
 1

The Geodise Toolboxes
A User’s Guide

 2

Release: GeodiseLab v.1.3.2

Version: GeodiseManual 1.3.7

Title: The Geodise Toolboxes – A User's Guide

Authors: Dr Graeme Pound

 Dr Jasmin Wason

 Dr Marc Molinari, m.molinari@soton.ac.uk

 Dr Hakki Eres, hakki.eres@soton.ac.uk

 Dr Zhuoan Jiao, z.jiao@soton.ac.uk

 Dr Andrew Price, a.r.price@soton.ac.uk

PI: Prof Simon Cox, s.j.cox@soton.ac.uk

Web: http://www.geodise.org/

Legal notice: Matlab® is a registered trademark of The Mathworks, Inc.

 http://www.mathworks.com

Copyright: Copyright © 2007, The Geodise Project, University of Southampton

Acknowledgement:

 The development of the Geodise toolboxes for public release has been

supported by the managed programme of Open Middleware

Infrastructure Institute (http://www.omii.ac.uk/).

 3

Contents
The Geodise Toolboxes ...1

Contents ...3

Introduction..5

Use Cases ...6

Function Arguments...9

Input Arguments ..9

Output Arguments..14

Geodise Compute Toolbox ..16

Introduction..16

Tutorial...19

Function Reference ..30

gd_certinfo ...30

gd_chmod...31

gd_condorsubmit..33

gd_compute_version ..37

gd_createproxy...38

gd_destroyproxy ..39

gd_fileexists ...40

gd_getfile ...41

gd_jobkill ...43

gd_jobpoll ..44

gd_jobstatus ...45

gd_jobsubmit..46

gd_listdir ..47

gd_makedir ..49

gd_proxyinfo..50

gd_proxyquery ...51

gd_putfile ...52

gd_rmdir...54

gd_rmfile..55

gd_rmuniquedir..56

gd_servermetrics ..57

gd_submitunique..59

gd_testauthentication ...61

gd_testfiletransfer ..62

gd_testjobsubmission...63

 4

gd_timeauthentication..64

gd_timefiletransfer ...65

gd_timejobsubmission ...66

gd_transferfile ..67

Geodise Database Toolbox ..69

Introduction..69

Tutorial...70

Function Reference ..82

gd_addusers..82

gd_archive..84

gd_archivefiles...88

gd_datagroup..90

gd_datagroupadd..93

gd_dbsetup ...95

gd_db_help...96

gd_db_version..97

gd_display..98

gd_markfordeletion..100

gd_query ..102

gd_querydeleted...113

gd_retrieve ...117

gd_retrievefiles ..120

gd_unmarkfordeletion..122

XML Toolbox ..124

Introduction..124

Tutorial...126

Function Reference ..132

xml_format...132

xml_formatany...135

xml_help ..137

xml_load ..138

xml_parse...140

xml_parseany ...142

xml_save ..145

 5

Introduction

The Geodise Toolboxes provide a collection of functions that extend the capability of

the Matlab® technical computing environment. The Geodise Compute, Database and

XML toolboxes contain routines that facilitate many aspects of Grid computing and

data management including:

• The submission and management of computational jobs on remote compute

resources via the Globus GRAM service.

• File transfer and remote directory management using the GridFTP protocol.

• Single sign-on to the Grid with Globus proxy certificates.

• Storage and grouping of files and variables, annotated with user defined

metadata, in an archive.

• Graphical and programmatic interfaces for querying the metadata to easily

locate stored files and variables.

• Sharing and reuse of data among distributed users. Users may grant access to

their data to other members of a Virtual Organisation.

• Conversion of Matlab structures and variables into a non-proprietary, plain

text format (XML) which can be stored and used by other tools.

• Conversion of almost any type of XML document including WSDL

descriptions of Web Services into Matlab's struct format or cell data type.

Grid computing provides the infrastructure for the collaborative use of computers,

networks, data, storage and applications across distributed organisations. A

computational job can be run on the Grid to make use of resources unavailable on the

user’s desktop, for example to exploit software licenses or greater computational

power. The Geodise Compute Toolbox provides Matlab functions for submitting and

monitoring jobs on the Grid, transferring files to and from remote compute resources,

and managing the certificates used to identify users and authorise use of the resources.

