The Geodise Toolboxes

A User’s Guide

Geodise



Release: GeodiseLab v.1.3.2
Version: GeodiseManual 1.3.7
Title: The Geodise Toolboxes — A User's Guide
Authors: Dr Graeme Pound
Dr Jasmin Wason
Dr Marc Molinari, m.molinari@soton.ac.uk
Dr Hakki Eres, hakki.eres@soton.ac.uk
Dr Zhuoan Jiao, z.jlao@soton.ac.uk
Dr Andrew Price, a.r.price@soton.ac.uk
Pl Prof Simon Cox, s.j.cox@soton.ac.uk
Web: http://www.geodise.org/
Legal notice: MatlaB is a registered trademark of The Mathworks, Inc.
http://www.mathworks.com
Copyright:  Copyright © 2007, The Geodise Projeatjvdrsity of Southampton
Acknowledgement:

The development of the Geodise toolboxes for pulgiease has been
supported by the managed programme of Open Middeewa

Infrastructure Institutehttp://www.omii.ac.uk.




Contents

The GeodiSE TOOIDOXES .....iiiiiiiiie et e e 1
L0 0] (=7 1 | £SO P 3
T oo [ ox 1o o SRR 5
L0 S = 1S S 6
FUNCHION ANQUIMENTS. ...ttt ettt eeea e e e e e e e e e e 9
INPUE ATQUIMENTS ...t sttt ettt e e e e e e e e e e ena e e e ena s 9
OULPUL AFQUMEBNTS ...ttt e et e e e et e e e e e e e et e e e e e e eemnmnna e eas 14
Geodise CompPUte TOOIDOX .....uuuuiiiiiiiiii e ee e e e eeaeens 16
1] (oo [ ox 1o o IR RRRPPRRTIN 16
101 o = | PSPPSR 19
FUNCLION REIEIENCE .....vviiiiiiiiii et ettt e e e e e e e ee e e 30

(o o [ o= 1] {1 RSP 30

O _CRMOQ..... e e eaaes 31
gd_CONAOISUDMIL......ei e 33

(oo I o0 ] 001 o101 (/=] 6] (0] o TR 37

oo I o (== 1E=] o] £0) V28U RTPURTPRUPRRPPRRPN 38

(oo I 0 (=25 10/ o] (0 )rq YN 39

O FIHEEXISTS .. i ————————————— 40

(o [0 [0 1= 1] P 41

(o [0 [N 0] o] (1| P 43
GA_JODPOII e ———— 44
OU_JODSTALUS ...ovviccee e 45
Od_JODSUDMIL.....oee e 46

o 0 [N 1S3 (o [ RSP PRPP 47

O _MAKEAIN ... e —————— 49

(oo [ 0 €074/ 1] (o J P 50

(oo I 01 £0)7q Yo [0 L=] o V2RSSR 51

(o o [ 010 1] = P 52

o o 1 010 1 P 54

(0 0 1 0 111 1= 55

(o o [ 42 018 01 o U 1Yo L1 cP PPN 56

(o0 JESTCT V=T 0 4[] (g (oS PPN 57

g0 SUDMITUNIQUE ....eei e 59
gd_testauthentiCation ..............cooiiuiet e 61
gd_teStiletranSIer ........vuii e ——————— 62
gd_testjobSUDMISSION.........oiiiiii s e e eenean 63



gd_timeauthentiCation..............uiii i eenea 64

gd_tiIMeEfiletranSIer......ccoo i e 65
gd_timejobsubmMISSION .........oi i ———— 66
gd_transterfile ... 67
Geodise Database TOOIDOX ........coeviiiiiitiemmmmmm e 69
1] (oo [ ox 1o o ISP USRS 69
101 o = | PSPPSR 70
FUNCLION REIEIENCE .....vviiiiiiiiii et ettt e e a e e e eeeaanaas 82
(00 JE= 1o [0 (U TS =T =SSP RPPPPPPRN 82
OO _ArCRIVE ... e ————————————— 84

(o o[- Ued 1AY== PP 88
(oo Jo F= 1 =T {0 1U ] R 90
gd_datagroupadd...........cooeeiiiiiiii e ———— 93
(o0 [ e | o 1ST= (1 o PP PPSPPPPRIN 95
O _AD NeIP e ——————— 96
(oo Je | JNYZ=T 1o o USRS 97
oo IR0 1157 o] F= |V OO UPPRPPPPPPI 98
gd_mMarkfordeletion...........cooioiiiiiii e e e n—————- 100

o o [0 |8 1T oY/ RUSPPPPIN 102
gd_querydeleted........ ..o iiiiiiii e ——————— 113
o0 [ €= 4151 PRSPPI 117
gd_retrieVETIIES ... e —————— 120
gd_unmarkfordeletion...........cooouviiii e 122
XML TOOIDOX ettt e e e e e e e et reee e e e e e e eaaanaas 124
[T oo [ ox 1o o SR PSPPPPRTN 124
IV (o = | RSP 126
FUNCLION REIEIENCE .....ovviiiiiiiiii e ettt e e eeeeeeeeeanes 132
XIMD_FOPMAL. .. e e e e ee e e eees 132
XMI_FOIMALANY ... e 135

b (0 11 I 1| R 137

b (0 111 0> T 138
D0 LI 0 F= LT 140

D (g LI 0 F= UGS T=T= 10|V 142
D0 LIS T= Y/ 145



Introduction

The Geodise Toolboxes provide a collection of fiord that extend the capability of
the Matlaf technical computing environment. The Geodise Cdmpbatabase and
XML toolboxes contain routines that facilitate maagpects of Grid computing and
data management including:

« The submission and management of computational gobsemote compute
resources via the Globus GRAM service.

* File transfer and remote directory management usie@sridFTP protocol.

» Single sign-on to the Grid with Globus proxy cecttes.

e Storage and grouping of files and variables, ariadtavith user defined
metadata, in an archive.

* Graphical and programmatic interfaces for querying metadata to easily
locate stored files and variables.

e Sharing and reuse of data among distributed ubsexrs may grant access to
their data to other members of/atual Organisation.

» Conversion of Matlab structures and variables ataon-proprietary, plain
text format (XML) which can be stored and used theotools.

 Conversion of almost any type of XML document imthg WSDL
descriptions of Web Services into Matlab's stroctrfat or cell data type.

Grid computing provides the infrastructure for tt@laborative use of computers,
networks, data, storage and applications across$ribdited organisations. A
computational job can be run on the Grid to maleafsesources unavailable on the
user's desktop, for example to exploit softwareeriges or greater computational
power. The Geodise Compute Toolbox provides Mdilaigtions for submitting and
monitoring jobs on the Grid, transferring filesand from remote compute resources,
and managing the certificates used to identifysisad authorise use of the resources.

Compute intensive applications often use and predwany data files and data
structures. It can become difficult to find, reuaad share data from various
applications that have been run repeatedly witfediht parameters. The Geodise
Database Toolbox can be used to store additiorat-defined information (called
metadata) describing files and Matlab variables,tred they can be located and
retrieved more easily with metadata queries. Faled variables can also be grouped
together, and data can be shared with other ugagsalnting access permissions.



XML is a flexible standard data format that is wideised to structure and store
information, and to exchange data between varioagpater applications. The XML
Toolbox functions convert and store Matlab variaklded structures from the internal
format into XML and vice versa. This allows paraetrestructures, variables and
results from computational applications to be starea non-proprietary file format,
or in XML-capable databases, and can be usednsfeaMatlab data across the Grid.
Comparing arbitrary Matlab structures was not presiy possible, but this can be
now achieved by comparing their XML representatidime XML toolbox also
enables the transparent exchanges of data betweeNadtlab technical computing
environment and the Jython scripting environment.

This user guide introduces the reader to the Compieaitabase and XML toolboxes,
with tutorials that give an overview of the functadity provided by each of the
toolboxes. The function reference for each toollwaxtains detailed information
about the syntax of its functions.

Use Cases

The GeodiseLab toolboxes have applications in @&wahge of scenarios. Here we
will outline three use cases that describe thentiaiebenefits of Grid computing to
the daily practice of the scientist or engineer.

The use cases that we will discuss are:
* Engineering Design Search and Optimisation
« Data management in computational electromagnetics
» Transparent collaboration between Problem Solvimgrianments

Engineering Design Search and Optimisation

Engineering Design Search and Optimisation (EDS@) ¢ompute and data intensive
task which is well matched to Grid computing. Opsation algorithms are used to
search the parameter space of an engineering pndblaliscover an optimal design
subject to certain criteria. During EDSO the opsation algorithm must repeatedly
evaluate some measure of the quality of a desigs; rhay involve one or more
lengthy numerical calculations. For example, aniresgy wishing to improve the
aerodynamic performance of a wing design may condigan optimiser to vary key
design parameters, whilst invoking simulations afn@utational Fluid Dynamics
(CFD) to determine thquality of alternative geometries.



Depending upon the complexity of the numerical datons and the number of
evaluations required to determine the optimum aedPSO may be a lengthy and
computationally intensive task. When the evaluatwin the objective function
involves complex simulations (i.e. CFD) numerougéadata files may be required,
or produced, by the numerous calculations. The G@Glieht functionality makes it
straightforward for the engineer to leverage corapomal resources available on the
Grid to perform EDSO.

When undertaking EDSO using one of the many opétima algorithms available in
the Matlab environment the engineer may use thediGeoCompute toolbox to
automate the transfer of files, and the submisaiwh management of computational
jobs required during the evaluation of a designeRploiting Grid resources not only
is the engineer able to leverage the greater caatipnal power available, but he can
also drive any applications that he requires on udtitmde of platforms from the
comfort of his desktop PSE.

Data management in computational electromagnetics

Data management is an issue in a number of sdeaid engineering application
domains, including that of computational electronetges. For example, when
performing simulations of electromagnetic phenomefarge volume of data may be
generated, typically in the form of the input andtput files. It is a non-trivial
problem for the researcher to store, manage anser¢his data. The investment
associated with the computationally expensive €irifference Time Domain
modelling technique used to explore the propedfeslectromagnetic devices require
that simulation results are suitably managed foseeat a later data.

At present the most common solution for this proble to store these flat files within
a hierarchical directory structure on a local fiestem. As the volume of data grows
over time this solution is frequently inadequate lfang term storage since it may
become increasingly difficult to locate and reusgadwithin the collection. The
Geodise Database toolbox provides a solution disrat ¢0 a managed data archive on
the Grid.

The Geodise Database Toolbox allows the researttherchive data files to a
managed repository from the Matlab environment andotate these files with
metadata. In addition to standard metadata the mmsgr define custom metadata
specific to the problem. The researcher can themygine metadata to find these files



using straightforward syntax within the Matlab eowiment. In addition the Geodise
Database Toolbox supports the archiving of vargmlilem the Matlab environment.
Items in stored the repository can be associatgetiter into datagroups, allowing the
creation of annotated hierarchies within whichubker's results can be organised.

Transparent collaboration between Problem Solving Bvironments

The Geodise XML toolbox provides a collection algiht-forward functions which
convert variables in the Matlab environment to &aan the external XML format.
Variables in the Matlab workspace can be saveado@ded from an XML file with
minimal effort on the part of the researcher. XMLa structured format that can be
interpreted by third party applications. By encapthe Matlab variables in the XML
format there are a number of benefits.

The provision of the Geodise XML toolbox for Jyth@llows the transparent
exchange of variables between the Matlab techreoahputing environment and
Jython scripting environment. Variables are mappedthe appropriate built-in
datatypes in the two languages. This allows rekeascworking with these two
Problem Solving Environments to collaborate on stialatasets.

The Geodise XML toolbox is also leveraged by theodi®e Database Toolbox to
store variables and metadata in a database. Thentsrof variables and metadata in
the database can then be queried and searched.athesGeodise Database toolbox
may be used to share variables stored in the mdmagesitory between members of
a virtual organisation because researchers caromrgghother users to access their
data. When variables are retrieved from the repngithey will be transparently
converted into the built-in datatypes of that PSE.



Function Arguments

The input and output arguments used by all of timetions of the Geodise toolboxes

are summarised below.

Input Arguments

Argument Description Used by Functions
attswitch A string specifying whether to  xml_format
use attributes (‘on’ = use xml_load
attributes, ‘off’ = no attributes). xml_parse
xml_save
classAD A structure describing the job togd_condorsubmit
be submitted to the Condor pool.
command The absolute path of the chmodgd_chmod

datagroupID

datagroupname

datasource

directory

filename

files

filesystem

command on the Globus
resource.

The unique identifier of a
datagroup.

A user defined name for a
datagroup.

gd_addusers
gd_archive
gd_datagroupadd

gd_datagroup

Specifies what type of metadatayd_query

or data to query (‘file’,

‘datagroup’, ‘varmeta’, ‘var’ or

‘monitor’).
The path of a local directory.

The path of a local file.

A cell array of filenames.

gd_querydeleted

gd_retrieve

gd_archive
gd_certinfo
gd_retrieve
xml_load

xml_save

gd_submitunique

The type of the filesystem usedgd_condorsubmit




Argument Description Used by Functions
by the Globus server.
filetype A string specifying the GridFTP gd_getfile
transfer type (‘ASCII' or gd_putfile
‘binary’). gd_transferfile
groups A user group ID string or list of gd_addusers
user group IDs.
host A string specifying the Globus gd_chmod
server to be used. gd_condorsubmit
gd_fileexists
gd_getfile
gd_jobsubmit
gd_listdir
gd_makedir
gd_putfile
gd_rmdir
gd_rmfile
gd_rmuniquedir
gd_submitunique
gd_testauthentication
gd_testfiletransfer
gd_testjobsubmission
gd_timeauthentication
gd_timefiletransfer
gd_timejobsubmission
hostl The Globus server that sends tlyel_transferfile
file.
host2 The Globus server that receivegyd_transferfile
the file.
hostprompt Indicates whether to prompt useyd_dbsetup
for file host configuration during
setup (1=true, O=false).
ID The unique identifier of a file or gd_addusers

variable. gd_datagroupsadd
gd_retrieve

10



Argument Description Used by Functions
IDs A cell array which may contain gd_markfordeletion
the unique identifiers of files, gd_unmarkfordeletion
variables and datagroups.
interval Interval (in seconds) at which thgd_jobpoll
status of the job is polled.
jobhandle A Globus GRAM job handle.  gd_jobkill
gd_jobpoll
gd_jobstatus
listhidden Indicates whether hidden files gd_listdir
should be listed (1 = true, false
otherwise).
localfile A filename on the local machinggd_getfile
gd_putfile
maxtime Upper limit (in seconds) for the gd_jobpoll
period over which the job is
polled.
metadata A metadata structure containinggd_archive
information about a file, variablegd_datagroup
or datagroup.
minvalue The minimum acceptable valuegd_proxyquery
for the property of the proxy
certificate examined (in hours or
bits).
mode Permissions to be set on the filggd_chmod
name Name to use for the root elememil_format
xml_formatany
orderby A string indicating how query gd_query
results should be sorted. gd_querydeleted
proxyattrib A string specifying the property gd_proxyquery
of the proxy certificate to be
examined (‘time’ or ‘strength’).
gresults Cell array of structure(s) gd_display

11



Argument Description Used by Functions
containing results returned from
a query.
query A query string which compares gd_query
fields with values. gd_querydeleted
remotedir The path of a directoryona  gd_listdir
Globus server. gd_makedir
gd_rmdir
gd_rmuniquedir
gd_submitunique
gd_testfiletransfer
gd_testjobsubmission
gd_timefiletransfer
gd_timejobsubmission
remotefile A filename on the remote servegd_chmod
gd_fileexists
gd_getfile
gd_putfile
gd_rmfile
gd_servermetrics
remotefilel The path of the file to be sent. gd_transferfile
remotefile2 The path of the file to be gd_transferfile
received.
resultfields A string specifying selected gd_query
fields to return from a query.  gd_querydeleted
resultlimit A limit on the number of results gd_query
to return from a query. gd_querydeleted
RSL A string specifying the propertiegd_jobsubmit
of a Globus GRAM job. gd_submitunique
RSLstruct A structure specifying the gd_condorsubmit
properties of a Globus GRAM
job.
servers A structure specifying the namegd_servermetrics

and working directories of the

12



Argument

Description Used by Functions

subdatagrouplD

users

xmilstr

Globus servers to be tested.

The unique identifier of a gd_datagroupadd
datagroup that is added to
another datagroup.

A user ID string or cell array of gd_addusers
user IDs.

A generic structure or variable. gd_archive
xml_format
xml_formatany

xml_save

An XML string. xml_parse
xml_parseany

13



Output Arguments

Argument Description Used by Functions
datagrouplD The unique identifier of a gd_datagroup
datagroup.

details

exists

filename
files

ID

isdone

isvalid

jobhandle

marktotal

metadata

gresults

A cell array containing structuregd_listdir
that describe the details of the

files and directories contained in

the remote directory.

The existence of the file on the gd_fileexists
Globus server (1 = exists, 0 =
does not exist).

The path of a local file. gd_retrieve
A cell array of filenames. gd_listdir

The unique identifier of a file or gd_archive
variable.

Indicates whether the job gd_jobpoll
complete successfully (1 = done,
0 = not done).

Indicates whether the proxy  gd_proxyinfo,
certificate is valid (1 = valid, 0 =gd_proxyquery
not valid).

A Globus GRAM job handle. gd_condorsubmit
gd_jobsubmit
gd_submitunique

Total number of IDs successfullyd_markfordeletion
marked for deletion.

A metadata structure containinggd_retrieve
information about a file, variable
or datagroup.

Cell array of structure(s) gd_query
containing results returned fromgd_querydeleted
a query.

14



Argument Description Used by Functions
status The status of the Globus GRAMyd_jobstatus
job.
subject The certificate subject line in thegd_proxyinfo
Globus format. gd_certinfo
success The result of the operation or tegtl_addusers
(1 = success, 0 = failure). gd_datagroupadd
gd_testauthentication
gd_testfiletransfer
gd_testjobsubmission
time The elapsed time in millisecondgd_timeauthentication

testresults

uniquedir

unmarktotal

version

xmilstr

or -1 if failed. gd_timefiletransfer
gd_timejobsubmission

A structure containing the resultgd_servermetrics
of tests upon an array of servers.

The path of the unique working gd_submitunique
directory created on the server,

Total number of IDs successfullyd_unmarkfordeletion
unmarked for deletion.

A generic structure or variable. gd_retrieve
xml_parse
xml_parseany
xml_load

Version of the Database or gd_compute_version
Compute toolbox. gd_db_version

An XML string. xml_format
xml_formatany

15



Geodise Compute Toolbox

Introduction

The Geodise Compute Toolbox exposes the powereoGtid to the Matlab technical

computing environment. With this toolbox the enginean programmatically access
Globus GT2 resources which provide the backbonmarfy computational Grids. In

this manner the Geodise Compute Toolbox promotegtiegration of Grid resources
into the complex engineering workflows which candsscribed within the Matlab

environment.

The Geodise Compute Toolbox provides Matlab fum&ievhich support the job
submission, file transfer and certificate managenmrea familiar and intuitive syntax.
* Globus GRAM jobs can be submitted, queried anditeated.
* File transfer and remote directory managementpparied using the GridFTP
protocol.
» Single sign-on to the Grid is supported with Globusxy certificates.

