project</comment>

</root>

See also

xml_parse , xml_load , xml_save

105

xml_load

Loads an XML file and converts its content intoyghdn variable.

Syntax
v = xml_load(filename,attswitch="on")

Description

xml_load reads the file given in parameter flename and usé parse to convert
it into a Jython data structure or variable. If fie cannot be found, an error will be
displayed.

Input Arguments
flename filename of xml file to load (if extension .xml @nitted,
xml_load tries to append it if the file cannot be found).

attswitch ~ optional, default="on':
'on’ takes into account XML attributek , size , type
‘off' ignores attributes in XML element headers.

Output Arguments
v Jython data structure or variable.

Examples
This example simply loads the sample file from ¢fien location and converts its
contents to a Jython data structure. (The file pesviously been created using
xml_save).

from gdxml import *
v = xml_load('c:/data/myfavourite.xml’)

print v

{'name’ : 'Google',
‘url' : 'http://www.google.com’,

'rating' : 5,

‘description’ : 'Great search functionality for th e web'}

In the following example, we perform the same acgtimowever, as we are specifying

106

the additional parameter 'off' for attributes, tthe , size , andtype attributes are
ignored and the result is slightly differemfrating'] in this case is returned as a
string variable;5'

v = xml_load('c:/data/myfavourite.xml','off")

print v

{'name’ : '‘Google',

‘url' : 'http://www.google.com’,

'rating' : '5',

‘description’ : 'Great search functionality for th e web'}
See also
xml_format , xml parse , xml_save

107

xml_parse

Parses an XML string, xmlstr, and returns the gpoading Jython variable v.

Syntax
v = xml_parse(xmistr,attswitch="on")

Description
This is a non-validating parser. XML processingriest or comments starting with

'<?' or '<I', are ignored by the parser.

Input Arguments
xmistr XML string, for example read from a file.

attswitch optional, default="on":
‘'on’ reads XML header attribute , size , type if present and
interprets these to create the correct Jythontgipés.
'off' ignores XML element header attributes anéiiptets
contents as strings.

Output Arguments
% Jython variable or structure.

Examples
This example shows how to define a simple XML strand parse it into a Jython
variable. As thedx , type , andsize attributes are defined, the resulting Jython data

structure conforms to these specifications (lissiné [1x2]).

xmlstr = '<root idx="1" type="double" size="1 2">3. 1416
1.4142</root>'

from gdxml import *
V1 = xml_parse(xmlstr)
print V1

[3.1416, 1.4142] % (type jclass org.python.core.Py List)

Again, setting thettswitch parameter to 'off' lets the parser ignore theabaites

108

and the returned variable is interpreted as agstrin

V2 = xml_parse(xmlstr,'off")

print V2

'3.1416 1.4142' % (type jclass org.python.core.Py String)

Let's define a more complex data set in XML andveotit into a Jython data
structure:

Paste this assignment into a Python script and ru n it:

xmistr =
<root>
<project>
<name>myProjectName</name>
<date>2004-09-13</date>
<bytes>10472</bytes>
</project>
<project>
<name>myProject Two</name>
<date>2004-09-13</date>
<bytes>9851</bytes>
</project>
</root>

v = xml_parse(xmistr)

print v

[{'project"
{bytes": '10472,
'date": '2004-09-13',
‘name’: 'myProjectName’}},
{'project”.
{bytes'": '9851',
‘date": '2004-09-13',

‘name’: 'myProject Two'}}]

See also
xml _format , xml load , xml save

109

xml_save

Stores XML representation of a Jython variable atadstructure in XML format in a
file.

Syntax
xml_save(filename,v,attswitch="on")

Description
xml_save stores a Jython variable in plain text XML fornvab the file specified by
the user.

Input Arguments
The Jython variable can be any of the types supportediny format

filename full filename (including path and extension).
v Jython variable or data structure to store i fil
attswitch optional, 'on’ stores XML type attributes

idx , size ,type (default),
'off' doesn't store XML type attributes.

Examples
This example saves a Jython dictionary as XML fiteaat a given location.

from gdxml import *

v={)

v['name'] = 'Google'

v['url'] = 'http://www.google.com'

v['rating] =5

v['description’] = 'Great search functionality for the web'

xml_save('c:/data/myfavourite.xml’, v)

Notes
xml_save uses xml_format and then stores the resulting X8#lng in the file with
the given filename.

See also
xml _format , xml_parse , xml_load

110

Utilities

The following utility functions are available withe Geodise Toolboxes for Jython.

Function Reference

gd_help

Print help information about a GeodiseLab modul&action.

Syntax
gd_help(target,hidden=1)

Description

This command prints information about any modulection or class in the Jython
workspace. The inline documentation of the objeqtrinted, and the contents of the
object are formatted and displayed.

gd_help(target) wheretarget is the module, function or class to be
displayed. Whenarget is a function the input arguments will be inspdctnd
printed. Whentarget is a module or class the contents of the objedt bea
recursively inspected ("private” functions will no displayed).

gd_help(target,hidden) when hidden is false all of the functions
contained in module and classes will be display¢derwise private fuctions (those
whose name begin with an underscore) will not let¢ad.

Note
The function gd_help is available in the modugEompute , gddatabase and

gdxml .
Example

>>> from gdxml import gd_help, xml_format
>>> gd_help(xml_format)

111

Help on function xml_format:

NAME

xml_format(V, attswitch="on’, name="root")
DESCRIPTION

Formats the variable V into a name-based tag XM

\Y -- a string, number, complex, list,

or instance
attswitch -- 'on'- writes attributes, 'off'- w
name -- give root element a specific name

L string.
tuple, dictionary,

rites "plain” XML
, €g. 'project’

112