Compute intensive applications often use and produce many data files and data

structures. It can become difficult to find, reuse and share data from various

applications that have been run repeatedly with different parameters. The Geodise

Database Toolbox can be used to store additional user-defined information (called

metadata) describing files and Matlab variables, so that they can be located and

retrieved more easily with metadata queries. Files and variables can also be grouped

together, and data can be shared with other users by granting access permissions.

 6

XML is a flexible standard data format that is widely used to structure and store

information, and to exchange data between various computer applications. The XML

Toolbox functions convert and store Matlab variables and structures from the internal

format into XML and vice versa. This allows parameter structures, variables and

results from computational applications to be stored in a non-proprietary file format,

or in XML-capable databases, and can be used to transfer Matlab data across the Grid.

Comparing arbitrary Matlab structures was not previously possible, but this can be

now achieved by comparing their XML representation. The XML toolbox also

enables the transparent exchanges of data between the Matlab technical computing

environment and the Jython scripting environment.

This user guide introduces the reader to the Compute, Database and XML toolboxes,

with tutorials that give an overview of the functionality provided by each of the

toolboxes. The function reference for each toolbox contains detailed information

about the syntax of its functions.

Use Cases

The GeodiseLab toolboxes have applications in a wide range of scenarios. Here we

will outline three use cases that describe the potential benefits of Grid computing to

the daily practice of the scientist or engineer.

The use cases that we will discuss are:

• Engineering Design Search and Optimisation

• Data management in computational electromagnetics

• Transparent collaboration between Problem Solving Environments

Engineering Design Search and Optimisation

Engineering Design Search and Optimisation (EDSO) is a compute and data intensive

task which is well matched to Grid computing. Optimisation algorithms are used to

search the parameter space of an engineering problem to discover an optimal design

subject to certain criteria. During EDSO the optimisation algorithm must repeatedly

evaluate some measure of the quality of a design; this may involve one or more

lengthy numerical calculations. For example, an engineer wishing to improve the

aerodynamic performance of a wing design may configure an optimiser to vary key

design parameters, whilst invoking simulations of Computational Fluid Dynamics

(CFD) to determine the quality of alternative geometries.

 7

Depending upon the complexity of the numerical calculations and the number of

evaluations required to determine the optimum design, EDSO may be a lengthy and

computationally intensive task. When the evaluation of the objective function

involves complex simulations (i.e. CFD) numerous large data files may be required,

or produced, by the numerous calculations. The Grid client functionality makes it

straightforward for the engineer to leverage computational resources available on the

Grid to perform EDSO.

When undertaking EDSO using one of the many optimisation algorithms available in

the Matlab environment the engineer may use the Geodise Compute toolbox to

automate the transfer of files, and the submission and management of computational

jobs required during the evaluation of a design. By exploiting Grid resources not only

is the engineer able to leverage the greater computational power available, but he can

also drive any applications that he requires on a multitude of platforms from the

comfort of his desktop PSE.

Data management in computational electromagnetics

Data management is an issue in a number of scientific and engineering application

domains, including that of computational electromagnetics. For example, when

performing simulations of electromagnetic phenomena a large volume of data may be

generated, typically in the form of the input and output files. It is a non-trivial

problem for the researcher to store, manage and reuse this data. The investment

associated with the computationally expensive Finite Difference Time Domain

modelling technique used to explore the properties of electromagnetic devices require

that simulation results are suitably managed for reuse at a later data.

At present the most common solution for this problem is to store these flat files within

a hierarchical directory structure on a local file system. As the volume of data grows

over time this solution is frequently inadequate for long term storage since it may

become increasingly difficult to locate and reuse data within the collection. The

Geodise Database toolbox provides a solution as a client to a managed data archive on

the Grid.

The Geodise Database Toolbox allows the researcher to archive data files to a

managed repository from the Matlab environment and annotate these files with

metadata. In addition to standard metadata the user may define custom metadata

specific to the problem. The researcher can then query the metadata to find these files

 8

using straightforward syntax within the Matlab environment. In addition the Geodise

Database Toolbox supports the archiving of variables from the Matlab environment.