The Geodise Compute Toolbox functions for certtBcananagement are listed in
Table 1. Table 2 lists functions for the submisgioe computational jobs to a Globus
GRAM service, and Table 3 lists the functions fordGTP file transfer. In addition

there are a number of functions to define the abdity and performance of a
GridFTP server (Table 4).

gd_certinfo Returns information about the user's
certificate.

gd_createproxy Creates a Globus proxy certificate.

gd_proxyinfo Returns information about the user's

proxy certificate.

gd_proxyquery Queries whether a valid proxy certificate
exists.
gd_destroyproxy Destroys the local copy of the user's

Globus proxy certificate.

Table 1 Certificate management functions

16



ob

=

gd_jobstatus Gets the status of a Globus GRAM job

gd_jobsubmit Submits a compute job to a Globus
GRAM job manager.

gd_jobpoll Queries the status of a Globus GRAM
until complete.

gd_jobkill Kills a Globus GRAM job specified by 4
job handle.

gd_chmod Changes file permissions of a file on a

Globus resource.

gd_condorsubmit

Submits a job through a Globus resour,
to a Condor pool.

gd_submitunique

Submits a GRAM job to a unique
working directory.

Table 2 GRAM job submission functions

gd_getfile

Retrieves a remote file using GridFTP.

gd_putfile

Puts a file on a remote server using
GridFTP.

gd_transferfile Performs a third-party file transfer using
GridFTP.

gd_makedir Creates a remote directory using
GridFTP.

gd_listdir Lists the contents of a directory on a
GridFTP server.

gd_fileexists Tests the existence of files and directofies
on a Globus resource.

gd_rmdir Deletes a remote directory using
GridFTP.

gd_rmfile Deletes a remote file using GridFTP.

gd_rmuniquedir

Deletes a remote directory and its
contents.

Table 3 GridFTP file transfer functions

17



gd_servermetrics

Performs a number of tests upon a list
Globus resources.

of

gd_testauthentication

Tests authentication with a Globus
resource.

gd_testfiletransfer

Tests file transfer to a Globus resourced.

gd_testjobsubmission

Tests the job submission to a Globus
resource.

gd_timeauthentication

Times authentication to a Globus
resource.

gd_timefiletransfer

Times file transfer to a Globus resourcs

U

gd_timejobsubmission

Times a job submission to a Globus
resource.

Table 4 Globus resource testing functions

18



Tutorial

Grid Certificates

To access Globus compute resources all users rawithenticated, and must also be
authorised to access the resource. Authenticatimteruthe Globus toolkit is based
upon X.509 certificates. X.509 certificates are itdig tokens that have been
cryptographically signed by a trusted third parttye Certificate Authority (CA).
Using X.509 certificates the identity of a useserver can be verified.

CA Certificate
certificate AUthOFI’Ey
credentials
C_TYPtugraphic
signature
user user users X.509
certificate | |private key credentials

cryptographic
signature

user users proxy
Proxy certificate
certificate

Figure 1 - Hierarchy of trust for user credentials

It is necessary to obtain a Grid certificate fromCartificate Authority that is

acceptable to the administrators of the Globusuress that you wish to use. For
step-by-step instructions about how to apply forXaB09 certificate, and how to
export it into the format required by Compute Tandpa tutorial is available from the
Geodise web-sitehftp://www.geodise.org/files/tutorials/Obtaining_rGkcates.pdj.

The Globus toolkit authorises users to access ressiy mapping their certificate to
a user account on the resource. Therefore to ugBlodus resource to run
computational jobs you must be in possession 0£.809 certificate signed by a CA
that is trusted by the administrators of the resetinat you wish to access. You must
then apply for permission to access the resourchaving the subject line of your
certificate mapped to a user account on that machin

To enable users to delegate their identity, allgu@rid processes to submit jobs and
transfer files on their behalf, the Globus tookd$o uses a technology called ‘proxy

19



certificates’. Proxy certificates are temporarityited credentials that can be used to
devolve the user’s identity across the Grid. Incpca proxy certificates also provide
a convenient single sign-on to the Grid; usersrethie passphrase to the private key
of their X.509 certificate just once when genergtine proxy certificate.

Before accessing a Globus resource you should gener valid proxy certificate,
which will typically expire after 12 hours. The Gise Compute Toolbox provides
Matlab functions that allow the user to create,neix@ and destroy Globus proxy
certificates within the Matlab environment.

Before using the Geodise Compute Toolbox you shoatdigure the location of the
credentials on your machine. Your X.509 certificatel corresponding private key
should be separately encoded in PEM format (seeliteening certificates tutorial for
details). To do this create a file called ‘cog.pdjes’ located in a directory ‘.globus’
of the home directory on your workstation. Thenfgpme the location of your X.509
certificate and private key, in addition to thetifimates of trusted CA.

For example the ‘cog.properties’ file on a Windo®G would contain the following
lines:

cacert=C\:\\Documents and Settings\\<USER>\\.gldb1621954.0,
C\:\\Documents and Settings\<sUSER>\\.globus\\a8leb®

proxy=C\:\DOCUME~1\\<USER>\LOCALS~1\Temp\\509up <USER>

usercert=C\:\\\Documents and Settings\\<USER>\\iggblnsercert.pem

userkey=C\:\\Documents and Settings\<USER>\\.gdbloserkey.pem

proxy.strength=512

proxy.lifetime=12

Please note that throughout this manual the terlS8ERJ)> represents your username
on any given machine.

The properties ‘usercert’ and ‘userkey’ refer tedbons of the PEM encoded user
certificate and corresponding private key. The figcert’ contains the certificate of
the CA which signed the user’s X.509 certificateREM format). Where ‘proxy’ will
be the location of the user’'s proxy certificate @nit has been generated by
gd_createproxy . The properties ‘proxy.strength’ and ‘proxy.lifee’ contain
default settings for the cryptographic strength &felime of the proxy certificate.
Note that the file separator on a Windows PC must defined with double

20



backslashes, “\\".
Once the user’s credentials have been configurdéldericog.properties’ file they are
accessible to the Geodise Compute Toolbox. Towéng configuration from within

the Matlab environment query the X.509 certificate:

>> subject = gd_certinfo

subject: C=UK,O=eScience,OU=Southampton,L=SeSC,CN=s ome user
issuer: C=UK,O=eScience,OU=Authority, CN=CA,E=ca-
operator@grid-support.ac.uk

start date: Tue Oct 07 13:00:31 BST 2003

end date: Wed Oct 06 13:00:31 BST 2004

subject =

/C=UK/O=eScience/OU=Southampton/L=SeSC/CN=some user

The details of the user’s certificate are printedhte screen. The subject line returned
by gd_certinfo Is in the Globus format and can be used to applyatcess to a
Globus resource. By supplying this subject linethe administrator of a Globus
resource your credentials can be mapped to a aseuat on that machine.

To create a proxy certificate tihe_createproxy =~ command is used:

>> gd_createproxy
When this command is entered a GUI will prompt iser for the passphrase to their
private key. The details of the proxy certificande configured using the 'Options'’
button. The proxy certificate is generated by presshe 'Create’ button. After the
proxy has been generated, click '‘Cancel’ to disthiesGUI, and press 'Enter' at the
Matlab prompt.

Now you may query the details of the proxy ceréife

>> gd_proxyinfo;

21



Subject: C=UK,0O=eScience,OU=Southampton,L.=SeSC,CN=s ome
user,CN=proxy

issuer: C=UK,0=eScience,OU=Southampton,L.=SeSC,CN=so0 me user
type: full legacy globus proxy

strength: 512 bits

timeleft: 11 h, 59 min, 39 sec

The details printed to the screen indicate thatpitoxy certificate will remain valid
for almost 12 hours. We may also query the validify the proxy certificate
programmatically, for example:

>> isvalid = gd_proxyquery(‘time',11)

isvalid =

1

This indicates that our proxy certificate will reima&alid for at least 11 hours.

Job submission and file transfer

The primary services offered by Globus GT2 resai@me GRAM job submission
and GridFTP file transfer. Typically Globus res@gaan simply be specified by the
machine name, for example:

>> host = 'serverl.domain.com’;
However some Globus computational resources may G&fRAM job submission to a
number of alternative job managers or non-defaoitsp These can be specified as
follows:

>> GRAM1 = 'serverl.domain.com/jobmanager-fork’;

>> GRAM2 = 'serverl.domain.com/jobmanager-pbs’;

>> GRAM3 = 'serverl.domain.com:2119/jobmanager’;

Globus resources offering GridFTP will typicallgten on the default port (2811),
however a non-default port can be specified asvidl!

>> GridFTP1 = 'serverl.domain.com:2812";

22



For all examples in this tutorial we will assumatth single Globus resourdeo$t )
is used offering GRAM and GridFTP services on diefparts, and using the default
job manager.

To submit a job to a computational resource vialeéb@® GRAM service you must
describe the attributes of the job using a Reso@ecification Language (RSL)
string. An RSL string is a list of property/valugsirs each enclosed by brackets (see
the example below). The most frequently used GRASL Rarameters are listed in
Table 5, these and other GRAM RSL parameters amheiu documented on the
Globus websitenttp://www.globus.orgl

executable The name of the executable file to be run. Thihésonly
required parameter.

directory The name of the default working directory.

arguments The arguments to be passed to the executable.

stdin The name of the file containing the standard irfputthe
executable.

stdout The name of the file that will contain the standatdput

from the executable.

stderr The name of the file that will contain the standardr
from the executable.

count The number of times that the executable should
executed.
environment The environment variables to be set. A list of nbvaleie

pairs each enclosed by brackets.

maxTime The maximum execution time in minutes.

jobType A string specifying the job types. Possible valuedude
“single”, “multiple”, “mpi” and “condor”.

Table 5 GRAM RSL parameters

This example demonstrates the submission of a singll to the Globus GRAM
service orhost . The first argument tgd_jobsubmit is an RSL string that specifies
the file name of the executable to be run, ‘sleepd the argument to be passed to
that executable which specifies that the proceisieep for 1 minute.

23



>> jobhandle = gd_jobsubmit(

'‘&(executable="/bin/sleep")(arguments="1m")',host)

jobhandle =
https://serverl.domain.com:30001/27531/1096385757/

The functiongd_jobsubmit  returns a GRAM job handle that can be used tolchec
the status of the job, and if necessary to killjgte In the following example we use
the job handle returned lgy_jobsubmit  to query the status of the job. The integer
returned byyd_jobstatus  indicates the state of the job, where “2” indisdf®at the
job is active and “3” indicates that the job hampteted.

>> status = gd_jobstatus(jobhandle)

status =
2

We can also poll the status of the job until tHe has completed.
>> gd_jobpoll(jobhandle)

In addition to high-performance, high-volume filarisfer GridFTP offers all of the
standard FTP file operations. We can use GridFTEreate a working directory on
the Globus resource.

>> gd_makedir(host,’home/<USER>/demo")

We will now run a second job, piping the outputatdile ‘date.out’ in our working
directory onhost . We will then use the GridFTP commagul getfile to retrieve
the output to a temporary file on the local machared print the results.

>> rs| = '&(executable="/bin/date")(arguments="-u")
(directory="/home/<USER>/demo")(stdout="date.out")' ;
>> jobhandle = gd_jobsubmit(rsl,host)

jobhandle =
https://serverl.domain.com:30001/27531/1096385757/

24



>> gd_jobpoll(jobhandle);
>> |ocalfile = tempname;
>> gd_getfile(host,'/home/<USER>/demo/date.out’,loc alfile);

>> type(localfile)

Tue Sep 28 16:46:25 BST 2004

We can now use the GridFTP commagdsrmfile  andgd_rmdir to clean-up the
file and directory on the server:

>> gd_rmfile(host,'/home/<USER>/demo/date.out’)
>> gd_rmdir(host,'/home/<USER>/demo/")

Frequently an engineer may wish to submit and eversl jobs independently upon a
Globus resource, for example when conducting anpeter sweep. To prevent
conflicts between the input and output parametetkeodifferent jobs it is convenient
to run the jobs in separate directories. The faomagd_submitunique  handles the
submission of compute jobs into unique directorresyrning a job handle and the
path of the unique directory. In the following exasn we use the function
gd_submitunique  to submit two concurrent jobs, we will then retgethe results
and delete unique directories and their contentgys_rmuniquedir

>> rs| = '&(executable="/bin/date")(arguments="-u")
(stdout="date.out")’;

>> [jobhandlel,uniquedirl] =
gd_submitunique(rsl,host,[],'/home/<USER>/")

>> [jobhandle2,uniquedir2] =
gd_submitunique(rsl,host,[],'/home/<USER>/")

25



jobhandlel =
https://serverl.domain.com:30002/27658/1096386586/

uniquedirl =

/home/<USER>/20040928T164946_176266/

jobhandle2 =
https://serverl.domain.com:30002/27671/1096386587/

uniquedir2 =

/home/<USER>/20040928T164947_405706/

>> gd_jobpoll(jobhandlel);

>> |ocalfile = tempname;

>> gd_getfile(host,[uniquedirl,'date.out’],localfil e);
>> type(localfile)

>> gd_rmuniquedir(host,uniquedirl);

Wed Sep 29 12:12:21 UTC 2004

>> gd_jobpoll(jobhandle2);

>> |ocalfile = tempname;

>> gd_getfile(host,[uniquedir2,'date.out’],localfil e);
>> type(localfile)

>> gd_rmuniquedir(host,uniquedir2);

Wed Sep 29 12:12:23 UTC 2004

Scripting the Grid

The Geodise Compute Toolbox allows engineers tipts€rid processes in the
Matlab environment. Unfortunately due to the dymamature of the Grid the
resources that you wish to use may become unalailab may be more or less
reliable. In these situations, when a function he Geodise Compute Toolbox is
unable to complete its operation, the function wyibically throw an error with a
diagnostic message.

>> gd_getfile(host,\tmp\fileDoesNotExist.txt','"dem 0.txt")

26



??? Error using ==> gd _getfile

Server Exception: No such file or directory.

If a Matlab function throws an error, this will caithe Matlab script or function
which invoked it to stop executing. Therefore itingportant if you wish to write a
robust Matlab script or function that communicatath the Grid that you use Matlab
exception handling to deal with errors appropriatednd when they occur.

Matlab exception handling is based upgn, catch statements. By placing a block
of code between a pair o , catch statements means that if an error occurs when
Matlab evaluates this code the script will not séxecuting. Instead the code inside
the catch , end block is evaluated and the script continues. Tiehaviour is
demonstrated by the example below.

>> try
gd_getfile(host,\tmp\fileDoesNotExist.txt', ‘demo.txt")
catch
disp('An error has occurred with the followi ng
message:")

disp(lasterr)

end

An error has occurred with the following message:
Error using ==> gd_getfile

Server Exception: No such file or directory.

In this way errors that occur when communicatinghwhe Grid can be ‘caught’ by
the script and dealt with appropriately. The diagiimoerror message can be examined
with thelasterr  function, and if appropriate the script can coméinor stopped by
throwing another error (usiregror or rethrow ).

We recommend that when writing a script or functtbat communicates with the
Grid that you enclose all Grid functions with , catch statements. You should also
consider how the script should behave if an erooucs; should it tidy up and exit, or
should it continue? This way you will be prepared the unexpected, and your
Matlab scripts and functions will be more robustassult.

27



Testing Grid resources

The unpredictability of Grid resources mean thaifien wise to determine whether a
resource is functioning and responsive before gty to use it. The Geodise
Compute Toolbox provides a suite of functions tettehe availability and
responsiveness of the Globus services runningresaurce.

To determine whether a resource is respondingwdnredher or not you are authorised
to access it, the following commands may be used:

>> success = gd_testauthentication(host)

>> time = gd_timeauthentication(host)

success =
1

time =
171

To test the availability of the GRAM job submissieervice, the following commands
will submit a small job to the job manager spedfi®/host .

>> success = gd_testjobsubmission(host)

>> time = gd_timejobsubmission(host)

SUCCesSS =

1

time =
610

To test the availability and speed of GridFTP fil@nsfers to a Globus resource the
following commands will transfer a small file tcetkpecified directory ohost :

>> success = gd_testfiletransfer(host)

>> time = gd_timefiletransfer(host)

28



success =
1

time =
890

29




Function Reference

gd_certinfo

Returns information about the user's certificate.

Syntax
subject = gd_certinfo
subject = gd_ certinfo(filename)

Description

This command prints information about the userdifemte to the screen. The
command also returns the certificate subject lima format which is suitable for use
in a Globus gridmap file. The default location bétuser's certificate is specified by
the cog.properties file.

subject = gd_certinfo wheresubject is the certificate subject in the
Globus format.

subject = gd_certinfo(filename) as above, wherélename is the
filename of the certificate to be queried. The iedte must be encoded in pem
format.

See also
gd_proxyinfo , gd createproxy , gd_destroyproxy

30



gd_chmod

Changes file permissions of a file on a Globusuesa

Syntax
gd_chmod(host,remotefile,mode)
gd_chmod(host,remotefile,mode,command)

Description
gd_chmod(host,remotefile,mode) where host is a string describing
the resource. It could be in one of the followingnats:

- hostname

- hostname:port

- hostname/service

- hostname:port/service
The second argumemn¢motefile is a string describing the full name of the file
starting from root '/'. The final argumemibde is a string describing the permissions
of the file. The permission of a file can be eithesymbolic representation of changes
to make, or an octal number representing the hiepafor the new permissions (see
below).

gd_chmod(host,remotefile,mode,command) as above, except the
argumentommandis a string specifying the absolute path of themati command on
the Globus resource.

Input arguments
mode The argumentode may have two alternative forms:

1. Symbolic representation:

A combination of the letters "ugoa' controls whigders' access to the
file will be changed: the user who owns it (u), ethisers in the file's
group (g), other users not in the file's group ¢o)all users (a).

The operator '+' causes the permissions selectds tadded to the
existing permissions of each file; '-' causes therne removed; and '='

causes them to be the only permissions that thé#sk.

The letters 'rwxXstugo' select the new permissitorsthe affected

31



users: read (r), write (w), execute (or access dwmectories) (x),
execute only if the file is a directory or alredtlys execute permission
for some user (X), set user or group ID on execus), sticky (t), the
permissions granted to the user who owns the dijetbie permissions
granted to other users who are members of the filgup (g), and the
permissions granted to users that are in neitheéheftwo preceding
categories (0).

2. Octal number representation:

A numeric mode is from one to four octal digits AQ-derived by

adding up the bits with values 4, 2, and 1. Any ttedi digits are

assumed to be leading zeros. The first digit selde set user ID (4)
and set group ID (2) and sticky (1) attributes. Eleeond digit selects
permissions for the user who owns the file: read wite (2), and

execute (1); the third selects permissions for rotlgers in the file's
group, with the same values; and the fourth foeotisers not in the
file's group, with the same values.

For example, 0750 gives rwx permissions to the owaed rx
permissions to the group.