Items in stored the repository can be associated together into datagroups, allowing the

creation of annotated hierarchies within which the user's results can be organised.

Transparent collaboration between Problem Solving Environments

The Geodise XML toolbox provides a collection of straight-forward functions which

convert variables in the Matlab environment to and from the external XML format.

Variables in the Matlab workspace can be saved to and loaded from an XML file with

minimal effort on the part of the researcher. XML is a structured format that can be

interpreted by third party applications. By encoding the Matlab variables in the XML

format there are a number of benefits.

The provision of the Geodise XML toolbox for Jython allows the transparent

exchange of variables between the Matlab technical computing environment and

Jython scripting environment. Variables are mapped to the appropriate built-in

datatypes in the two languages. This allows researchers working with these two

Problem Solving Environments to collaborate on shared datasets.

The Geodise XML toolbox is also leveraged by the Geodise Database Toolbox to

store variables and metadata in a database. The contents of variables and metadata in

the database can then be queried and searched across. The Geodise Database toolbox

may be used to share variables stored in the managed repository between members of

a virtual organisation because researchers can authorise other users to access their

data. When variables are retrieved from the repository they will be transparently

converted into the built-in datatypes of that PSE.

 9

Function Arguments
The input and output arguments used by all of the functions of the Geodise toolboxes

are summarised below.

Input Arguments

Argument Description Used by Functions

attswitch A string specifying whether to

use attributes (‘on’ = use

attributes, ‘off’ = no attributes).

xml_format

xml_load

xml_parse

xml_save

classAD A structure describing the job to

be submitted to the Condor pool.

gd_condorsubmit

command The absolute path of the chmod

command on the Globus

resource.

gd_chmod

datagroupID The unique identifier of a

datagroup.

gd_addusers

gd_archive

gd_datagroupadd

datagroupname A user defined name for a

datagroup.

gd_datagroup

datasource Specifies what type of metadata

or data to query (‘file’,

‘datagroup’, ‘varmeta’, ‘var’ or

‘monitor’).

gd_query

gd_querydeleted

directory The path of a local directory. gd_retrieve

filename The path of a local file. gd_archive

gd_certinfo

gd_retrieve

xml_load

xml_save

files A cell array of filenames. gd_submitunique

filesystem The type of the filesystem used gd_condorsubmit

 10

Argument Description Used by Functions

by the Globus server.

filetype A string specifying the GridFTP

transfer type (‘ASCII’ or

‘binary’).

gd_getfile

gd_putfile

gd_transferfile

groups A user group ID string or list of

user group IDs.

gd_addusers

host A string specifying the Globus

server to be used.

gd_chmod

gd_condorsubmit

gd_fileexists

gd_getfile

gd_jobsubmit

gd_listdir

gd_makedir

gd_putfile

gd_rmdir

gd_rmfile

gd_rmuniquedir

gd_submitunique

gd_testauthentication

gd_testfiletransfer

gd_testjobsubmission

gd_timeauthentication

gd_timefiletransfer

gd_timejobsubmission

host1 The Globus server that sends the

file.

gd_transferfile

host2 The Globus server that receives

the file.

gd_transferfile

hostprompt Indicates whether to prompt user

for file host configuration during

setup (1=true, 0=false).

gd_dbsetup

ID The unique identifier of a file or

variable.

gd_addusers

gd_datagroupsadd

gd_retrieve

 11

Argument Description Used by Functions

IDs A cell array which may contain

the unique identifiers of files,

variables and datagroups.

gd_markfordeletion

gd_unmarkfordeletion

interval Interval (in seconds) at which the

status of the job is polled.

gd_jobpoll

jobhandle A Globus GRAM job handle. gd_jobkill

gd_jobpoll

gd_jobstatus

listhidden Indicates whether hidden files

should be listed (1 = true, false

otherwise).

gd_listdir

localfile A filename on the local machine. gd_getfile

gd_putfile

maxtime Upper limit (in seconds) for the

period over which the job is

polled.

gd_jobpoll

metadata A metadata structure containing

information about a file, variable

or datagroup.

gd_archive

gd_datagroup

minvalue The minimum acceptable value

for the property of the proxy

certificate examined (in hours or

bits).

gd_proxyquery

mode Permissions to be set on the file. gd_chmod

name Name to use for the root element. xml_format

xml_formatany

orderby A string indicating how query

results should be sorted.

gd_query

gd_querydeleted

proxyattrib A string specifying the property

of the proxy certificate to be

examined (‘time’ or ‘strength’).

gd_proxyquery

qresults Cell array of structure(s) gd_display

 12

Argument Description Used by Functions

containing results returned from

a query.

query A query string which compares

fields with values.

gd_query

gd_querydeleted

remotedir The path of a directory on a

Globus server.

gd_listdir

gd_makedir

gd_rmdir

gd_rmuniquedir

gd_submitunique

gd_testfiletransfer

gd_testjobsubmission

gd_timefiletransfer

gd_timejobsubmission

remotefile A filename on the remote server. gd_chmod

gd_fileexists

gd_getfile

gd_putfile

gd_rmfile

gd_servermetrics

remotefile1 The path of the file to be sent. gd_transferfile

remotefile2 The path of the file to be

received.

gd_transferfile

resultfields A string specifying selected

fields to return from a query.

gd_query

gd_querydeleted

resultlimit A limit on the number of results

to return from a query.

gd_query

gd_querydeleted

RSL A string specifying the properties

of a Globus GRAM job.

gd_jobsubmit

gd_submitunique

RSLstruct A structure specifying the

properties of a Globus GRAM

job.

gd_condorsubmit

servers A structure specifying the name

and working directories of the

gd_servermetrics

 13

Argument Description Used by Functions

Globus servers to be tested.

subdatagroupID The unique identifier of a

datagroup that is added to

another datagroup.

gd_datagroupadd

users A user ID string or cell array of

user IDs.

gd_addusers

v A generic structure or variable. gd_archive

xml_format

xml_formatany

xml_save

xmlstr An XML string. xml_parse

xml_parseany

 14

Output Arguments

Argument Description Used by Functions

datagroupID The unique identifier of a

datagroup.

gd_datagroup

details A cell array containing structures

that describe the details of the

files and directories contained in

the remote directory.

gd_listdir

exists The existence of the file on the

Globus server (1 = exists, 0 =

does not exist).

gd_fileexists

filename The path of a local file. gd_retrieve

files A cell array of filenames. gd_listdir

ID The unique identifier of a file or

variable.

gd_archive

isdone Indicates whether the job

complete successfully (1 = done,

0 = not done).

gd_jobpoll

isvalid Indicates whether the proxy

certificate is valid (1 = valid, 0 =

not valid).

gd_proxyinfo,

gd_proxyquery

jobhandle A Globus GRAM job handle. gd_condorsubmit

gd_jobsubmit

gd_submitunique

marktotal Total number of IDs successfully

marked for deletion.

gd_markfordeletion

metadata A metadata structure containing

information about a file, variable

or datagroup.

gd_retrieve

qresults Cell array of structure(s)

containing results returned from

a query.

gd_query

gd_querydeleted

 15

Argument Description Used by Functions

status The status of the Globus GRAM

job.

gd_jobstatus

subject The certificate subject line in the

Globus format.

gd_proxyinfo

gd_certinfo

success The result of the operation or test

(1 = success, 0 = failure).

gd_addusers

gd_datagroupadd

gd_testauthentication

gd_testfiletransfer

gd_testjobsubmission

time The elapsed time in milliseconds

or -1 if failed.

gd_timeauthentication

gd_timefiletransfer

gd_timejobsubmission

testresults A structure containing the results

of tests upon an array of servers.

gd_servermetrics

uniquedir The path of the unique working

directory created on the server.

gd_submitunique

unmarktotal Total number of IDs successfully

unmarked for deletion.

gd_unmarkfordeletion

v A generic structure or variable. gd_retrieve

xml_parse

xml_parseany

xml_load

version Version of the Database or

Compute toolbox.

gd_compute_version

gd_db_version

xmlstr An XML string. xml_format

xml_formatany

 16

Geodise Compute Toolbox

Introduction

The Geodise Compute Toolbox exposes the power of the Grid to the Matlab technical

computing environment. With this toolbox the engineer can programmatically access

Globus GT2 resources which provide the backbone of many computational Grids. In

this manner the Geodise Compute Toolbox promotes the integration of Grid resources

into the complex engineering workflows which can be described within the Matlab

environment.