Examples
To give read/write/execute permissions to the ovamer read/execute permissions to
the group of a file named '/tmp/foo’ which is on Globus resource called
'server.domain.com’, you can use:

gd_chmod('server.domain.com','/tmp/foo’,'0750");
To remove group execute permissions from of thees@dmyou can use:

gd_chmod('server.domain.com','/tmp/foo’,'g-x");

Notes
A valid proxy certificate is required to use thism€tion.

See also
gd_fileexists , gd_listdir

32



gd_condorsubmit

Submits a job through a Globus resource to a Copodot.

Syntax
handle = gd_condorsubmit(classAD,RSLstruct,host)
handle =
gd_condorsubmit(classAD,RSLstruct,host,filesystem)

Description
handle = gd_condorsubmit(classAD,RSLstruct,host) returns a

string handle containing the Globus job handle for a successfsillbmitted job.
WhereclassAD is a structure describing the job to be submittethe Condor pool,
the structureRSLstruct describes the command used to submit the job ¢o th
Condor pool, andost is a string describing the Globus resource to $e&duThe
argumentost can have one of the following formats:

- hostname

- hostname:port

- hostname/service

- hostname:port/service

handle = gd_condorsubmit(classAD,RSL,host,filesyste m) as
above where the argumefilesystem defines the filesystem ohost . When
filesystem = 'NFS' a shared filesystem is assumed, othengis@on-NFS

filesystem is assumed.

Input arguments

classAD TheclassAD structure contains a description of the requiresen
the job to be submitted to the Condor pool. Thiedief the structure
specify the attributes of the Condor classAD filattis used to submit
the job. The valid fields include:

executable The name of the executable to
submitted to the Condor pool

requirements A string specifying the requiremer
from the machine upon which to the job
should be run. Theseequirements ma
include:

33



RSLstruct

arguments

transfer_input_files

output

error

log

universe

Other possible fields in thgassAD structure include all of the valid
classADs attributes. These attributes are docurdeatethe Condor

* Operating systen®pSys
* Architecture:Arch
* Memory:Memory

The arguments to the executable

A string containing a comma separa
list of files to be submitted wit
executable

The filename tgipe the output from th
job
The filename to pipe the error from t
job
The filename to which to write tt

Condor log

A string specifying the type of Cond
job to be run. Possible values include:

»  STANDARD
*  VANILLA

* MPI

« JAVA

project homepagén(tp://www.cs.wisc.edu/condqr/

TheRSLstruct  structure contains the RSL attributes which spesif

the command used to submit the job to the Condol. @dne required

fields include:

executable The path to the 'condor_submit' executable
host

arguments The name of the Condor classAD file prodd by
gd_condorsubmit

directory The name of the working directory bost

34



Examples

The following example demonstrates the submissfanlonux and a Windows job to

a Condor pool via the Globus server 'server.doro@am’. The Linux job is described
by the structurelassAD_Linux , and the Windows job is described by the structure
classAD_Windows

%Specify classAD_Linux
classAD_Linux.requirements = 'Arch =="INTEL" && Op Sys ==
"LINUX"™,

classAD_Linux.executable = 'sleep.sh’;
classAD_Linux.output = 'sleep.output’;
classAD_Linux.error = 'sleep.error’;
classAD_Linux.log = 'sleep.log’;
classAD_Linux.universe = 'VANILLA";
classAD_Linux.transferfiles = 'ONEXIT";
classAD_Linux.should_transfer_files = 'YES';
classAD_Linux.when_to_transfer_output = 'ON_EXIT";

classAD_Linux.arguments = '1m’;

% Specify classAD_Windows

classAD_Windows.requirements = 'Arch == "INTEL" && OpSys ==
"WINNT51";
classAD_Windows.environment = 'path=c:\windows\syst em32';

classAD_Windows.executable = 'printhame.bat’;

classAD_Windows.output = 'printname.output’;

classAD_Windows.error = 'printhame.error’;

classAD_Windows.log = ‘printname.log’;

classAD_Windows.universe = '"VANILLA';

classAD_Windows.transferfiles = '"ALWAYS;
classAD_Windows.should_transfer_files = 'YES';
classAD_Windows.when_to_transfer_output = 'ON_EXIT' ;
classAD_Windows.transfer_input_files = 'filel.txt, file2.txt,
file3.txt';

% Specify RSL
rsl.executable = 'Jusr/local/condor/bin/condor_subm it';
rsl.arguments = 'myJob.sub’;

rsl.directory = '/home/<USER>/"

35



rsl.stdout = 'myJob.stdout’;

rsl.stderr = 'myJob.stderr’;

% Make the Condor job submission

handle_Linux =

gd_condorsubmit(classAD_Linux,rsl,'server.domain.co m’);
handle_Windows =

gd_condorsubmit(classAD_Windows,rsl,'server.domain. com’);

Notes
A valid proxy certificate is required to use thism€tion.

The field names of the ClassAD and RSL structuhesilsl be lower case characters.
ClassAD string variables should be in upper caseatters, e.g. 'LINUX' not 'Linux’,
or 'WINNT51' not WinNT51'.

See also
gd_jobsubmit , gd_submitunique

36



gd_compute_version

Returns the current version of the Geodise Compatdbox

Syntax
version = gd_compute_version

Description
version = gd_compute_version returns the version of the current

Geodise Compute Toolbox release as a string dbtine MAJOR.MINOR.POINT.

See also
README .txt

37



gd_createproxy

Creates a Globus proxy certificate.

Syntax
gd_createproxy

Description

This command creates a Globus proxy certificatetli@ user's credentials at the
location specified by the cog.properties file. Tuser is queried for the passphrase to
their private key by a pop-up window.

See also
gd_proxyinfo , gd proxyquery ,gd certinfo , gd destroyproxy

38



gd_destroyproxy

Destroys the local copy of the user's Globus pieificate.

Syntax
gd_destroyproxy

Description
This command deletes the local copy of the Glolax\yp certificate for the user's
credentials at the location specified by the caypprties file.

See also
gd_createproxy ,gd proxyinfo , gd_certinfo

39



gd_fileexists

Tests the existence of files and directories orad@ resource.

Syntax
exists = gd_fileexists(host,remotefile)
exists = gd_fileexists(host,remotefile,ispassive)

Description

exists = gd_fileexists(host,remotefile) returns an integer
exists indicating whether the file or directory specifibgl remotefile exists on
the Globus server specified by the strimgt . The argumengxists  will equal 1 is
the file exists ormost , otherwise it will equal 0.

exists = gd_fileexists(host,remotefile,ispassive) where if
ispassive is false the active FTP mode will be used, otheewhe default passive
FTP mode will be used. If a passive connection ctive established a warning is
displayed and an active mode connection will benapted.

Example
result =

gd_fileexists('server.domain.com’,'/home/<USER>/tes t.dat);

Notes
A valid proxy certificate is required to use thism€tion.

In earlier versions of this function the defaultFFTode was active. The passive
mode is now used by default since this is may beerappropriate when the GridFTP

client is behind a firewall which blocks incomingmmections

See also
gd_listdir

40



gd_getfile

Retrieves a remote file using GridFTP.

Syntax
gd_getfile(host,remotefile,localfile)
gd_getfile(host,remotefile,localfile,filetype)
gd_getfile(host,remotefile,localfile,filetype,ispas sive)

Description

This command retrieves a file from a remote sensng GridFTP. The user must
specify the remote file location on a remote selv&d the local destination for the
file. The user can also specify the file type.

gd_getfile(host,remotefile,localfile) transfers the remote ASCII
file remotefile from the machinenost . The file is saved to the path and file
specified by the stringcalfile

gd_getfile(host,remotefile,localfile,filetype) as above
except the strinfjletype  sets the file transfer type. Whéiletype = 'ASCII' the
file transfer type will be ASCII (this is the defawsetting), alternatively when
filetype = 'binary' the file transfer type is set to binary

gd_getfile(host,remotefile,localfile,filetype,ispas sive)

where ifispassive is false the active FTP mode will be used, otheewhe default
passive FTP mode will be used. If a passive commeatannot be established a
warning is displayed and an active mode connectitirbe attempted.

Examples

The following command copies the file 'data2.dathf the users home directory on
the remote host 'server' to the local file 'C:\datat'. The file is transferred as a
binary file type.

gd_getfile('server.domain.com’,'data2.dat’,'C:\data 1.dat',

‘binary );

This example behaves as above except the filepddrom the subdirectory 'tmp' in
the users home directory.

41



gd_getfile('server.domain.com’,'tmp/data2.dat’,'C:\ datal.dat',

‘binary");

The following example is similar to the first exadm@xcept the file is copied from
the subdirectory 'tmp' of the root directory on tamote machine.

gd_getfile('server.domain.com’,'/tmp/data2.dat’,'C: \datal.dat',

‘binary");

Notes
A valid proxy certificate is required to use GridETSuitable credentials may be
required to transfer files from a remote server.

In earlier versions of this function the defaultFFTode was active. The passive
mode is now used by default since this is may beerappropriate when the GridFTP
client is behind a firewall which blocks incomingrmections.

See also
gd_putfile , gd_createproxy

42



gd_jobkill

Kills a Globus GRAM job specified by a job handle.

Syntax
gd_jobkill(jobhandle)

Description
gd_jobkill(jobhandle) terminates the Globus job specified by the
Globus job handle.

Notes
A valid proxy certificate for the correct user ceatials is required to kill a GRAM
job.

See also
gd_createproxy , gd jobsubmit , gd jobstatus

43



gd_jobpoll

Queries the status of a Globus GRAM job until castgl

Syntax
gd_jobpoll(jobhandle)
gd_jobpoll(jobhandle,interval)
isdone = gd_jobpoll(jobhandle,interval,maxtime)

Description

This command polls the status of a Globus GRAM gpkcified by the job handle
until the job is complete. This function can bedise block the process of a Matlab
script until a job has finished. If the job fails arror is thrown.

gd_jobpoll(jobhandle) where jobhandle is the handle to a Globus
GRAM job.
gd_jobpoll(jobhandle,interval) wherejobhandle is the handle to a

Globus GRAM job andhterval is the interval (in seconds) between polling tie |
handle.

isdone = gd_jobpoll(jobhandle,interval,maxtime) as above.
The argumeninaxtime allows an upper limit (in seconds) to be placedhrenperiod
over which the job is polled. The return valisdone indicates whether the job
handle returned the DONE state (1), or whetheimpilvas aborted (0).

Notes
The state DONE returned by job handle does notsseciy indicate that the job
completed successfully. A valid proxy certificsaequired to query a GRAM job.

See also
gd_jobstatus , gd jobsubmit , gd_jobkill

44



gd_jobstatus

Gets the status of a Globus GRAM job.

Syntax
status = gd_jobstatus(jobhandle)

Description
status = gd_jobstatus(jobhandle) returns the status of a Globus
GRAM job, wherestatus
-1is UNKNOWN
1is PENDING
2is ACTIVE
3is DONE
4 is FAILED
5is SUSPENDED
6 is UNSUBMITTED

Notes
A valid proxy certificate is required to query a SR job.

See also
gd_createproxy , gd jobsubmit , gd_jobkill

45



gd_jobsubmit

Submits a compute job to a Globus GRAM job manager.

Syntax
jobhandle = gd_jobsubmit(RSL,host)

Description

This command submits the compute job described biRreaource Specification
Language (RSL) string to a Globus server runninGRAM job manager. Upon a
successful submission the command returns a jodiédhat may be used to query
the status of, or terminate, the job.

jobhandle = gd_jobsubmit(RSL,host) where RSL is a string
describing the submitted jobgst is the name of the Globus server, @ithandle
is the handle for a successfully submitted job.efwor is thrown if job submission is
unsuccessful.

Example
jobhandle =

gd_jobsubmit('&(executable=/bin/date)’,'server.doma in.com’)

Notes
A valid proxy certificate is required to submit &R&M job. For more information
about RSL sefttp://www.globus.org/gram/

See also
gd_createproxy , gd_jobkill , gd_jobstatus

46



gd_listdir

Lists the contents of a directory on a GridFTP serv

Syntax
files = gd_listdir(host)
files = gd_listdir(host,remotedir)
files = gd_listdir(host,remotedir,listhidden)
files = gd_listdir(host,remotedir,listhidden,ispass ive)
[files,details] = gd_listdir(...)

Description
files = gd_listdir(host) wherefiles is a cell array containing the
filenames of files in the user's home directorytloe GridFTP servefost .

files = gd_listdir(host,remotedir) wherefiles is a cell array
containing the filenames of files in the directoeynotedir  on the GridFTP server
host (if remotedir is empty the contents of the user's home directatly be
listed).

files = gd_listdir(host,remotedir,listhidden) the list of
filenames will include hidden files if the argumdisthidden is true (equal to 1).
Otherwise the names of hidden files will not beineéd (default behaviour).

files = gd_listdir(host,remotedir,listhidden,ispass ive)
where ifispassive is false the active FTP mode will be used, otheewhe default
passive FTP mode will be used. If a passive commeatannot be established a
warning is displayed and an active mode connectitirbe attempted.

[files,details] = gd_listdir(host) as above wherdetails is a
cell array containing structures that describe dbtails of the files and directories

contained in the remote directory.

Notes
A valid proxy certificate is required to use GridET

In earlier versions of this function the defaultFFTode was active. The passive
mode is now used by default since this is may beerappropriate when the GridFTP

47



client is behind a firewall which blocks incomingmmections

See also
gd_putfile ,gd getfile , gd createproxy

48



gd_makedir

Creates a remote directory using GridFTP.

Syntax
gd_makedir(host,directory)

Description
gd_makedir(host,directory) Creates a directory specified by the string
directory  on the GridFTP server specified by the sttingt .

Notes
A valid proxy certificate is required to use GridETSuitable credentials will be
required to create a directory on a GridFTP server.

See also
gd_getfile  , gd_putfile ,gd_rmdir , gd_rmfile

49



gd_proxyinfo

Returns information about the user's proxy cedtic

Syntax
exists = gd_proxyinfo
[exists,subject] = gd_proxyinfo

Description
This command checks the existence of the user'sypoertificate and prints
information to the screen. The command also rettinessubject line of the proxy
certificate.

exists = gd_proxyinfo whereexists is 1 if the proxy certificate exists
at the default location, otherwise 0.

[exists,subject] = gd_proxyinfo wheresubject is the subject line
of the proxy certificate.

See also
gd_proxyquery ,gd certinfo , gd createproxy , gd destroyproxy

50



gd_proxyquery

Queries whether a valid proxy certificate exists.

Syntax
isvalid = gd_proxyquery
isvalid = gd_proxyquery(proxyattrib,minvalue)

Description

This command determines whether a valid proxy foeate exists for user's
certificate. The strength or time remaining for thexy certificate may also be
gueried. The location of the user's proxy certtbca specified by the cog.properties
file.

isvalid = gd_proxyquery where isvalid is 1 if a valid proxy
certificate exists at the default location, otheen0.

isvalid = gd_proxyquery(proxyattrib,minvalue) where
isvalid  is 1 if the proxy certificate meets the requiretsesf remaining lifetime or
cryptographic strength, otherwise 0ptbxyattrib = 'time' the time remaining for
the proxy certificate is queried againshvalue hours. Ifproxyattrib = 'strength’
the cryptographic strength of the proxy certificetgueried againstinvalue bits.

Example
The following example returrisvalid = 0 for a proxy certificate of strength 512.

isvalid = gd_proxyquery('strength’',1024)

isvalid =

See also
gd proxyinfo ,gd certinfo ,gd createproxy ,gd destroyproxy

51



gd_putfile

Puts a file on a remote server using GridFTP.

Syntax
gd_putfile(host,localfile,remotefile)
gd_putfile(host,localfile,remotefile,filetype)
gd_putfile(host,localfile,remotefile,filetype,ispas sive)

Description

This command puts a local file upon a remote semgarg GridFTP. The user must
specify the remote server name, the local file patidl the remote file path. The user
can also specify the filetype.

gd_putfile(host,localfile,remotefile) transfers the ASCII file
localfile to the machinéost . The file is saved to the path and file specitigd
the stringremotefile

gd_ putfile(host,localfile,remotefile,filetype) as above
except the strinfjletype  sets the file transfer type. Whéiletype = 'ASCII' the
file transfer type will be ASCII (this is the defawsetting), alternatively when
filetype = 'binary' the file transfer type is set to binary

gd_putfile(host,localfile,remotefile,filetype,ispas sive)

where ifispassive is false the active FTP mode will be used, otheewhe default
passive FTP mode will be used. If a passive commeatannot be established a
warning is displayed and an active mode connectitirbe attempted.

Examples

The following command places the local file 'C:&iatlat’ on the remote host 'server'
in the users home directory with the file named@atat'. The file is transferred as a
binary file type.

gd_putfile('server.domain.com’,'C:\datal.dat','data 2.dat',

‘binary");

This example behaves as above except the filawedlin the existing subdirectory to
the users home directory; 'tmp'.

52



gd_putfile('server.domain.com’,'C:\datal.dat','tmp/ data2.dat',

‘binary");

This example is similar to the first example excépée file is placed in the
subdirectory to the root directory; 'tmp'.

gd_putfile('server.domain.com’,'C:\datal.dat','/tmp /data2.dat’,

‘binary");

Notes
A valid proxy certificate is required to use GridETSuitable credentials may be
required to transfer files to remote servers.

In earlier versions of this function the defaultFFMode was active. The passive
mode is now used by default since this is may beerappropriate when the GridFTP
client is behind a firewall which blocks incomingrmections.

See also
gd_getfile , gd_createproxy

53



gd_rmdir

Deletes an empty remote directory using GridFTP.

Syntax
gd_rmdir(host,remotedir)

Description
gd_rmdir(host,remotedir) Deletes an empty directory specified by the
stringremotedir  on the GridFTP server specified by the stiiogt .

Notes
A valid proxy certificate is required to use GridETSuitable credentials will be
required to delete a directory on a GridFTP server.

See also
gd_getfile ,gd putfile ,gd makedir ,gd rmfile

54



gd_rmfile

Deletes a remote file using GridFTP.

Syntax
gd_rmfile(host,remotefile)

Description
gd_rmfile(host,remotefile) Deletes the file specified by the string
remotefile  on the GridFTP server specified by the sthogt .

Notes
A valid proxy certificate is required to use GridETSuitable credentials will be
required to delete a file on a GridFTP server.

See also
gd_getfile ,gd putfile ,gd makedir ,gd rmdir

55



gd_rmuniquedir

Deletes a remote directory and its contents.

Syntax
gd_rmuniquedir(host,remotedir)
gd_rmuniquedir(host,remotedir,ispassive)

Description

This function deletes a remote directory and thesfthat it contains using GridFTP.
The function will not delete the remote directopesified (or any of its contents) if
the remote directory contains any sub-directoridss is a safety feature which is
intended to mitigate the risks of wildcard deles@n a remote machine.

If the specified directory contains sub-director@@serror will be thrown. Errors will
also be thrown if the directory does not existfgarmission is denied to delete the
directory or its contents.

gd_rmuniquedir(host,remotedir) where host is the name of the
GridFTP server antemotedir  is the name of the directory to be deleted.

gd_rmuniquedir(host,remotedir,ispassive) where if ispassive
is false the active FTP mode will be used, otheswiiee default passive FTP mode
will be used. If a passive connection cannot baldished a warning is displayed and
an active mode connection will be attempted.

Notes

In earlier versions of this function the defaultFFTode was active. The passive
mode is now used by default since this is may beerappropriate when the GridFTP
client is behind a firewall which blocks incomingrmections.

See Also
gd_rmdir ,gd rmfile , gd submitunique

56



gd_servermetrics

Performs a number of tests upon a list of Globasugces.

Syntax
testresults = gd_servermetrics(servers)
testresults = gd_servermetrics(servers,filename)

Description

testresults = gd_servermetrics(servers) will perform a suite of
diagnostic tests on the Globus servers specifiedebyers . Whereservers is a
structure defining Grid resources which has thiefahg mandatory fields:

name Name of the Globus server.

directory Name of the directory on the server in which
tests should be performed@his may be empty
no directory is specified.

The output structurestresults contains the following fields:

name Name of the Globus server.
directory Name of the directory on the server.
authentication The elapsed time in millisends required fo

authentication, or -1 if failed.

jobsubmission The elapsed time in milliseconds required fub |
submission, or -1 if failed.

filetransfer The elapsed time in milliseconds required for
transfer, or -1 if failed.

results = gd_servermetrics(servers) as above where the results of
the tests are output to the file specified by thegfilename

Example

The following example will run the diagnostic testspon the servers
'serverl.domain.com’ and 'server2.domain.com'.régelts of the tests will be output
to the structureestresults , and to the file ‘'metrics.dat’ in the current dioey on

57



the local machine.

servers(l).name = 'serverl.domain.com’;

servers(1l).directory = '/home/<USER>/"

servers(2).name = 'server2.domain.com’;

servers(2).directory = ";

testresults = gd_servermetrics(servers,' metrics.dat )]

disp(testresults(1))

testresults =
1x2 struct array with fields:

name

directory

authentication

jobsubmission

filetransfer

name: 'serverl.domain.com'

directory: ''home/<USER>/'
authentication: 141
jobsubmission: 375

filetransfer: 4234

Notes
A valid proxy certificate is required to use thism€tion.

See also
gd_testauthentication , gd_testfiletransfer , gd_testjobsubmission ,
gd_timeauthentication , gd_timefiletransfer , gd_timejobsubmission

58



gd_submitunique

Submits a GRAM job to a unique working directory.

Syntax
[jobhandle,uniquedir] = gd_submitunique(RSL,host)
[jobhandle,uniquedir] = gd_submitunique(RSL,host,fi les)
[jobhandle,uniquedir] = gd_submitunique(RSL,host,fi les,
remotedir)
[jobhandle,uniquedir] gd_submitunique(RSL,host file S,

remotedir,ispassive)

Description

This command creates a unique working directoryaoBlobus server, transferring
files as required, and submits the compute jothto GRAM job manager. Upon a
successful submission the command returns a jobléamd the name of the unique
directory.

[jobhandle,uniquedir] = gd_submitunique(RSL,host) whereRSL
is a string describing the submitted job, dmdt is the name of the Globus server.
jobhandle is the handle for a successfully submitted job aniduedir is the
location of the working directory created lowst .

[jobhandle,uniquedir] = gd_submitunique(RSL,host,fi les)
as above, wheréiles is a cell array containing a list of the files be
transferred to the working directory on thest .

[jobhandle,uniquedir] = gd_submitunique(RSL,host,fi les,
remotedir) as above, whenemotedir is the directory on thieost within which
the unique working directory is creatdites can be empty if no files are required.

[jobhandle,uniquedir] = gd_submitunique(RSL,host,fi les,
remotedir,ispassive) where ifispassive is false the active FTP mode will be
used, otherwise the default passive FTP mode wilided.

Example

This command creates a directory '20040427T1306B4%2' in the user's home
directory on the machinest . The working directory in the user supplied RSiingf

59



Is set to the unique directory.

[jobhandle,dirname] = gd_submitunique('&(executable =/bin/date)

(stdout="test.out")’,host)

jobhandle =
https://host.domain.com:40001/15678/1083067567/

dirname =
20040427T130607 643492/

Notes
A valid proxy certificate is required to submit &6M job. For more information

about RSL sebttp://www.globus.org/gram/

See also
gd_jobsubmit , gd createproxy , gd_jobkill , gd_jobstatus

60



gd_testauthentication

Tests authentication with a Globus resource.

Syntax
success = gd_testauthentication(host)

Description

success = gd_testauthentication(host) where success is the
outcome of authentication with the Globus setvest . The value obkuccess is 1
on success and 0 on failure.

Example

success = gd_testauthentication('server.domain.com’ );

Notes
A valid proxy certificate is required to use thism€tion.

See also
gd_testfiletransfer , gd_testjobsubmission , gd_timeauthentication ,
gd_timefiletransfer , gd_timejobsubmission

61



gd_testfiletransfer

Tests file transfer to a Globus resource.

Syntax
success = gd_testfiletransfer(host)
success = gd_testfiletransfer(host,remotedir)

Description

success = gd_testfiletransfer(host) where success is the
outcome of the file transfer of a small file to t&éobus GridFTP serverost . The
value ofsuccess is 1 on success and 0 on failure.

success = gd_testfiletransfer(host,remotedir) as above where
the file will be transferred into the directamotedir  onhost .

Example

remotedir = gd_testfiletransfer('server','/home/<US ER>/");

Notes
A valid proxy certificate is required to use thim€tion.

See also
gd_testauthentication , gd_testjobsubmission \
gd_timeauthentication , gd_timefiletransfer , gd_timejobsubmission

62



gd_testjobsubmission

Tests the job submission to a Globus resource.

Syntax
success = gd_testjobsubmission(host)
success = gd_testjobsubmission(host,remotedir)

Description
success = gd_testjobsubmission(host)

where success is the

outcome of a job submission to the Globus sehest . The value obuccess is 1

on success and 0 on failure.

success = gd_testjobsubmission(host,remotedir) as above
where the job will run in the directorgmotedir  onhost .
Example
Success =
gd_testjobsubmission('server.domain.com’,'/home/<US ER>/");
Notes
A valid proxy certificate is required to use thism€tion.
See also
gd_testauthentication , gd_testfiletransfer ,
gd_timeauthentication , gd_timefiletransfer , gd_timejobsubmission

63



gd_timeauthentication

Times authentication to a Globus resource.

Syntax
time = gd_timeauthentication(host)

Description
time = gd_timeauthentication(host) wheretime is the elapsed time
in milliseconds taken to authenticate with the G®lservehost . If authentication

fails time will return -1.

Example

time = gd_timeauthentication(‘'server.domain.com);

Notes
A valid proxy certificate is required to use thism€tion.

See also
gd_testauthentication , gd_testfiletransfer , gd_testjobsubmission ,
gd_timefiletransfer , gd_timejobsubmission

64



gd_timefiletransfer

Times file transfer to a Globus resource.

Syntax
time = gd_timefiletransfer(host)
time = gd_timefiletransfer(host,remotedir)

Description

time = gd_timefiletransfer(host) wheretime is the elapsed time in
milliseconds taken to transfer a small file to Giebus GridFTP serverost . If file
transfer failgime will return -1.

time = gd_timefiletransfer(host,remotedir) as above where the
file will be transferred into the directorgmotedir  onhost .

Example

time = gd_timefiletransfer('server.domain.com’,'/ho me/<USER>/")

Notes
A valid proxy certificate is required to use thism€tion.

See also
gd_testauthentication , gd_testfiletransfer , gd_testjobsubmission ,
gd_timeauthentication , gd_timejobsubmission

65



gd_timejobsubmission

Times a job submission to a Globus resource.

Syntax
time = gd_timejobsubmission(host)
time = gd_timejobsubmission(host,remotedir)

Description

time = gd_timejobsubmission(host,remotedir) wheretime is the
elapsed time in milliseconds taken to completebas@bmission to the Globus server
host . If the job submission failéme will return -1.

time = gd_timejobsubmission(host,remotedir) as above where the
job will run in the directoryemotedir  onhost .

Example
time =

gd_timejobsubmission('server.domain.com’,'/home/<US ER>/");

Notes
A valid proxy certificate is required to use thism€tion.

See also
gd_testauthentication , gd_testfiletransfer , gd_testjobsubmission ,
gd_timeauthentication , gd_timefiletransfer

66



gd_transferfile

Performs a third-party file transfer using GridFTP.

Syntax
gd_transferfile(hostl,host2,remotefilel,remotefile2 )
gd_transferfile(host2,host2,remotefilel,remotefile2
filetype)
gd_transferfile(hostl,host2,remotefilel,remotefile2
filetype,hostllisten)

Description

gd_transferfile(hostl,host2,remotefilel,remotefile2 )
transfers the file specified by the strimgmotefilel on the GridFTP servéiostl
to the file specified byemotefile2 ~ onhost2 .

gd_transferfile(hostl,host2,remotefilel,remotefile2 ,
filetype) as above except the strifiggtype sets the file transfer type. When
filetype = 'ASCII' the file transfer type will be ASCII (this the default setting),
alternatively wheriiletype = 'binary’ the file transfer type is set to binary

gd_transferfile(hostl,host2,remotefilel,remotefile2 ,
filetype,hostllisten) as above, except whanstllisten is truehostl will
listen for a data connection frohost2 (i.e. host2 is the passive FTP client to
hostl ). Otherwisehost2 will listen for a data connection frohmostl (this is the
default behaviour).

Configuring this setting may be useful to negotiied party file transfers through a
firewall. For example, ihost2 is within a filewall which blocks inbound connemtis
settinghostllisten =1 may enable a third party file transfer frowstl .

Examples
The following command will transfer a file calletimp/testl’ from 'serverl' to a file

called '/tmp/test2’ on 'server2' in ASCII mode,:

gd_transferfile('serverl.domain.com','server2.doma in.com’,

‘ltmpltestl’,'tmp/test2")

67



See also
gd_putfile ,gd getfile , gd createproxy

68



Geodise Database Toolbox

Introduction

The Geodise Database Toolbox consists of client serder tools which enable
distributed users to easily manage, share and teegedata from within the Matlab
environment. Users with no database experiencentagrate data management into
their applications by calling the archive, queryl aatrieve functions provided by the
toolbox. Any data files or Matlab variables candbered in the Geodise archive. User
defined Matlab structures specify additional de#ore information (metadata),
which can be queried to easily locate data of @gerThe Geodise Database Toolbox
allows you to:

* Manage data from the local Matlab environment aratly in scripts.

» Store files and variables with customized desacrgpthetadata.

» Organise related data into datagroups.

* Query over metadata to easily locate required disitag functions or a GUI.

» Retrieve data based on logical data identities)e®xd to remember file locations.
» Share data with other distributed users by grarttiegh access permissions.

There are a separate set of server side toolshforGeodise Database Toolbox.
Variables and metadata are stored in an Oraclenéli B)g database as XML,
converted using the XML Toolbox. The Geodise Dasabd@oolbox functions call
data management services which utilise Grid, WeliG&e=and database technologies
with certificate based authentication and authtinea The server side tools are not
described in any detail in this document.

69



Tutorial

Getting started

Before using the Geodise Database Toolbox you teedgister your details in the
database by providing your certificate subject to aaministrator, who will then
assign you a username. To get your certificateestitgjallgd_certinfo from the
Compute Toolbox.

>> subject = gd_certinfo

subject: C=UK,O=eScience,OU=Southampton,L=SeSC,CN=s ome user
issuer: C=UK,O=eScience,OU=Authority, CN=CA,E=ca-
operator@grid-support.ac.uk

start date: Tue Oct 07 13:00:31 BST 2003

end date: Wed Oct 06 13:00:31 BST 2004

subject =
/C=UK/O=eScience/OU=Southampton/L=SeSC/CN=some user

To setup the Database Toolbox cgH dbsetup which will create a .geodise
directory in your home directory and copy the neaegconfiguration files into it.

>> gd_dbsetup
You will be prompted for details of your file stolest (wheregd_archive  will
store your files). Sehostname to a Globus enabled server you have GridFTP
permission on, and skbstdir  to an existing directory on that server wheresfiéan

be stored. These settings will be savedome_dir>/.geodise/ClientConfig.xml.

A valid proxy certificate is required to use thet@laase Toolbox functions, and this
can be created using the functmuh createproxy ~ from the Compute Toolbox.

>> gd_createproxy
A GUI will appear and prompt you for your certiftegpassphrase. Click the ‘Create’

button to generate the proxy certificate. When thiBnished click ‘Cancel’ to close
the GUI and press 'Enter' at the Matlab prompt.

70



See theCompute Toolbox Tutoriafor more information on certificates and proxy
certificates.

Archiving files

To archive a file from the local filesystem, figeate a metadata structure containing
some information that describes your file. This t@nany combination of doubles,
strings, arrays, cell arrays, complex numbers abdtsuctures.

>> m.model.name = 'test_design’;
>> m.model.params = [1 4.7 5.3];

>> m.product = 25.5431;

Add some standard informatiolodalName , format , comment, version ortree )
about the file.

>> m.standard.comment = 'Test design model file';

>> m.standard.version = '1.2.0";

The file can then be archived with the metadata.

>> filelD = gd_archive('C:\file.dat',m)

fileID =
file_dat_c6afad4b4-03cb-49a4-8c4e-008c38aae413

In addition to the optional metadata structurgl_archive takes a string
representing the path and filename of a local filestores this file on a remote file
store (specified in<user_home>/.geodise/ClientConfig.xml ). An ID is
returned which is a unique handle that can be tseetrieve the file.

The metadata is stored in a database and can bedjteehelp you find relevant files.
When the file is archived some additional metadstautomatically generated and
stored in thestandard substructure, regardless of whether user definethdata

was also provided. This consists lotalName (the original name of the file),
byteSize , format , archiveDate , createDate (when the original file was
created/modified) andserID . Seegd query for further information on these fields.
You can specify your own overriding values fetandard.localName and

71



standard.format if you prefer. You can also include the optionaku defined
metadata fieldeomment, version andtree . To help data organisation thee
field can be assigned a hierarchy string, similar & directory path, e.g.
'myuserlD/designs/testmodel’

Querying file metadata

To query file metadata pass a query string togtheqjuery function. A query takes
the form ‘field = value' , Where = can be replaced by other comparison
operators. More than one query condition can blidea in the string using to join
them together. A call tgd_query returns a cell array of structures, one for each
matching result.

>> result = gd_query('standard.version=1.2.0 & prod uct>25.4"

result =

[1x1 struct]

>> result{1}

ans =

standard: [1x1 struct]

model: [1x1 struct]
product: 25.5431

gd_display is a convenient way to view your query results.

>> gd_display(result)

72



*** Content of the structure result{1} (Total struc tures: 1)
standard.ID: file_dat_c6afa4b4-03ch-49a4-8c4e-008 c38aae413
standard.localName: file.dat
standard.byteSize: 24
standard.format: dat
standard.createDate: 2004-09-15 15:25:33
standard.archiveDate: 2004-10-07 11:03:10
standard.userID: jlw
standard.comment: Test design model file
standard.version: 1.2.0
standard.datagroups:
model.name: test_design
model.params:

1.0000 4.7000 5.3000
product: 25.5431

*** No more results. ***

It is possible to select which metadata fieldsratarned in the query results. This is
done by passing a string containing a comma segghliat of these fields as the third
argument tayd_query . The second argument specifies that we want toydfiles,
but is normally omitted because it is the default.

>>r = gd_query(‘product>25','file','standard.ID, m odel.*");
>> gd_display(r)

*** Content of the structure ***
standard.ID: file_dat_c6afa4b4-03cb-49a4-8c4e-008 c38aae413
model.name: test_design
model.params:

1.0000 4.7000 5.3000

To search for some text within a metadata valughesdike' operator together with %
to specify any characters, or _ to specify oneautar.

>> gd_query('standard.comment like %design m_del%") ;

The * wildcard can be used to represent an anongnsobfield, or any number of
subfields if it appears at the beginning.

73



>> gd_query(*.name = test_design’);

Use gd_query without any input arguments to start the Query pBieal User
Interface (GUI), see Figure 2. You can set quernyddmns for standard metadata by
selecting an operator (=, > etc) from the drop ddamnext to the relevant metadata
item and typing in a value. Further query condsidor user defined metadata can be
entered in the ‘Query custom metadata or varialiked' field. In the following text
field you can enter a comma separated list to §pechich metadata items are
returned for each matching query result.

Click the ‘Submit Query’ button to run your querihe correspondingd_query
script command is displayed, followed by the resaftthe query.

& Geodise Duery,GUI, d@g‘

Please specify a data source to query: .flille EIJI

Standard Metadata Operator Yalue
‘userID = jlw

| ID =

j:loc alHame =

:format =

;gcreateDate =
archiveDate = 2004-10-07
iytesize

‘comment =

‘version =

‘dat agroupID =

Query custom metadata or wariables: product= 25

Data items returned from the query: fmodel_‘_product, standard ID

Submit Guery k

Besults of the query:
;Query command: gd_guery('standard userlD = jlw & standard archiveDate == 2004-10-07 & product = 25', 'file, ';’{
'rnodel *, product, standard D7
Query results: Page 1 (results 1 - 1 of total 1 ).

w Content of the structure {1} ( Total 1 ) ##*

standard. ID = file_dat_chafadbd-03ch-40a4-8cde-008c38aaed 13
model narme = testdesign
model params =147 5.3
 product = 25,5431 W]

Figure 2 The Query GUI can be used to submit quergeand view results.

74



Hyperlinks are provided in the query results fowdmading and browsing data.
Figure 3 demonstrates that a file can be downlodnjedlicking on its standard.ID

hyperlink. In the Save dialog box you can use tagdt file name value (original

name of file) or specify a new file name. Browsihgta is further discussed in the
Grouping data section.

G

Please specify a data source to query: file
Standard Metadata Operator Yalue
[
userID | = |3 1w |
D | = |
localHame c Save kﬂ
format : o 51 -
Save in: | DatabazeToolbox |’ ¥ B El E
createDate - B
A ) .geodize B gd_dbsetup.m
k £ I
archiveDate " “) I cvs |#] ga_chsynem
My Recent =) dec |#] gd_display m
Documents Il m o _ojuery m
comment . i
= ) arg U gd_retrieve m
version L. 'i ) sml_toolbax m GdonfigFile properies
= = :
dat agroupID Desktop |=] clazspath bt lfj goddatabasze jar
!.;] carvert_xml.m i=;| GEQDISE_LICEMSE_SOTOM.TXT
Query custom metad 3 |%] db_testm [Z] Install
,.-j |#] disp_exception.m [Z] TestFiletxt

5] disp_structm ] TestFilez txt
H gd_addusers.m
1 g E] gd_archive.m
i
__3} iﬂ gd_datagroup.m
My Cornputer ﬂ gol_datagroupsadd m
|| %] gd_db_helpm

.
Query command: gd_query('sta .L!Jl File narne: filer chait IE
'model *, product, standard. ID% byblstiviark

Places File= of type:  a) Filas 5]
Query results: Page 1 (results :

** Content of the structure {13 Total 1 ) ***

Data items returneq My Documents

Results of the quel

standard. [[ = file_dat cﬁafa4b4-D30b-4934-8c4e-0080383Ee413
model hame = test design

model paratns = 1 4.7 5.3

product = 25.5431

Figure 3 Click on a file's standard.ID link to downoad that file.
Retrieving files
A file can be retrieved to the local filesystemdpecifying its unique ID. This string
is returned bygd_archive  when the file is archived, and also appears in the

metadata query results standard.ID

>> |D = result{1}.standard.ID

75



ID =
file_dat_c6afad4b4-03cb-49a4-8c4e-008c38aae413

The file can be retrieved to a specific file looati

>> gd_retrieve(ID,'C:\filesdir\myfile.dat")

ans =

C:Yfilesdir\myfile.dat

Alternatively the file can be retrieved to a specifdirectory (the original file name is
used).