The Geodise Compute Toolbox provides Matlab functions which support the job

submission, file transfer and certificate management in a familiar and intuitive syntax.

• Globus GRAM jobs can be submitted, queried and terminated.

• File transfer and remote directory management is supported using the GridFTP

protocol.

• Single sign-on to the Grid is supported with Globus proxy certificates.

The Geodise Compute Toolbox functions for certificate management are listed in

Table 1. Table 2 lists functions for the submission the computational jobs to a Globus

GRAM service, and Table 3 lists the functions for GridFTP file transfer. In addition

there are a number of functions to define the availability and performance of a

GridFTP server (Table 4).

gd_certinfo Returns information about the user's

certificate.

gd_createproxy Creates a Globus proxy certificate.

gd_proxyinfo Returns information about the user's

proxy certificate.

gd_proxyquery Queries whether a valid proxy certificate

exists.

gd_destroyproxy Destroys the local copy of the user's

Globus proxy certificate.

Table 1 Certificate management functions

 17

gd_jobstatus Gets the status of a Globus GRAM job.

gd_jobsubmit Submits a compute job to a Globus

GRAM job manager.

gd_jobpoll Queries the status of a Globus GRAM job

until complete.

gd_jobkill Kills a Globus GRAM job specified by a

job handle.

gd_chmod Changes file permissions of a file on a

Globus resource.

gd_condorsubmit Submits a job through a Globus resource

to a Condor pool.

gd_submitunique Submits a GRAM job to a unique

working directory.

Table 2 GRAM job submission functions

gd_getfile Retrieves a remote file using GridFTP.

gd_putfile Puts a file on a remote server using

GridFTP.

gd_transferfile Performs a third-party file transfer using

GridFTP.

gd_makedir Creates a remote directory using

GridFTP.

gd_listdir Lists the contents of a directory on a

GridFTP server.

gd_fileexists Tests the existence of files and directories

on a Globus resource.

gd_rmdir Deletes a remote directory using

GridFTP.

gd_rmfile Deletes a remote file using GridFTP.

gd_rmuniquedir Deletes a remote directory and its

contents.

Table 3 GridFTP file transfer functions

 18

gd_servermetrics Performs a number of tests upon a list of

Globus resources.

gd_testauthentication Tests authentication with a Globus

resource.

gd_testfiletransfer Tests file transfer to a Globus resource.

gd_testjobsubmission Tests the job submission to a Globus

resource.

gd_timeauthentication Times authentication to a Globus

resource.

gd_timefiletransfer Times file transfer to a Globus resource.

gd_timejobsubmission Times a job submission to a Globus

resource.

Table 4 Globus resource testing functions

 19

Tutorial

Grid Certificates

To access Globus compute resources all users must be authenticated, and must also be

authorised to access the resource. Authentication under the Globus toolkit is based

upon X.509 certificates. X.509 certificates are digital tokens that have been

cryptographically signed by a trusted third party, the Certificate Authority (CA).

Using X.509 certificates the identity of a user or server can be verified.

Figure 1 - Hierarchy of trust for user credentials

It is necessary to obtain a Grid certificate from a Certificate Authority that is

acceptable to the administrators of the Globus resources that you wish to use. For

step-by-step instructions about how to apply for an X.509 certificate, and how to

export it into the format required by Compute Toolbox, a tutorial is available from the

Geodise web-site (http://www.geodise.org/files/tutorials/Obtaining_Certificates.pdf).

The Globus toolkit authorises users to access resources by mapping their certificate to

a user account on the resource. Therefore to use a Globus resource to run

computational jobs you must be in possession of an X.509 certificate signed by a CA

that is trusted by the administrators of the resource that you wish to access. You must

then apply for permission to access the resource by having the subject line of your

certificate mapped to a user account on that machine.