>> gd_retrieve(ID,'C:\filesdir")

ans =
C:\filesdir\file.dat

Archiving, querying and retrieving Matlab variables
To archive a variable simply pass it go_archive  with an optional metadata
structure.

>> y.width = 12;
>> v.height = 6;
>> metadata.standard.comment = 'measurements variab le";

>> varlD = gd_archive(v,metadata);
It is possible to query the contents of an archis&rdcture. Including ‘var’ as the
second argument indicates that you want to queeycitntents of a variable (as

opposed to the metadata of the variable).

>> result = gd_query(‘'height=6','var");
>> gd_display(result{1})

76



*** Content of the structure ***
standard.varlD: var_7c73ac04-cb90-4b28-988c-1e056 2e4659d
standard.datagroups:
width: 12
height: 6

The contents of the variable are returned alondp witsmall subset of its metadata
(standard.varlD andstandard.datagroups ) which may be required for further
queries. You can also query a variable's full mat@ady including ‘varmeta’ as the
second argument.

>>r = gd_query('standard.comment like measure%','v armeta’);

>> gd_display(r{1})

*** Content of the structure ***
standard.ID: var_7c73ac04-cbh90-4b28-988c-1e0562e4 659d
standard.archiveDate: 2004-10-07 11:35:19
standard.userID: jlw

standard.comment: measurements variable

standard.datagroups:

A variable can be retrieved into the local Matlabrkgpace by specifying its unique
ID. This string is returned when the variable ishéved (e.gvarlD ) and also appears

in the variable query results amndard.varlD and in the metadata query results
asstandard.ID

>>v2 = gd_retrieve(varlD)

V2 =
width: 12
height: 6

Grouping data
Related data can be logically grouped togethemgusidatagroup as follows:

Specify metadata that applies to the whole group.

>> dgmetadata.standard.comment = 'Group for experim ent 123"

77



Call gd_datagroup to create a datagroup, giving it a name.

>> datagrouplD=gd_datagroup('Experiment 123',dgmeta data);

Add archived files or variables to the datagroup.

>> gd_datagroupadd(datagrouplD,fileID);
>> gd_datagroupadd(datagrouplD,varID);

Archive a new file (with no metadata this time) autl it to the datagroup.

>> gd_archive('C:\anotherfile.txt',[],datagroupID);

The datagroup metadata now contains referencéethlés and variables it contains.
Datagroup metadata can be queried by includinggtaup’ as the second argument.

>>r = gd_query('standard.datagroupname=Experiment 123,
'datagroup”);
>> gd_display(r)

*** Content of the structure r{1} (Total structures D 1)
standard.ID: dg_111385dd-44b8-4ac4-9ec3-f7f19af85 ebe
standard.datagroupname: Experiment 123
standard.archiveDate: 2004-10-07 11:42:03
standard.userID: jlw
standard.comment: Group for experiment 123
standard.datagroups:

standard.subdatagroups:

standard.files.filelD: file_dat c6afa4b4-03cb-49a 4-8c4e...
standard.files.fileID: anotherfile_txt 8886aa7a-5 464-48...
standard.vars.varlD: var_7c73ac04-cbh90-4b28-988c- 1e0562...

*** No more results. ***

Metadata for the files and variables also contaferences to the datagroup(s) that
they belong to, with astandard.datagroups.datagrouplD field for each
datagroup.

78



Datagroups can be added to other datagroups tte@daerarchy as follows:

>> parentDatagrouplD = datagrouplD;
>> childDatagrouplD = gd_datagroup('child datagroup ;

Add the child datagroup (also called a subdatagrtughe parent datagroup.

>> gd_datagroupadd(parentDatagrouplD,childDatagroup ID);

Find all the datagroups that are in the parentgiatep.

>> children = gd_query(['standard.datagroups.datagr ouplD='
parentDatagrouplD],'datagroup’);

Find all the datagroups that contain the child giatap.

>> parents = gd_query(['standard.subdatagroups.data groupID="'

childDatagrouplID],'datagroup’);

79



Please specify a data source to query: datagroup I'.i

Standard Metadata Operator Yalue
userID = ;j 1w
ID et

datagroupHame =

‘archiveDate b 2004-10-01

version =

datagroupID (parent) =

'subdatagroupID =
fileID | =

wvarID | =

Query custom metadata or wariables:

Data items returned f.@l]u]‘.ed Conients Jdkﬁ1

Cstandard ID = war_7c73ac04-ch20-4h28-288c-1e0562e4650d

standard archiveDate = 2004-10-07 11:35:19

Results of the query: | standard userlD = jlw

standard. comment = measurernents variable

*** Content of the structure {6} ( Totl standard datagroups. datagrouplD = dg_111385dd-44h8-4acd-Pec3-f7f1%af8Sede

standard ID = dg_111385dd-4408-4ac
standard. datagroupname = Experirment
standard archiveliate = 2004-10-07 11'
standard user[Dr = jlw ]
standard corrnent = Group for experiment 123

standard subdatagroups. datagrouplD = dg_6a04afll8-d0es-4ef7-2634-a0c20520d48h0
standard. files. file[l» = file_dat_ctafadbd-03ch-4%ad-8cde-008c38aaed 13
standard. files. filelDr = anotherfile tut 3836aaTa-5464-4828-bc83-ba7 20454 fhd7
standard vars watlD = war Tc?BacD4-chD-4h28—§'38c-130562&4659[1“

Figure 4 Using hyperlinks to browse between relatedata in the query GUI.

Using the Query GUI you can browse between reldegdgroups, files and variables
by clicking on hyperlinks. In Figure 4 a query oatabroup metadata has been made
by selecting datagroup from the drop down list le¢ top of the window, then
specifying the query conditions. The matching detag shown in the figure has
related subdatagroups, files and variables whiehdaplayed as hyperlinks. Clicking
on the standard.vars.varlID link brings up a newdeim containing the metadata for
that variable. Clicking on standard.ID in this wavd will display the contents of the
variable itself.

Granting access to data.

The gd_addusers function allows you to grant other users permissio query
particular files, variables and datagroups that gam. These users may also retrieve

80



the variables to their local Matlab workspace amel files to their local filesystem
(providing they have read permission for the appadg directory on the Globus file
server).

In the following example the user with usernameb’he given access to an archived
variable.

>> users = {'bob'};

>> gd_addusers(varlD, users);

Access may also be granted as part of the metadwea a file or variable is archived,
or when a datagroup is created.

>> m.access.users = {'bob'};

>> gd_archive('C:\file.dat',m);

Further information.
All of these functions have help information whican be viewed by using the help
command in Matlab.

>> help gd_display
gd_display Displays the results of a query (a cell of

structures), or a single structure.

gd_display(gresults) can be used to display a cell array of
structures, e.g. the results of a call to the gd_qu ery
function. This is a convenient way of viewing struc tures to

get an overview of their contents.
gd_display(gresults{i}) displays the contents of a structure,
e.g. a single result from a query, where i is the i ndex of a

structure in the cell array.

Further descriptions and examples for each funci@navailable in the next section
of this document.

81



Function Reference

gd_addusers

Grants an array of users or user groups permigsiaccess some data (file, variable
or datagroup).

Syntax
success = gd_addusers(ID,users)
success = gd_addusers(datagrouplD,users)
success = gd_addusers(ID,groups,'groups’)
success = gd_addusers(datagrouplD,groups,'groups')

Description

success = gd_addusers(ID,users) grants other users permission to
guery or retrieve a file or variable, specifieditsyID. A userID for each user should
be provided in thesers cell array. Alternatively a single user can bedfed as a
string.

success = gd_addusers(datagrouplD,users) is similar but grants
other users permission to query a datagroup, seedy its ID.

success = gd_addusers(ID,groups,'groups’) grants a group of
users permission to query or retrieve a file oralde, specified by its ID. A groupID
for each user group should be provided in ghaups cell array. Alternatively a
single group can be specified as a string. Evegystered user is a member of the
built in group ‘'allusers' and other user groups ba&nset up by the database
administrator.

success = gd_addusers(datagrouplID,groups,'groups’) is similar
but grants a group of users permission to quemtagioup, specified by its ID.

The function returns 1 if successful, or O if fdilfor example if one of the users
already has access permission or does not existjakd userIDs or groupsIDs in the
array will be granted permission, and a warningsage will be displayed for any
that fail.

82



Example
Grant users with user IDserl anduser2 access to an archived file.

fileID = gd_archive(‘'C:\file.dat");
users = {'userl','user2'};
gd_addusers(filelD,users);
Grant all registered users access to an archilead fi

gd_addusers(filelD,'allusers','groups";

Notes
You must be the owner of the data to give othersijssion to access it.

A valid proxy certificate is required (segl createproxy from the Geodise
Compute Toolbox).

Your certificate subject must have been addeddatithorisation database.

See also
gd_archive , gd_archivefiles , gd_datagroup ,gd query , gd createproxy

83



gd_archive

Stores a file or variable with some metadata ihedrchive.

Syntax
ID = gd_archive(filename)
ID = gd_archive(filename,metadata)
ID = gd_archive(filename,metadata,datagrouplD)
ID = gd_archive(v)
ID = gd_archive(v,metadata)
ID = gd_archive(v,metadata,datagroupID)
ID = gd_archive(v,metadata,datagroupID,'var’)

Description

ID = gd_archive(filename) takes a string representing a filename and
archives that file in a file store (specified iret@lientConfig.xml file). Some standard
information about the file (metadata) is automadlycgenerated and can be later
queried withgd query . A unique identifier I0) for the archived file is returned
which can be used to retrieve the file with retrieve

ID = gd_archive(filename,metadata) archives a file with some user
definedmetadata which can later be queried witid _query . Standard metadata
about the file is also generated.

ID = gd_archive(filename,metadata,datagroupID) archives a file
and adds it to a datagroup specifieddasagrouplD . A datagroup is used to group
together a collection of related files, variablesdaother datagroups, see
gd_datagroup  and gd_datagroupadd . To specify adatagrouplD  without

including user defined file metadata, settadata to empty [].

ID = gd_archive(v) takes a variable and archives it in a database
(accessible via the webservices specified in then@onfig.xml file).v can be of
type char, double, complex, struct, sparse, cethyaror logical. Some standard
metadata about the variable is generated autoriipataoad can be later queried with
gd_query . A unique identifier D) for the archived variable is returned which can b
used to retrieve the variable to the workspace withretrieve . A variable can
also be assigned user defin@edtadata and added to a datagroup by supplying a

datagrouplD in the same way as a file.

84



ID = gd_archive(v,metadata,datagrouplD,'var’) should be used
when archiving a variable that is a string (ch#fr)v has any other type it will be
automatically detected, but when it is a stringvaust be specified to indicate it is a
variable and not a filename. If there is no usdindd metadata or datagrouplD
set them to empty [].

Input Arguments

metadata

Themetadata structure can contain any combination of named
variables, matrices and substructures (char, dpabtaplex, struct,
sparse, cell or logical) necessary to describeltha. However, there
are two special substructuregandard andaccess , which may only
contain certain values.

Some metadata is automatically generated (even whenetadata is
passed to the function) and stored indtamdard  substructure of
metadata . For files and variables this consistd@f useriD and
archiveDate , and for files onlybyteSize , format , localName
(the original name of the file) arteateDate  (when the original file
was created/modified). Option@mment, version andtree fields
can be added tstandard and overriding values for
standard.localName andstandard.format can also be
specified. Theree field is a string which can be used to represent a
user defined hierarchy for the data, similar taoradory path, e.qg.
'myuserlD/designs/testmodel’ . Seegd query for further
information on these fields. Any other fields sethestandard
substructure will be overwritten or removed.

Theaccess substructure ahetadata controls who may query and
retrieve the data. The person who archived the alatamatically has
access to it and does not need to be addedss can contain two
fields, each of which can be a single string oeldarray of strings:

users User ID strings specifying which users may acchss t
data.
groups Group ID strings specifying which groups of use@sym

access the data (currently a group must be craated
the database by an administrator).

85



Examples
Archive a file with no user defined metadata.

ID = gd_archive ('C:\file.dat")

ID =
file_dat ce868f40-8de0-445e-8ae5-36¢c05eec25a9

Archive a file with some metadatan (user defined metadata and a standard
comment), and give access permission to userl sen@.u

m.model.name = 'test_design’;

m.params =[1 4.7 5.3];

m.iterations = 9000;

m.standard.comment = 'Comment about file';
m.access.users = {'userl’,'user2'};

gd_archive('C:\file.dat',m);

Archive a file and add it to a datagroup, usintp[indicate no user defined metadata.

datagrouplD = gd_datagroup('design opt 2004-09-03")
gd_archive('C:\file.dat',[],datagrouplID);

Archive a structure with some user defined metadata

v.width = 12;
v.height = 6;
m.standard.comment = 'measurement variables';

gd_archive(v,m);

Notes
A valid proxy certificate is required to archive fle or variable (see
gd createproxy  from the Geodise Compute Toolbox).

You must have access to the host machine the Widsbe archived on. Your
certificate subject must be added to the gridmdp én the host and to the
authorisation database.

86



See also
gd_archivefles , gd_addusers , gd retrieve , gd retrievefiles

gd_query ,gd datagroup ,gd datagroupadd , gd createproxy

87



gd_archivefiles

Stores a list of files with some metadata into iahiae

Syntax

IDs = gd_archivefiles(filepaths, [metadata], [datag rouplDs])
Description
IDs = gd_archivefiles(filepaths, [metadata], [datag rouplDs])

takes a cell array of strings representing filepatimd archives the files to a file store
(specified in the ClientConfig.xml file). A uniquéentifier (ID) for each archived file
is returned in a cell array which can be used ttrienee the files with
gd_retrievefiles

Input Arguments

The function optionally takes a metadata structarea cell array of metadata
structures. The metadata structure specifying sssee defined information about the
files at can be later queried wigkd_query . The optional datagroupIDs is the ID of a
datagroup or a cell array of datagroup ID that fies should be added to. A
datagroup is used to group together a collectionfilek, variables and other
datagroups, segl _datagroup andgd_datagroupadd

For more information about the metadata, gkearchive .

Examples
Archive two files with no user defined metadatag @ad them to datagroups dgldl
and dgld2 respectively.

IDs = gd_archivefiles({'C:\file.dat', 'C:\input.txt i,
{'dgldl’, 'dgld2})

IDs =
'file_dat_c8227861-93ae-4daa-9472-1ad77f2ff2dc’
'input_txt_bcdle2cf-605e-4e43-baa7-2842f9ce5617

Archive two files that share the same user defimnetadata, and give userl and user2
READ access to them.

88



m.model.name = 'test_design’;

m.iterations = 9000;

m.standard.comment = 'This is a test.";

m.access.users = {'userl’,'user2'};

gd_archivefiles({'C:\file.dat', 'C:\input.txt'}, m) ;

Archive two files with own user defined metadatag(eml and m2 contain the
metadata for file.dat and config.txt respectiveyd give users 'tim', 'sam’, and group
'genie' READ access. Add these two files into thagroup 'dg3'.

ml.model.name = 'test_design_1";
m1.iterations = 9000;
m1l.standard.comment = 'Comment about file.dat.";

ml.access.users = {'tom','sam'};

m2.model.name = 'test_design_2";
m2.iterations = 5000;
m2.standard.comment = '‘Comment about input.txt.";

m2.access.groups = {'genie'};

gd_archivefiles({'C:\file.dat', 'C:\input.txt'}, {m 1, m2},
'dgld3Y);

Notes
A valid proxy certificate is required to archivdile (seegd createproxy  from the

Geodise Compute Toolbox).

You must have access to the host machine the Widsbe archived on. Your
certificate subject must be added to the gridmdp én the host and to the
authorisation database.

See also
gd_archive , gd addusers , gd retrieve , gd_ retrievefiles , gd_query ,
gd_datagroup , gd datagroupadd ,gd createproxy

89



gd_datagroup

Creates a new datagroup, used to group togethdrivad files, variables and
subdatagroups.

Syntax
datagroupID = gd_datagroup(datagroupname)
datagroupID = gd_datagroup(datagroupname,metadata)
datagroupID = gd_datagroup(datagroupname,metadata,
'monitor’)

Description

datagrouplD = gd_datagroup(datagroupname) creates a new, empty
datagroup with a datagroup name. HBaegroupname argument can act as a user
defined identifier for the datagroup, although @ted not have to be unique. Some
standard information about the datagroup (metadatalso generated which can be
later queried withlgd _query . A unique identifier datagrouplD ) is returned which
can then be used to add files and variables tod#tagroup while they are being
archived withgd _archive . Files, variables and other datagroups alreadyhe
archive can be added to a datagroup withdatagroupadd

datagrouplD = gd_datagroup(datagroupname,metadata) creates a
new, empty datagroup with a datagroup name and seredefined metadata which
can later be queried witld_query . Standard metadata about the datagroup is also
generated.

datagroupID = gd_datagroup(datagroupname,metadata,
'monitor’) is useful for monitoring a group of data produtgda computational
job. It is similar to an ordinary datagroup butrsto extra index information that
allows a user ofyd query to easily find the datagroup associated with tineast
recent job, or the most recent job meeting centa@tadata criteria. This functionality
is provided for convenience so that the user doehave to remember any particular
field names, values, or what time the datagroup eveated.

Input Arguments

metadata Themetadata structure can contain any combination of named
variables, matrices and substructures (char, dpabtaplex, struct,
sparse, cell or logical) necessary to describelghagroup. However,

90



there are two special substructurgandard andaccess , which
may only contain certain values.

Some metadata is automatically generated (even whenetadata is
passed to the function) and stored indtamdard  substructure of
metadata . For datagroups this consistsibf, userlD and

archiveDate . Optionalcomment, version andtree fields can also
be added tetandard . Thetree field is a string which can be used to
represent a user defined hierarchy for the datalasito a directory
path, e.g'myuserID/designs/testmodel’ . Seegd _query for
further information on these fields. Any other diglset in the

standard substructure will be overwritten or removed.

Theaccess substructure ahetadata controls who may query the
datagroup. The person who created the datagroopatitally has
access to it and does not need to be addedss can contain two
fields, each of which can be a single string oeldarray of strings:

users User ID strings specifying which users may acchss t
datagroup.
groups Group ID strings specifying which groups of use@ym

access the datagroup (currently a user group neust b
created in the database by an administrator).

Examples
Create a datagroup with some metadaiduser defined metadata and a standard

comment), and give access permission to userl sen@.u

m.expnum = 123;
m.standard.comment = 'Data for experiment 123";
m.access.users = {'userl’,'user2'};

datagrouplD = gd_datagroup('design opt 2004-09-03', m)

datagrouplID =
dg_ce868f40-8ds0-455e-9ae5-36c05epc25a9

91



Add a file to the datagroup when it is archived.
gd_archive('C:\file.dat', [], datagroupID);
Add a variable to the datagroup after it has beehied.
v.width = 12;
varlD = gd_archive(v);
gd_datagroupadd(datagrouplD,varID);
Create a monitored datagroup and find it with arque
monID = gd_datagroup(‘design opt 2004-09-03 job',[] ,'monitor’)
gd_datagroupadd(monlD,varlID);

gd_query('standard.jobindex = max','monitor");

Further examples are givendd datagroupadd andgd_query .

Notes
A valid proxy certificate is required (segl createproxy from the Geodise
Compute Toolbox).

Your certificate subject must have been addeddatithorisation database.

See also
gd_datagroupadd , gd _archive ,gd retrieve ,gd archivefiles \

gd_retrievefiles ,gd_query , gd createproxy

92



gd_datagroupadd

Adds an archived file, variable or subdatagroup ttatagroup.

Syntax

success = gd_datagroupadd(datagrouplD,ID)

success = gd_datagroupadd(datagrouplD,subdatagroupl D)
Description

success = gd_datagroupadd(datagrouplID,ID) adds a file or variable

to a datagroup. The datagroup is specified byntque identifierdatagrouplD  and
the identifier of the file or variable to add isesffied withID. The datagroup must
have been created withd datagroup and the file or variable must have been

archived usingyd_archive . The function returns 1 if successful, or O ifiédi (for
example if the datagroup does not exist).

success = gd_datagroupadd(datagrouplD,subdatagroupl D) adds
a datagroup s{ibdatagrouplD ) to another datagroupddtagrouplD ). The
datagroup to be added is known as a subdatagratp.d&tagroups must have been
created withgd datagroup

Examples
Add a file and a variable to a datagroup after thaye been archived.

datagrouplD = gd_datagroup('design opt 2004-09-03")

fileID = gd_archive(‘'C:\file.dat");
gd_datagroupadd(datagrouplD,fileID);

v.width = 12;
varlD = gd_archive(v);
gd_datagroupadd(datagrouplD,varID);

Add a datagroup to another datagroup

datagrouplD = gd_datagroup('parent datagroup’);
subdatagrouplD = gd_datagroup('child datagroup");
gd_datagroupadd(datagrouplD,subdatagrouplD);

93



Notes
Only the owner of a datagroup can add data to it.

Attempting to add a file, variable or subdatagrédwpre to the same datagroup will
cause an error.

Attempting to add a datagroup to another datagtbap it is already the parent or
ancestor of will cause an error. E.g. If datagraups added to datagrougp, and
datagroug is added td, thena cannot be added toorc.

A valid proxy certificate is required (segl createproxy from the Geodise
Compute Toolbox).

Your certificate subject must have been addeddatithorisation database.

See also
gd_datagroup ,gd archive ,gd retrieve , gd archivefiles ,

gd_retrievefiles ,gd_query , gd createproxy

94



gd_dbsetup

Creates and populates the .geodise directory witifiguration files.

Syntax
gd_dbsetup
gd_dbsetup(hostprompt)

Description

gd_dbsetup creates a .geodise directory in the user's homextiry if one
does not exist then copies the necessary configardiles into it. The user is
prompted to configure the name of the Globus seawdrdirectory where gd_archive
will store data files and this information is sawedgeodise/ClientConfig.xml.

Example locations for the .geodise directory are:

Windows C:\Documents and Settings\your_usernaeaiige

Linux $HOME/.geodise

gd_dbsetup(0)  creates a .geodise directory as above but doeprooipt
for the name of the Globus server and directoryrevigel _archive will store data files,
using default values instead. The default settiags either taken from a previous
copy of ClientConfig.xml in .geodise or from Cli€anfig.xml in the distribution.

Notes

The file .geodise/ClientConfig.xml can be editedrianually configure settings such
as which Globus file store to archive files on, gestallation document for more
information.

95



gd_db_help

Gives an overview of functions and files in the @ise Database Toolbox.

Syntax
gd_db_help

Description

gd_db_help displays a summary of the functions and filesuded in the
Geodise Database Toolbox.

96



gd_db_version

Gets the Geodise Database Toolbox version number.

Syntax
gd_db_version()

Description

gd_db_version() returns the version of the current Geodise Datbas
Toolbox for Matlab release as a string of the foMMIJOR.MINOR.POINT.

97



gd_display

Displays the results of a query (a cell of strues)y or a single structure.

Syntax
gd_display(gresults)
gd_display(gresults{i})

Description

gd_display(gresults) can be used to display a cell array of structures,
e.g. the results of a call to tlyd_query or gd_gquerydeleted function. This is a
convenient way of viewing structures to get an wnav of their contents.

gd_display(gresults{i}) displays the contents of a structure, e.g. a
single result from a query wheirds the index of a structure in the cell array.

Example
Display all the results from a query.

r = gd_query(iterations = 9000";
gd_display(r);

*** Content of structure r{1} (Total structures: 2) i
standard.ID: file_dat_66830074-e749-4de0-b976-61f 4d32
standard.localName: file.dat
standard.byteSize: 245
standard.format: dat
standard.createDate: 2004-08-23 10:40:33
standard.archiveDate: 2004-09-03 15:25:45
standard.userID: jlw
standard.comment: Comment about file
standard.datagroups:
model.name: test_design
params:

1.0000 4.7000 5.3000
iterations: 9000
Press ENTER to continue ..., g to quit:

98



To display just one result from a query use thaitiltés index.

gd_display(r{1});

See also
gd_query , gd_querydeleted

99



gd_markfordeletion

Marks data for deletion from the archive.

Syntax
marktotal = gd_markfordeletion(ID)
marktotal = gd_markfordeletion(IDs)

Description

marktotal = gd_markfordeletion(ID) takes an ID string and marks
the corresponding file, variable or datagroup fetedon from the archive. The
function returns 1 if successful or 0 if failed vitnich case the reason is displayed in a
warning message (for example the ID does not ex@tjce data is marked for
deletion it is no longer visible using_query , gd_retrieve  or any other Database
Toolbox functions (apart frongd_unmarkfordeletion or gd_querydeleted ).
The data is then eligible for permanent deletiormbydministrator.

marktotal = gd_markfordeletion(IDs) is similar but takes a cell of
ID strings and marks the corresponding files, \deéa and datagroups for deletion
from the archive. The function returnsarktotal , the total number of IDs

successfully marked for deletion, and displays weymessages for those that were
unsuccessful.

Examples
Mark a single file for deletion from the archive.

ID = gd_archive('C:\file.dat");

marktotal = gd_markfordeletion(ID)

marktotal =
1

Query variable metadata, and then mark the correipg variables for deletion from
the archive.

g = 'standard.archiveDate > 2004-12-01 & a.b < -500

gresults = gd_query(q, 'varmeta’);

for i=1:size(gresults,2)

100



IDs{i} = gresults{i}.standard.ID;
end

marktotal = gd_markfordeletion(IDs)

marktotal =
5

Notes
Only the owner of the data (the person who architjechn mark it for deletion.

A valid proxy certificate is required (segl_createproxy from the Geodise
Compute Toolbox).

See also
gd_unmarkfordeletion , gd_querydeleted , gd_createproxy

101



gd_query
Performs queries over metadata or Matlab structtaesd in the archive.

Syntax

gd_query

gresults = gd_query(query)

gresults = gd_query(query,datasource)

gresults = gd_query(query,datasource,resultfields)

gresults = gd_query(query,datasource,resultfields,
orderby)

gresults = gd_query(query,datasource,resultfields,
orderby,resultlimit)

gresults = gd_query(query,datasource,resultfields,
resultlimit)

Description

gd_query with no input arguments starts the query GUI, aphrcal User
Interface for querying metadata and structures vhiso allows hyperlink browsing
between related data. See the Geodise Databadgeokonlitorial for more details.

gresults = gd_query(query) sends aquery string to the database
requesting all file metadata that meets the catspecified in the string. A query
takes the formifield = value' , Where= can be replaced by other comparison

operators. More than one query condition can blide in the string using to join
them together. The function returns a cell arraynetadata structures, one for each
matching result. To view the query results, usetion gd display .

gresults = gd_query(query,datasource) sends auery string to the
database requesting matching archived structuremeiadata of a certain type,
depending on the value of theéatasource string. To query metadata set
datasource to ‘file’ (default), ‘varmeta’ (metadata about iales), ‘datagroup’ or
‘monitor’. A cell array of matching structures isturned, one for each result. To
query variables stored in the databaseds¢dsource to ‘var. In this case the
function will return a cell array of matching vaslas. The only variables that can be
gueried in this way are structures, because theyaco named fields that can be
searched for.

102



gresults = gd_query(query,datasource,resultfields) sends a
query string to the database as above but only retuetected fields for each
matching result. Theesultfields string can be one of the following:

1. A comma separated list indicating which fields dddae returned for each
result, for example just theandard.ID  fields. The default:, returns all
fields. Prefix with the keyword 'distinct' to rem®wuplicates from the
results, e.gdistinct field1, field2'

2. An aggregate functioncéunt , max, min, sum, avg) applied to a field,
followed by an optional ‘'groupby’ clause. For exBEmp
gd_query(query,‘file','count(field1)") executes the query
and returns the number of matching results whichtaio fieldl. The
number of matching results for each different vabfefield2 can be
returned with'count(*) groupby field2' . Further details are given
in the Input Arguments section.

gresults = gd_query(query,datasource,resultfields,
orderby) sends a query to the database and sorts thesrbguwine or more fields,
specified as a comma separated list prefixed \wighkeyword 'orderby’. Usaim()
orstr() on each field in the list to indicate whether ¢dot$t numerically or
alphabetically, e.dorderby num(fieldl), str(field2) '. The default sort
order is ascending; append the keyword 'desc' affietd to sort it in descending
order, e.g.odrderby num(field1) desc ",

gresults = gd_query(query,datasource,resultfields,
orderby, resultlimit) limits the number of results returned from a quény.
integer value means return the tepultlimit values from the sorted results. An
ordinal string of the form '1st' or '2nd' etc meeagisirn a specific result based on its
position.

gresults=gd_query(query,datasource,resultfields,
resultlimit) limits the number of results returned ushegultlimit as above
but without the overhead of sorting, which makess @peration quicker. This can be
used to get a sample set of results when the daks not matter.

Input Arguments

query A query takes the forrfield = value' wherefield is the name
of a field in the archived metadata/variable stuigt for example
iterations or standard.ID (dot notation is used to access the

103



subfields of a structure). Thelue is an alphanumeric value the field
should contain. The operat&r(meaning ‘and’) can be used to specify
more than one search condition.

The following operators can be used to comparddielith values:

= Equal to

I= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to
like Similar to

not like Not similar to

Similarity matches withlike and not like use the following
wildcards:

Matches any single character.

% Matches any string of any length (including 0).

For example,'standard.localName like %dat%' will match
strings containing the phrase ‘dat’, dmibdel.name like _est%'

will match strings starting with any character doVed by ‘est’ and
then any string. To search for the characters _%ngrecede them
with the \ escape character.

The operators do case sensitive comparison whed w#é string
values. To make an operator case insensitive suir@uwith two #
characters. For example, #=#, #!=#, #like#, #notke#i

Another wildcard, *, provides flexibility in desting the field path.

For examplemodel.name can be replaced byname for a less
specific search.

104



In addition to user defined metadata fields, tik¥wing standard
metadata fields can be queried:

standard.|D

standard.datagroupname

standard.localName

standard.byteSize

standard.format

standard.createDate

standard.archiveDate

standard.userID

standard.comment

standard.version

standard.tree

standard.files.filelD
standard.vars.varlD

standard.
subdatagroups.
datagroupID

standard.datagroups.
datagroupID

ID that uniquely identifies a file,
variable or datagroup.

Name of datagroup. Only used when
guerying datagroups.

Name of a local file before it was
archived.

Size in bytes of a file.

Format of file (default is its
extension).

Date the file was created/modified.

Date the file or variable was archived,
or the datagroup was created.

ID of the user who archived the data
or created the datagroup.

Comment about the file, variable or
datagroup.

User defined version number for the
file, variable or datagroup.

String representing a user defined data
hierarchy, similar to a directory path.

Each file in a datagroup.
Each variable in a datagroup.

Each subdatagroup in a datagroup.

Each datagroup a file, variable or
subdatagroup belongs to.

Datagroups are collections that can contain filasiables or other

datagroups, seg_datagroup

andgd datagroupadd




The fields in an archived structure variable cao &le queried in
conjunction with the standard metadata fields liat tzariable.
However, this can be an expensive operation bedausdata sources,
‘var'and ‘varmeta’ (see below), are queried.

datasource  The data source indicates which type of data teryguand can be
specified by one of the following strings (the deéfadatasource

value is 'file"):

file’ Metadata about files.

‘datagroup’ Metadata about datagroups.

‘monitor’ Metadata about monitorable datagroups.
‘varmeta’ Metadata about Matlab variables.

‘var Matlab variables.

A datagroup that was created with the ‘monitorgflzan be queried as
an ordinary datagroup, or as a collection of da@uaa computational
job, by settingdatasource  to ‘monitor’. This provides a quick and
easy query mechanism for finding a user’'s mostntgjod, or the latest
job meeting certain other metadata criteria. It peovided for
convenience so that the user does not have to rberesny particular
field names, values, or what time the datagroup wasted. In
addition to standard.ID , standard.userlD and user defined
metadata, the following standard metadata can bd tegether with
‘monitor’ to query a job monitoring datagroup.

standard.jobIndex Job index. Special query syntax
jobindex =max  gets the highest
index (most recent job).

standard.jobName Name of job (same as datagroupname).

standard.startDate Start date of job (when the datagroup
was created).

resultfields

Theresultfields string indicates a subset or summary of the query
result fields that should be returned. The defaylteturns all fields. A

106



comma separated list indicates particular fieldd ghould be returned.
This list can be prefixed with the 'distinct' keywoto remove
duplicates from the results.

Alternatively the resultfields string contains aggeegate function
(count , max, min, sum, avg) applied to one field, e.¢count(b)’
These aggregate functions return summary data f&bnthe results
matching a query as follows:

count Total number of results.

‘count(*)' counts all results
‘count(b)’ counts only results containing the fiéld
‘count(distinct b)' counts only results containing

unique values db.

max Maximum value for a field.
'max(b)’  or'max(num(b))' treats all values as

numbers.
'max(str(b))' treats all values as strings.
min Minimum value for a field.
'min(b)’  or'min(num(b))’ treats all values as
numbers.
'min(str(b))’ treats all values as strings.

sum All values of a particular field added together.

avg Average of all the values of a particular field.

By default an aggregate function is applied to di@aar field over all
the results. For exampleyg(b)' returns a single result containing a
number, the average of allfield values across the result set. It is also
possible to apply an aggregate function to grodpslues within the
result set using the groupby keyword. For exampeg(b)
groupby standard.format’ returns the average value bffor
each different file format.

Examples
Query file metadata to find files archived on oteaf™ September 2004 where

iterations = 9000. A datasource argument is natired because ‘file’ is the default.

107



g = 'standard.archiveDate>=2004-09-01 & iterations= 9000
gresults = gd_query(q)

gresults =

[1x1 struct] [1x1 struct]

disp(gresults{1});

standard: [1x1 struct]
model: [1x1 struct]
params: [1 4.7000 5.3000]
iterations: 9000

disp(gresults{1}.standard.archiveDate);

2004-09-03 15:25:45

Seegd display for an example of displaying the full contentsyakry results.

Query to find files which have a name field equaltest_design’ in their metadata
and only return the fields standard.ID and paraerapving any duplicates.

g = "*.name = test_design’;

gresults = gd_query(q,'file','distinct standard.ID, params);

disp(gresults{1})

standard: [1x1 struct]
params: [1 4.7000 5.3000]

Query to find datagroups with comments containhigtext ‘experiment’.

g = 'standard.comment like %experiment%';

gd_query(qg,'datagroup”);

Query variable metadata to find the metadata fovaaiables that are in a particular
datagroup.

108



g = 'standard.datagroups.datagrouplD = dg_ce868f40- 8ds0-45...";

gd_query(qg,'varmeta’);

Query variables to find structures where field Wwidt between 9 and 14 inclusive.

gd_query(‘width >= 9 & width <= 14','var");

Find files that have a comment in their metadating™ (two double quotes) to
indicate an empty value.

gd_query(‘'standard.comment != "");

Find the 10 most recent files archived by user *bdihne default sort order is
ascending so keyword ‘desc’ is used to list theslat descending order.

g = 'standard.userID = bob';

gd_query(q,'file’,™",'orderby standard.archiveDate desc',10);

Find all the files in a particular datagroup andesrthe results first bigerations
then by model.name . For custom metadata you must specify whetherad s
numerically (num) or alphabetically (str).

g = 'standard.datagroups.datagrouplD = dg_ce868f40- 8ds0-45...";
gd_query(q,'file’,™,...
‘orderby num(iterations), str(model.name)' );

Find the total number of variables archived by uiseb’.

gresults = gd_query(‘'standard.userID = bob','var',' count(*)");

gd_display(gresults{1})

*** Content of the structure ***

standard.count: 150

Find the maximum value fdterations in file metadata archived by user ‘bob’.

g = 'standard.userID = bob';

109



gresults = gd_query(q,'file','max(iterations)’);

gd_display(gresults{1})

*** Content of the structure ***
standard.max: 12000

Find the maximum value fanodel.name in file metadata archived by user ‘bob’.
Find the maximum alphabetically (str) rather thamerically (default).

gd_query(q,'file’,'max(str(model.name))");

Count the number of files of each different forrtett user bob has archived.

r = gd_query(q,'file','count(*) groupby standard.fo rmat’);
gd_display(r)

*** Content of structure r{1} (Total structures: 2) rxk
standard.format: dat
standard.count: 73

Press ENTER to continue ..., g to quit:

*** Content of structure r{2} (Total structures: 2) e
standard.format: txt

standard.count: 22

*** No more results. ***

Find the latest job monitoring datagroup then fine latest job monitoring datagroup
which matches some other criteria.

m.modelver = 0.6; m2.modelver = 0.71;
gd_datagroup(‘design model job xyz',m,'monitor");
gd_datagroup(‘design model job abc',m,'monitor");

gd_datagroup(‘design model job 999',m2,'monitor’);

rl = gd_query(‘'standard.jobindex = max','monitor");

r1{1}.standard.jobName

110



ans =

design model job 999

r2 = gd_query(‘'standard.joblndex = max & modelver < =0.6,
‘monitor’);

r2{1}.standard.jobName

ans =

design model job abc

Notes

When querying standard date informatianckiveDate  or createDate ), specify
the date/time using the International Standard [Rate Time Notation (ISO 8601)
which is: "YYYY-MM-DD hh:mm:ss" (hh:mm:ss is optiaf).