To enable users to delegate their identity, allowing Grid processes to submit jobs and

transfer files on their behalf, the Globus toolkit also uses a technology called ‘proxy

 20

certificates’. Proxy certificates are temporarily limited credentials that can be used to

devolve the user’s identity across the Grid. In practice proxy certificates also provide

a convenient single sign-on to the Grid; users enter the passphrase to the private key

of their X.509 certificate just once when generating the proxy certificate.

Before accessing a Globus resource you should generate a valid proxy certificate,

which will typically expire after 12 hours. The Geodise Compute Toolbox provides

Matlab functions that allow the user to create, examine and destroy Globus proxy

certificates within the Matlab environment.

Before using the Geodise Compute Toolbox you should configure the location of the

credentials on your machine. Your X.509 certificate and corresponding private key

should be separately encoded in PEM format (see the obtaining certificates tutorial for

details). To do this create a file called ‘cog.properties’ located in a directory ‘.globus’

of the home directory on your workstation. Then configure the location of your X.509

certificate and private key, in addition to the certificates of trusted CA.

For example the ‘cog.properties’ file on a Windows PC would contain the following

lines:

cacert=C\:\\Documents and Settings\\<USER>\\.globus\\01621954.0,

C\:\\Documents and Settings\\<USER>\\.globus\\adcbc9ef.0

proxy=C\:\\DOCUME~1\\<USER>\\LOCALS~1\\Temp\\509up_u_<USER>

usercert=C\:\\Documents and Settings\\<USER>\\.globus\\usercert.pem

userkey=C\:\\Documents and Settings\\<USER>\\.globus\\userkey.pem

proxy.strength=512

proxy.lifetime=12

Please note that throughout this manual the term <USER> represents your username

on any given machine.

The properties ‘usercert’ and ‘userkey’ refer to locations of the PEM encoded user

certificate and corresponding private key. The file ‘cacert’ contains the certificate of

the CA which signed the user’s X.509 certificate (in PEM format). Where ‘proxy’ will

be the location of the user’s proxy certificate once it has been generated by

gd_createproxy . The properties ‘proxy.strength’ and ‘proxy.lifetime’ contain

default settings for the cryptographic strength and lifetime of the proxy certificate.

Note that the file separator on a Windows PC must be defined with double

 21

backslashes, “\\”.

Once the user’s credentials have been configured in the ‘cog.properties’ file they are

accessible to the Geodise Compute Toolbox. To verify the configuration from within

the Matlab environment query the X.509 certificate:

>> subject = gd_certinfo

subject: C=UK,O=eScience,OU=Southampton,L=SeSC,CN=s ome user

issuer: C=UK,O=eScience,OU=Authority,CN=CA,E=ca-

operator@grid-support.ac.uk

start date: Tue Oct 07 13:00:31 BST 2003

end date: Wed Oct 06 13:00:31 BST 2004

subject =

/C=UK/O=eScience/OU=Southampton/L=SeSC/CN=some user

The details of the user’s certificate are printed to the screen. The subject line returned

by gd_certinfo is in the Globus format and can be used to apply for access to a

Globus resource. By supplying this subject line to the administrator of a Globus

resource your credentials can be mapped to a user account on that machine.

To create a proxy certificate the gd_createproxy command is used:

>> gd_createproxy

When this command is entered a GUI will prompt the user for the passphrase to their

private key. The details of the proxy certificate can be configured using the 'Options'

button. The proxy certificate is generated by pressing the 'Create' button. After the

proxy has been generated, click 'Cancel' to dismiss the GUI, and press 'Enter' at the

Matlab prompt.

Now you may query the details of the proxy certificate:

>> gd_proxyinfo;

 22

Subject: C=UK,O=eScience,OU=Southampton,L=SeSC,CN=s ome

user,CN=proxy

issuer: C=UK,O=eScience,OU=Southampton,L=SeSC,CN=so me user

type: full legacy globus proxy

strength: 512 bits

timeleft: 11 h, 59 min, 39 sec

The details printed to the screen indicate that the proxy certificate will remain valid

for almost 12 hours. We may also query the validity of the proxy certificate

programmatically, for example:

>> isvalid = gd_proxyquery('time',11)

isvalid =

 1

This indicates that our proxy certificate will remain valid for at least 11 hours.