The sum andavg aggregate functions will only work on fields cantag numerical
data. Non-numerical custom metadata is ignoretienctlculation and non-numerical
standard metadata (e.g. standard.comment) throws@n

Treating numerical data as strings when using bgdemax or min can lead to
unexpected results. This can be illustrated in deathere sort({'1’,’5’,’10’}) returns
1" '10" '5'. Always use the numerical syntayg. orderby(num(a)) or max(a), when
working with numbers in custom metadata.

In the current releaserderby , groupby , distinct and the aggregate functions
cannot be wused on standard metadata about datagrmlationships
(standard.datagroups , Standard.subdatagroups , Standard.files and
standard.vars ).

Only results for data you are authorised to acoedk be returned. Function
gd_addusers can be used to grant access to others.

A valid proxy certificate is required to query tdatabase (segd_createproxy
from the Geodise Compute Toolbox).

Your certificate subject must have been addeddatithorisation database.

111



See also
gd_display ,gd createproxy ,gd archive ,gd retrieve
gd_archivefiles , gd_retrievefiles , gd_datagroup , gd datagroupadd

gd_addusers

112



gd_querydeleted

Performs queries over metadata or Matlab structumaesked for deletion in the
archive.

Syntax
gresults = gd_querydeleted(query)
gresults = gd_querydeleted(query,datasource)

gresults = gd_querydeleted(query,datasource,resultf ields)

gresults = gd_querydeleted(query,datasource,resultf ields,
orderby)

gresults = gd_querydeleted(query,datasource,resultf ields,

orderby,resultlimit)

gresults = gd_querydeleted(query,datasource,resultf ields,
resultlimit)

Description

gresults = gd_querydeleted(...) has exactly the same functionality
asgd _query but performs the queries over data that has beshad for deletion
using thegd_markfordeletion function. gd_querydeleted returns a cell array
of metadata structures, one for each matchingtreBuéstandard.ID  field in each
result can be passed to the _unmarkfordeletion function, which can recover

data that was mistakenly marked for deletion. Timgtion will only return results for
data that has not already been permanently delét@ud the archive by an
administrator.

A brief description of the input arguments is givieere, seegyd _query for further
information. To view the query results, use funcid display .

Input Arguments

query A query takes the forrtiield = value' wherefield is the
name of a field in the archived metadata/varialitecture, for
exampleiterations or standard.ID (dot notation is used to

access the subfields of a structure). Valee is an alphanumeric
value the field should contain. The opera&&dmeaning ‘and’) can
be used to specify more than one search condition.

datasource The data source indicates which type of data &ryquand can be

113



specified by one of the following strings (the défalatasource

value is 'file"):
file’ Metadata about files.
‘datagroup’ Metadata about datagroups.
‘monitor’ Metadata about monitorable datagroups.
‘varmeta’ Metadata about Matlab variables.
‘var’ Matlab variables.
resultfields The resultfields string is a comma separated tidicating which

fields should be returned for each result, for epamust the
standard.ID  fields. The defaultt, returns all fields. It can also
be used to express aggregate functiasing , max, min, avg,
sum) applied on a result field, e.gount(standard.ID)'

orderby The results may be sorted by one or more fieldscifpd as a
comma separated list prefixed with the keyword édog'. Fields
are sorted numerically (num) or alphabetically )(ste.g.
‘'orderby num(fieldl), str(field2)' . The default sort
order is ascending; append the keyword 'desc' aftiedd to sort it
in descending order, e.grderby num(field1) desc'

resultlimit The number of results returned from a query cartirbged. An
integer value means return the tegultlimit values from the
results. An ordinal string of the form '1st' ord2etc means return
a specific result based on its position.

Examples

Query variable metadata that has been marked fietiale and then unmark the
corresponding variables so that they are no lomajgible for deletion from the
archive.

g = 'standard.archiveDate > 2004-12-01 & a.b < -500
gresults = gd_querydeleted(q, 'varmeta’);
for i=1:size(gresults,2)

IDs{i} = gresults{i}.standard.ID;

end

114



unmarktotal = gd_unmarkfordeletion(IDs)

unmarktotal =
5

Notes

When querying standard date informatianckhiveDate  or createDate ), specify
the date/time using the International Standard Raig Time Notation (ISO 8601)
which is: "YYYY-MM-DD hh:mm:ss" (hh:mm:ss is optial).

The sum andavg aggregate functions will only work on fields cantag numerical
data. Non-numerical custom metadata is ignoretiercalculation and non-numerical
standard metadata (e.g. standard.comment) throwsan

Treating numerical data as strings when using bgdemax or min can lead to
unexpected results. This can be illustrated in dathere sort({'1’,’5’,’10}) returns
1" '10" '5'. Always use the numerical syn&yg. orderby(num(a)) or max(a), when
working with numbers in custom metadata.

In the current releaserderby , groupby , distinct and the aggregate functions
cannot be wused on standard metadata about datagraigtionships
(standard.datagroups , Standard.subdatagroups , Standard.files and
standard.vars ).

Only results for data marked for deletion and owbgdhe user (i.e. data the user
archived/created) will be returned.

If the marked data has been permanently deleted fine@ archive by an administrator
it cannot be queried.

A valid proxy certificate is required (segl_createproxy from the Geodise
Compute Toolbox).

Your certificate subject must have been addeddatithorisation database.

See also
gd_unmarkfordeletion , gd_markfordeletion ,gd display ,gd query ,

gd_createproxy

115



116



gd_retrieve

Retrieves a file, variable or metadata from thdéiaesto the local machine.

Syntax
filename = gd_retrieve(ID,filename)
filename = gd_retrieve(ID,directory)
filename = gd_retrieve(ID,filename,[],'overwrite")
filename = gd_retrieve(ID,directory,[],'overwrite")
v = gd_retrieve(ID)
metadata = gd_retrieve(ID,[],'metadata’)

Description
The D needed to retrieve some data can be found inetadgata astandard.ID

and is also returned lnyl_archive .

flename = gd_retrieve(ID filename) retrieves a file from the
archive based on its unique identifiéd | and saves it to a local file specified by the
flename string. The function returns the retrieved fileisw location as a string,
which is equal to thélename argument in this case. If a file exists with tlzene
name a prompt will appear asking whether to oveenti

filename = gd_retrieve(ID,directory) retrieves a file from the
archive based on its unique identifié® { and saves it to a local directory specified by
the directory string. The original name of the @l be used, which is determined by
the standard.localName property in the file’'s metadata, sgd_archive and
gd_query . The function returns the retrieved file’'s newdtion as a string.

filename = gd_retrieve(ID,filename,[],'overwrite") retrieves
a file and saves it to the local file system. ffl@ exists with the same name it will be
overwritten without prompting. This is also the €aghen adirectory  is given as
the second argument.

v = gd_retrieve(ID) returns a variable from the archive to the Matlab
workspace based on its unique identifiér)(

metadata = gd_retrieve (ID,[],'metadata’) will return a metadata
structure which corresponds to the file, variabielatagroup identified byp . This is

117



a shortcut, as the same result can be achieved gisiquery .

Examples

Retrieve a file and save it with a specific filama

fileID = gd_archive('C:\file.dat’);
gd_retrieve(filelD,'C:\filesdir\myfile.dat")

ans =

C:\filesdir\myfile.dat

Retrieve a file to a directory and use its originame.

gd_retrieve(fileID,'C:\filesdir")

ans =

C:\filesdir\file.dat

Retrieve a variable to the Matlab workspace.

v.width = 12;
v.height = 6;
varlD = gd_archive(v);

X = gd_retrieve(varlD)

X =
width: 12
height: 6

Retrieve some metadata about a file.
m = gd_retrieve(fileID,[],'metadata’);
Notes

You can only retrieve data that you archived ot t@meone else has given you
permission to access.

118



A valid proxy certificate is required to retrievefide, variable or metadata (see
gd_createproxy  from the Geodise Compute Toolbox).

You must have access to the host machine the vildsbe retrieved from. Your
certificate subject must be added to the gridmdp én the host and to the
authorisation database.

See also
gd_retrievefiles ,gd_archive ,gd_archivefiles , gd_datagroup

gd_datagroupadd , gd_query , gd createproxy

119



gd_retrievefiles

Retrieves a list of files from the archive to tbedl computer

Syntax
filenames = gd_retrievefiles(IDs, directory)
filenames = gd_retrievefiles(IDs, localpaths)

Description
Warning: If a file exists with the same name on tbheal machine, it will be
**overwritten** !

The ID needed to retrieve a file can be found snnitetadata as standard.ID, and is
also returned by gd_archive.

filenames = gd_retrievefiles(IDs, directory) retrieves a list of files
from the archive given a cell array of file ID sigs, and saves the files to a local
directory specified by the directory string. Thégoral name of the file will be used,
which is determined by the standard.localName ptgpa the file’'s metadata. The
function returns the retrieved files' new locati@ssa cell array of strings.

filenames = gd_retrievefiles(IDs, localpaths) retrieves a list of files
from the archive given a cell array of file ID sigs, and saves each file to a local file
specified by the corresponding localpath stringe Tanction returns the retrieved
files' new locations as a cell array of strings.

Examples
Retrieve a list of files to a directory and usdrtleeiginal file names.

gd_retrievefiles ({filelD1, fileID2, fileID3},'C:\m yDir')

ans =
'C:\myDininput.dat’
'C:\myDir\output.dat’

'C:\myDir\config.txt'

Retrieve a list of files to the specified localpath

120



gd_retrievefiles ({fileID1, fileID2, fileID3},{'C:\ myDir’,
'E:\temp\myOutput.dat', 'E:\temp\myConfig.txt'})

ans =
'C:\myDininput.dat’
'E:\temp\myOutput.dat'

'E:\temp\myConfig.txt'

Notes
You can only retrieve data that you archived ort $@meone else has given you

permission to access.

A valid proxy certificate is required to retrievefide, variable or metadata (see
gd createproxy  from the Geodise Compute Toolbox).

You must have access to the host machine the vilksbe retrieved from. Your
certificate subject must be added to the gridmdp én the host and to the
authorisation database.

See also
gd retrieve gd_archive gd_archivefiles , gd datagroup ,

gd _datagroupadd , gd query , gd_createproxy

121



gd_unmarkfordeletion

Recovers data marked for deletion, if it has natrb@ermanently deleted by an
administrator.

Syntax
unmarktotal = gd_unmarkfordeletion(ID)
unmarktotal = gd_unmarkfordeletion(IDs)

Description

unmarktotal = gd_unmarkfordeletion(ID) takes an ID string and
unmarks the corresponding file, variable or datagreo it is no longer marked for
deletion from the archive. This is a safety measoirecover data that was mistakenly
marked for deletion. This function is only appli@bor data that has not already been
permanently deleted from the archive by an admatist. The function returns 1 if
successful or 0 if failed, in which case the reasodisplayed in a warning message
(for example the ID does not exist). If data iscassfully unmarked it is visible again
togd query ,gd retrieve  and other Database Toolbox functions.

unmarktotal = gd_unmarkfordeletion(IDs) is similar but takes a cell
of ID strings and unmarks the corresponding filegjables and datagroups so they
are no longer marked for deletion from the archivihe function returns
unmarktotal , the total number of IDs successfully unmarked detetion, and
displays warning messages for those that were gassful.

Examples
Unmark a single file so that it is no longer eligilbor deletion from the archive.

ID = gd_archive('C:\file.dat");
gd_markfordeletion(ID);

unmarktotal = gd_unmarkfordeletion(ID)

unmarktotal =
1

Query variable metadata that has been marked fietiale and then unmark the
corresponding variables so that they are no lomgible for deletion from the
archive.

122



g = 'standard.archiveDate > 2004-12-01 & a.b < -500 "
gresults = gd_querydeleted(q, 'varmeta’);
for i=1:size(qgresults,2)
IDs{i} = gresults{i}.standard.ID;
end

unmarktotal = gd_unmarkfordeletion(IDs)

unmarktotal =
5

Notes
Only the owner of the data (the person who architjechn unmark it for deletion.

If the marked data has been permanently deleted fin@ archive by an administrator
it cannot be recovered.

A valid proxy certificate is required (segl_createproxy from the Geodise
Compute Toolbox).

See also
gd_markfordeletion , gd_querydeleted , gd createproxy

123



XML Toolbox

Introduction

The XML Toolbox for Matlab allows users to convexhd store variables and
structures from the Matlab workspace into the ptaxt XML format, and vice versa.
This XML format can be used to store parameterctires, variables and results from
engineering applications in non-proprietary files XML-capable databases, and can
be used for the transfer of data across the Gie. tdolbox contains bi-directional
conversion routines implemented as four small iveli and easy-to-use Matlab
functions. As an additional feature, this toolbdbowas the comparison of internal
Matlab structures by comparing their XML represé&ata which was not previously
possible.

* Almost any type of XML document can be read andvedied into Matlab's
struct format or cell data type.

* Matlab structures and variables can be storedrniaraproprietary format and
used by other tools.

» XML representations can be stored and queried usiegunctions provided
by the Geodise Database Toolbox.

 The ability to leverage XML and database technasgmakes the data
available beyond the Matlab environment, and faatés data sharing and
reuse between users.

* Access to XML data-driven tools such as Web Sesvibecomes more
transparent to engineering users.

The following definitions are valid for XML Toolbo¥ersion> 2.0 (2.0, 2.1, 2.2,
3.0a, 3.1, 3.2). The size of data structures theL XIMolbox can deal with is only
limited by the available memory; as an indicati6@MB large data structures can be
easily converted on a 256MB PC running Matlab.

124



xml_format

Converts Matlab data to an XML string

xml_formatany

Converts Matlab data to an XML string
with user-defined attributes

xml_parse

Converts an XML string into Matlab daf

xml_parseany

Converts an XML string with attributes
into Matlab data

xml_load Loads an XML file and returns Matlab
data

xml_save Saves Matlab data into an XML file

xml_help Displays help for each xml_ function

Table 6 XML Toolbox functions

125

a



Tutorial

The XML Toolbox for Matlab can be used independerdf the Compute and
Database Toolboxes. No proxy certificate is requteemake use of its functionality.

Converting Matlab data types to XML

All common Matlab data types can be converted XkdL with the simple-to-use
commandsxml_format  (with or without attributes) omxml_formatany . We
highlight the differences in XML output structurethe following three examples.

>>v.a=1.2345
>>v.b=[1234;567 8]
>>v.c = 'This is a string.’
>>v.d = {"alpha’,'beta'}
>>v.e = (1==2)
>>v.f.subl.subsubl =1
>> v.f.subl.subsub2 =2
>>v.g(1).aa(l) = {'glaal’}
>>v.g(1).aa(2) = {'glaa2’}
>>v.g(2).aa(l) = {'g2aal’}

This first example shows the formatting of the Mhtlvariable with no additional
input parameters specified. The XML is formatteduth a way that any subsequent
parsing of the created XML string wiml_parse reconstructs an exact copy of the
original Matlab variable.

>> xmlstr = xml_format(v)

xmistr =
<root xml_tb_version="3.1" idx="1" type="struct" si ze="11">
<a idx="1" type="double" size="1 1">1.2345</a>
<b idx="1" type="double" size="2 4">1526 37 4 8</b>
<c idx="1" type="char" size="1 17">This is a stri ng.</c>
<d idx="1" type="cell" size="1 2">
<item idx="1" type="char" size="1 5">alpha</ite m>
<item idx="2" type="char" size="1 4">beta</item >
</d>

<e idx="1" type="boolean" size="1 1">0</e>
<f idx="1" type="struct" size="1 1">
<subl idx="1" type="struct" size="1 1">

<subsubl idx="1" type="double" size="1 1">1</ subsubl>
<subsub2 idx="1" type="double" size="1 1">2</ subsub2>
</subl>
</f>

<g idx="1" type="struct" size="1 2">
<aa idx="1" type="cell" size="1 2">

<item idx="1" type="char" size="1 5">glaal</i tem>
<item idx="2" type="char" size="1 5">glaa2</i tem>

</aa>

<aa idx="2" type="cell" size="1 1">
<item idx="1" type="char" size="1 5">g2aal</i tem>

</aa>

</g>
</root>

126



The Matlab-specific attributesdx , type and size , which allow the exact
reconstruction of the Matlab data types, can beeuiroff by specifying the second
parameter in thaml_format function call as 'off'. This results in a more gea
formatting of the structure, however, the XML cartteare now interpreted purely as
strings when parsed back into Matlab as type arelisformation are lost:

>> xmlstr = xml_format(v,'off")

xmlstr =

<root>
<a>1.2345</a>
<b>15263748</b>
<c>This is a string.</c>
<d>
<item>alpha</item>
<item>beta</item>
</d>
<e>0</e>
<f>
<subl>
<subsubl>1</subsubl1>
<subsub2>2</subsub2>
</subl1>
</f>
<g>
<aa>
<item>glaal</item>
<item>glaa2</item>
</aa>
<aa>
<item>g2aal</item>
</aa>
</g>
</root>

The user can write the XML representation of a Blatvariable immediately into a
XML file using the commandaml_save . This command uses the same XML format
as the functioxml_format

If the user wishes to define XML attributes othkart the defaultdx , type and
size parameters, these can be added using a substrgelied 'ATTRIBUTE' in the
Matlab structure and performing the formatting wtie commandml_formatany

This command converts Matlab cell data vectors sgeeral XML elements with the
same name tag without using the 'item' tag asdarmptbvious example.

xml_formatany =~ may be preferable to xml_format when convertingldadata into
XML which is processed in other applications, hoarevsome of the information
about the original data types may be lost when edmg the XML back into Matlab

127



usingxml_parseany

>> xmistr = xml_formatany(v)

xmistr =

<root>
<a>1.2345</a>
<b>15263748</b>
<c>This is a string.</c>

<e>0</e>
<f>
<subl>
<subsubl>1</subsubl>
<subsub2>2</subsub2>
</subl>
<[f>

</root>

We can specify additional attributes for the sutdé.subl andg(2)

>> v.f.subl.ATTRIBUTE.fonthame = 'Helvetica'
>>v.g(2).ATTRIUTE.fonthame = 'Helvetica2'

which then results in the following XML string:

>> xmlstr = xml_formatany(v)

xmlstr =

<root>
[...]
<f>
<subl font
<subsubl1>1</subsubl>
<subsub2>2</subsub2>
</subl>
</f>
<g>
<aa>glaal</aa>
<aa>glaa?</aa>
</g>
<g fontname="Helvetica2>
<aa>glaal</aa>
</g>
</root>

128



Converting XML to Matlab data types

As XML can contain any arbitrary contents as losgtlzey follow the W3C XML
Recommendation (www.w3.0rg), parsing and trangjatih these constructs into a
Matlab-specific environment can be complex. Thecfioms xml _parse and
xml_parseany allow the conversion of XML strings into Matlabtdastructures in a
sensible way.

There are three distinct ways of importing XML inatlab data structures. These
correspond to the techniques shown abovexidr format  andxml_formatany
(There are actually four ways; however, we no lorggport the old method from
version 1.x).

If the XML contains Matlab specific descriptors,chuas created byml_format

with attributes switched on (i.e. tldx , type , size attributes), the XML Toolbox
will be able to re-create exactly the Matlab dataetand content described by the
XML string.

For example,
>> xmlstr = ...
<root xml_tb_version="3.1" idx="1" type="struct" si ze="11">
<a idx="1" type="double" size="1 1">1.2345</a>
<b idx="1" type="double" size="2 4">1526 37 4 8</b>
<c idx="1" type="char" size="1 17">This is a stri ng.</c>
<d idx="1" type="cell" size="1 2">
<item idx="1" type="char" size="1 5">alpha</ite m>
<item idx="2" type="char" size="1 4">bheta</item >
</d>

<e idx="1" type="boolean" size="1 1">0</e>
<f idx="1" type="struct" size="1 1">
<subl idx="1" type="struct" size="1 1">

<subsubl idx="1" type="double" size="1 1">1</ subsubl1>
<subsub?2 idx="1" type="double" size="1 1">2</ subsub2>
</subl>
<[f>

<g idx="1" type="struct" size="1 2">
<aa idx="1" type="cell" size="1 2">

<item idx="1" type="char" size="1 5">glaal</i tem>
<item idx="2" type="char" size="1 5">glaa2</i tem>

</aa>

<aa idx="2" type="cell" size="1 1">
<item idx="1" type="char" size="1 5">g2aal</i tem>

</aa>

</g>
</root>

can be parsed using the command

129



>> v = xml_parse(xmistr)

and returns the structure

V=
a: 1.2345
b: [2x4 double]
c: 'This is a string.'
d: {'alpha’ 'beta’}
e:0
f: [1x1 struct]
g: [1x2 struct]

which corresponds exactly to the Matlab variabledus xml_format to create the
XML string.

If we use the same commanahl_parse , but tell the parser to ignore the attributes
with the command

>>v_wo_att = xml_parse(xmistr,'off")
we obtain a structure where types and sizes otlét@ will not be adapted to match

standard Matlab data types, that means that dibalpmeric content will be returned
as strings.

v_wo_att =
a: '1.2345'
b:'15263748
c: 'This is a string.'
d: {'alpha’ 'beta’}
e:'0
f: [1x1 struct]
0: [1x2 struct]

The structural information (in fieldé and g) is still preserved, although matrix
contents, such as in field and numeric values, such as in fieddande, are returned
as pure strings.

130



The third possibility is to useml_parseany which is able to convert most XML
strings to Matlab data structures while taking cafremamespaces and attributes. As
the structure in XML strings can be very complext @xample in WSDL documents),
the variable returned is a struct variable with-strctures defined as cells.

If we parse, for example,
>> xmlstr = ...

<gem:project name="MyProject">

<username type="string">Me</username>

<date_created type="date">2004-10-12</date_create
<description fontsize="10"> cool! </description>

<parameters n="4">

<epsl type="dielectric" units="1"> 8.92 </epsl>
<eps2 type="dielectric" units="1"> 1.00 </eps2>

<StT type="structuretype"> rod </StT>
<nofEV> 47 </nofEV>
</parameters>
</project>
with

>> v = xml_parseany( xmistr)

we obtain the variable

d>

V=
ATTRIBUTE: [1x1 struct]
username: {[1x1 struct]}
date_created: {[1x1 struct]}
description: {[1x1 struct]}
parameters: {[1x1 struct]}

with the following variable structure

V.ATTRIBUTE(1).name
V.ATTRIBUTE(1).NAMESPACE
v.username{1}.ATTRIBUTE.type
v.username{1}.CONTENT
v.date_created{1}.ATTRIBUTE.type
v.date_created{1}.CONTENT
v.description{1}.ATTRIBUTE.fontsize
v.description{1}.CONTENT
v.parameters{1}.eps1{1}.ATTRIBUTE.type
v.parameters{1}.eps1{1}.ATTRIBUTE.units
v.parameters{1}.eps1{1}.CONTENT
v.parameters{1}.eps2{1}.ATTRIBUTE.type
v.parameters{1}.eps2{1}.ATTRIBUTE.units
v.parameters{1}.eps2{1}.CONTENT
v.parameters{1}.StT{1}.ATTRIBUTE.type
v.parameters{1}.StT{1}.CONTENT
v.parameters{1}.nofEV{1}.ATTRIBUTE.type
v.parameters{1}.nofEV{1}. CONTENT
v.parameters{1}.ATTRIBUTE.n

MyProject
gem
string
Me
date
2004-10-12
10
cool!
dielectric
1
8.92
dielectric
1
1.00
structuretype
rod
numeric
47
4

131



Function Reference

xml_format

Converts a Matlab variable into an XML string.

Syntax
xmistr = xml_format(v)
xmistr = xml_format(v,attswitch)
xmistr = xml_format(v,attswitch,name)

Description
xml_format converts Matlab variables and data structuredu@neg deeply nested
structures) into XML and returns the XML as string.

Input Arguments
v Matlab variable of type "struct", "char"”, "doublelimeric),
"complex”, "sparse", "cell", or "logical"(boolean).

attswitch  optional, default="on'":
‘'on’ writes header attributéx , size , type for identification
by Matlab when parsing the XML later;
‘off' writes "plain” XML without header attributes.

name optional, give root element a specific name, gwjéect'.
Output Arguments
xmistr string, containing XML description of the varialle

The root element of the created XML string is ahll@ot’ by default but this can be
overwritten with thename input parameter. A defaultnl_tb_version attribute is
added to the root element unlesswitch  is set to 'off'.

If attswitch is left empty, [], or set to 'on’, the default dttesidx , type , and
size will be added to the XML element headers. Thisvall xml_parse to parse
and convert the XML string correctly back into theginal Matlab variable or data
structure.

132



If attswitch is set to 'off', some of the information is lostdasubsequently the
contents of XML elements will be read in as stringsen converting back using
xml_parse

Examples

This example shows how to convert a simple numier an XML string. Note that
we could have usednl_format(5) instead.
vV =25;

xmlstr = xml_format(v)

xmistr =
<root xml_tb_version="3.0" idx="1" type="double"

size="1 1">5</root>

We can tell the command to ignore all the attribuwged obtain the following XML.:

xmistr = xml_format(v,'off")

xmlstr =

<root>5</root>

The root elements can be assigned a different rnaelding this as third parameter
to thexml_format  function:

xmlstr = xml_format(v,'off',)myXmINumber")

xmlstr =

<myXmINumber>5</myXmINumber>

This example shows how pre-defined Matlab datae(lpgy is translated into XML.
The number of decimals stored is the number redueeconstruct the exact same
variable in Matlab from XML with theml_parse function.

vV = pi;

xmlstr = xml_format(v,[],'pi")

133



xmistr =
<pi xml_tb_version="3.0" idx="1" type="double" size ="11">

3.141592653589793</pi>

Character arrays or strings can also be convemteddML.:

v = 'The Hitchhikers Guide to the Galaxy';

xmlstr = xml_format(v);

xmistr =
<root xml_tb_version="3.0" idx="1" type="char" size ="1 35">

The Hitchhikers Guide to the Galaxy</root>

One of the most powerful ways to use the XML Toalb® to convert whole data
structures (with substructures) which can contayMatlab data type.

v.project.name = 'my Project no. 001";
v.project.date = datestr(now,31);
v.project.uid ='208d0174-a752-f391-faf2-45bc397";

v.comment = 'This is a new project’;

xmlstr = xml_format(v,'off");

xmistr =
<root>
<project>
<name>my Project no. 001</name>
<date>2004-09-09 16:18:29</date>
<uid>208d0174-a752-f391-faf2-45bc397</uid>
</project>
<comment>This is a new project</comment>

</root>

Notes
If different attributes are required in the outmiting, please see description for

xml_formatany.

See also

xml_parseany , xml_formatany , xml_parse , xml_load , xml_save , xml_help

134



xml_formatany

Converts a Matlab variable into an XML string witber-defined attributes.

Syntax
xmistr = xml_formatany(v)
xmistr = xml_formatany(v,attswitch)
xmistr = xml_formatany(v,attswitch,name)

Description

xml_formatany  converts Matlab variables and structures (inclgdieeply nested
structures) into an XML string. The user can speattributes for each XML element
in substructures of the struct variahle,

Input Arguments
Y Matlab variable of type "struct”, "

char", "doub{slimeric),
"complex”, "sparse”, "cell", or "logical"(boolean).

attswitch ~ optional, default="on’:
‘'on’ writes header attributatx , size , type for identification
by Matlab when parsing the XML later;
‘off' writes "plain” XML without header attributes.

name optional, give root element a specific name, gwjéct'.
Output Arguments
xmlstr string, containing XML description of the variable

The root element of the created XML string is aall®ot’ by default but this can be
overwritten with thename input parameter. A defaultnl_tb_version attribute is
added to the root element unlesswitch  is set to 'off".

If attswitch is left empty, [], or set to 'on’, the default gtites idx, type, and size
will be added to the XML element headers. Thisvaioxml_parse to parse and
convert the XML string correctly back into the onigl Matlab variable or data

structure.

If attswitch is set to 'off', some of the information is lostdasubsequently the

135



contents of XML elements will be read in as stringsen converting back using
xml_parse

Examples
In this example, we define a data structure in Mathind add attributes to it before
converting it into an XML string.

v.project.name = 'my Project no. 002";
v.project.date = datestr(now, 31);

v.project.uid ='2004-0909-1618-29af-04c7";
v.project. ATTRIBUTE.id = 'AA5119278466';
v.comment.CONTENT = 'This is a new project’;

v.comment. ATTRIBUTE.fontname = 'Times New Roman’;

xmlstr = xml_formatany(v);

xmistr =
<root>
<project id="AA5119278466">
<name>my Project no. 002</name>
<date>2004-09-09 16:18:29</date>
<uid>2004-0909-1618-29af-04c7</uid>
</project>
<comment fontname="Times New Roman">This is a new
project</comment>

</root>

Notes
If attributes are required for string data, thengtrmust be explicitly assigned to a
CONTENT field of the Matlab structure. In the abaseample, the comment field is
defined as

comment. ATTRIBUTE.fonthame = 'Times New Roman'

comment.CONTENT = 'This is a new project’;
This is due to the ATTRIBUTE field overwriting tleentents otherwise.

See also

xml_parseany , xml format , xml parse , xml load , xml save , xml_help

136



xml_help

Shows a one-page summary of the usage for all Xgihlldox commands.

Syntax
xml_help

XML TOOLBOX FOR MATLAB X.Y

FUNCTIONS:

xml_format converts a Matlab variable/structure in to an XML string
xml_parse parses and converts an XML string into Matlab variable
xml_save saves a Matlab variable/structure in XM L format in a file
xml_load loads an .xml file written with xml_sav e back into Matlab
xml_help this file, displays info about availabl e xml_* commands
tests/xml_tests tests the xml toolbox by writin g/reading a number

of xml test files

FILES:

doc/xml_toolbox.* documentation containing info o n installation,
usage, implementation, etc.

matlab.xsd contains a Schema to validate X ML files for the
toolbox (V.1.0) (if not present , look at
http://www.geodise.org/matlab.x sd)

RELATED:

xmiread, xmlwrite (shipped with Matlab from versi on 6.5)

Further information can be obtained by using the he Ip command on

a specific function, e.g. help xml_format.

Copyright (C) 2002-2004
Author: Marc Molinari <m.molinari@soton.ac.uk>
$Revision: 1.5 $ $Date: 2004/03/31 15:51:04 $

See also

xml_parseany , xml_formatany , xml_format , xml_parse , xml_load |,

xml_save

137



xml_load

Loads an XML file and converts its content into athdb structure or variable.

Syntax
v = xml_load(filename)
v = xml_load(filename,attswitch)

Description

xml_load reads the file given in parameter filename and us¢ parse to convert
it into a Matlab data structure or variable. If file cannot be found, an error will be
displayed.

Input Arguments
flename  filename of xml file to load (if extension .xml @nitted,
xml_load tries to append it if the file cannot be found).

attswitch ~ optional, default="on’:
‘'on’ takes into account attributies , size , type for creating
corresponding Matlab data types;
'off' ignores attributes in XML element headers.

Output Arguments
v Matlab structure or variable.
Examples

This example simply loads the sample file from ginen location and converts its
contents to a Matlab data structure. (The file pesviously been created using
xml_save ).

v = xml_load('c:/data/myfavourite.xml’)

name: '‘Google'
url: ‘http://www.google.com’

rating: 5

description: 'Great search functionality for the we b'

138



In the following example, we perform the same agtiwowever, as we are specifying
the additional parameter 'off' for attributes, tbhe , size , andtype attributes are
ignored and the result is slightly different: vingtin this case is returned as a Matlab

string variable;5'

v = xml_load('c:/data/myfavourite.xml’,'off")

V=

name: '‘Google'

url: ‘http://www.google.com’

rating: '5'
description: 'Great search functionality for the we b'

See also
xml_parseany xml_formatany xml_format , xml_parse xml_save ,
xml_help

139



xml_parse

Parses an XML string, xmlstr, and returns the gpoading Matlab structure v.

Syntax
v = xml_parse(xmistr)
v = xml_parse(xmistr,attswitch)

Description
This is a non-validating parser. XML processingriest or comments starting with
'<?' or '<I', are ignored by the parser.

Input Arguments
xmlistr XML string, for example read from a file Wit
xmistr = fileread(filename)

attswitch  optional, default="on":
'on’ reads XML header attribute , size , type if present and
interprets these to create the correct Matlab tyaes.
'off' ignores XML element header attributes an@iptets
contents as strings.

Output Arguments
\; Matlab variable or structure.

Examples
This example shows how to define a simple XML strand parse it into a Matlab
variable. As thedx , type , andsize attributes are defined, the resulting Matlab data

type conforms to these specifications (class doubdtor of size [1x2]).

xmistr = ...

'<root idx="1" type="double" size="1 2">3.1416 1.41 42</root>",;

V1 = xml_parse(xmlstr)

140



[3.1416, 1.4142] % (class double)

Again, setting theattswitch parameter to 'off' lets the parser ignore the
attributes and the returned variable is interpreted string.

V2 = xml_parse(xmilstr,'off")

V2=
'3.1416 1.4142' % (class char)

Let's define a more complex data set in XML:

xmlstr =
'<root>
<project>
<name>myProjectName</name>
<date>2004-09-13</date>
<bytes>10472</bytes>
</project>
<project>
<name>myProject Two</name>
<date>2004-09-13</date>
<bytes>9851</bytes>
</project>
</root>'

v = xml_parse(xmistr);

v: 1x2 struct array with fields:
project

v(1).project:
name: 'myProjectName’
date: '2004-09-13'
bytes: '10472'

v(2).project:
name: 'myProject Two'
date: '2004-09-13'
bytes: '9851'

See also

xml_parseany , xml formatany , xml format , xml load , xml save , xml_help

141



xml_parseany

Parses an XML string with attributes and returnsesponding Matlab structure.

Syntax
v = xml_parseany(xmilstr)

Description

Parses XML string xmistr and returns the correspaundMatlab structurey. In
comparison with xml_parse, this command reads ML Xelement attributes and
returns these in additional attribute fields, tkeagabling the user to read most types of
XML into a Matlab variable.

This is a non-validating parser. XML entries stagtwith the exclamation mark tag
"<I" and "<?" are ignored by the parser.

Any substructure is returned as a cell data typ®latlab as the parser assumes that
child elements can contain any kind of complex X#ément.

Input Arguments
xmlstr XML string, for example read from file with
xmistr = fileread(filename)

Output Arguments
v Matlab variable or structure with field . ATTRIBUTIEXML

element attributes are present.
Examples
In this example, we specify an XML string and loakthe difference between the

xml_parse andxml_parseany functions:

xmlstr = ...
'<root idx="1" type="double" size="1 2">3.1416 1.41 42</root>";

vl = xml_parse(xmilstr);

v1: [3.1416, 1.4142] % (class double)

v2 = xml_parseany(xmistr);

142



v1.ATTRIBUTE.idx =1’
Vv1.ATTRIBUTE.type = 'double’
V1. ATTRIBUTE.size ='1 2'
v1.CONTENT ='3.1416 1.4142'

We see that theml_parse command uses the specific attributes to convest th
content into the corresponding Matlab data typdse functionxml_parseany
however, returns all attributes in a substructaéed ATTRIBUTE and the content in
a field called CONTENT.xml_parseany does not use the attributes for type
conversions to Matlab data types as these may awe briginated from the XML
Toolbox.

For more generic XML, theml_parseany command acts as follows:

xmistr = ...
'<root color="red" language="en">

<project id="alpha">
<name>Project_Alpha</name>
<author>Arthur</author>
<link location="url">http://www.com/a</link>

</project>

<project id="beta">
<name>Project_Beta</name>
<author>Ben</author>
<link location="file">c:\temp\b.pro</link>

</project>

</root>";

v = xml_parseany(xmlstr)

V=

project: {{1x1 struct] [1x1 struct]}

ATTRIBUTE: [1x1 struct]

V.ATTRIBUTE

ans =

color: 'red'

language: 'en'

143



v.project{1}

ans =
name: {[1x1 struct]}
author: {[1x1 struct]}
link: {[1x1 struct]}
ATTRIBUTE: [1x1 struct]

v.project{2}.name{1}

ans =
ATTRIBUTE: [0xO struct]
CONTENT: 'Project_Beta'

v.project{2}.link{1}

ans =
ATTRIBUTE: [1x1 struct]
CONTENT: 'c:temp\b.pro'

v.project{2}.link{1}.ATTRIBUTE

ans =

location: 'file'

Note

All subfields of the returned data structure aretlsdacell data types and therefore
indexed with curly braces {.}. This adds a bit menplexity for the developer if the
level of nesting is high; however, it also mearet "ML documents are returned to
Matlab in a well-defined state.

Namespaces & valid Matlab variable names:

If an XML element has a namespace attached, fanple"soap:services", the "soap"
namespace is transferred into a subfield of the RIBUTE structure, called
"NAMESPACE". This is done to ensure that the nameesponds to a valid Matlab
variable name. For the same reasons are any hypghénsplaced by the underscore
" " during the parsing operation.

See also

xml_formatany , xml_format , xml_parse , xml_load , xml_save , xml_help

144



xml_save

Stores XML representation of Matlab variable ousture in XML format in a file.

Syntax
xml_save(filename,v)
xml_save(filename,v,attswitch)

Description
xml_save stores a Matlab variable in plain text XML forniato the file specified by
the user.

Input Arguments
The Matlab variable can be any of the types supporteckby format

filename full filename (including path and extension).
v Matlab variable or structure to store in file.
attswitch optional, 'on’ stores XML type attributes

idx , size ,type (default),
'off' doesn't store XML type attributes.

Examples

This example saves a Matlab structure as XML ieaat a given location.

v.name = 'Google'

v.url = 'http://www.google.com'

v.rating =5

v.description = 'Great search functionality for the web'

xml_save('c:/data/myfavourite.xml’, v)

See also

xml_formatany , xml_format , xml_parse , xml_load , xml_help

145