Job submission and file transfer

The primary services offered by Globus GT2 resources are GRAM job submission

and GridFTP file transfer. Typically Globus resources can simply be specified by the

machine name, for example:

>> host = 'server1.domain.com';

However some Globus computational resources may offer GRAM job submission to a

number of alternative job managers or non-default ports. These can be specified as

follows:

>> GRAM1 = 'server1.domain.com/jobmanager-fork';

>> GRAM2 = 'server1.domain.com/jobmanager-pbs';

>> GRAM3 = 'server1.domain.com:2119/jobmanager';

Globus resources offering GridFTP will typically listen on the default port (2811),

however a non-default port can be specified as follows:

>> GridFTP1 = 'server1.domain.com:2812';

 23

For all examples in this tutorial we will assume that a single Globus resource (host)

is used offering GRAM and GridFTP services on default ports, and using the default

job manager.

To submit a job to a computational resource via a Globus GRAM service you must

describe the attributes of the job using a Resource Specification Language (RSL)

string. An RSL string is a list of property/values pairs each enclosed by brackets (see

the example below). The most frequently used GRAM RSL parameters are listed in

Table 5, these and other GRAM RSL parameters are further documented on the

Globus website (http://www.globus.org/).

executable The name of the executable file to be run. This is the only

required parameter.

directory The name of the default working directory.

arguments The arguments to be passed to the executable.

stdin The name of the file containing the standard input for the

executable.

stdout The name of the file that will contain the standard output

from the executable.

stderr The name of the file that will contain the standard error

from the executable.

count The number of times that the executable should be

executed.

environment The environment variables to be set. A list of name/value

pairs each enclosed by brackets.

maxTime The maximum execution time in minutes.

jobType A string specifying the job types. Possible values include

“single”, “multiple”, “mpi” and “condor”.

Table 5 GRAM RSL parameters

This example demonstrates the submission of a simple job to the Globus GRAM

service on host . The first argument to gd_jobsubmit is an RSL string that specifies

the file name of the executable to be run, ‘sleep’, and the argument to be passed to

that executable which specifies that the process will sleep for 1 minute.

 24

>> jobhandle = gd_jobsubmit(

'&(executable="/bin/sleep")(arguments="1m")',host)

jobhandle =

https://server1.domain.com:30001/27531/1096385757/

The function gd_jobsubmit returns a GRAM job handle that can be used to check

the status of the job, and if necessary to kill the job. In the following example we use

the job handle returned by gd_jobsubmit to query the status of the job. The integer

returned by gd_jobstatus indicates the state of the job, where “2” indicates that the

job is active and “3” indicates that the job has completed.

>> status = gd_jobstatus(jobhandle)

status =

 2

We can also poll the status of the job until the job has completed.

>> gd_jobpoll(jobhandle)

In addition to high-performance, high-volume file transfer GridFTP offers all of the

standard FTP file operations. We can use GridFTP to create a working directory on

the Globus resource.

>> gd_makedir(host,'/home/<USER>/demo')

We will now run a second job, piping the output to a file ‘date.out’ in our working

directory on host . We will then use the GridFTP command gd_getfile to retrieve

the output to a temporary file on the local machine, and print the results.

>> rsl = '&(executable="/bin/date")(arguments="-u")

(directory="/home/<USER>/demo")(stdout="date.out")' ;

>> jobhandle = gd_jobsubmit(rsl,host)

jobhandle =

https://server1.domain.com:30001/27531/1096385757/

 25

>> gd_jobpoll(jobhandle);

>> localfile = tempname;

>> gd_getfile(host,'/home/<USER>/demo/date.out',loc alfile);

>> type(localfile)

Tue Sep 28 16:46:25 BST 2004

We can now use the GridFTP commands gd_rmfile and gd_rmdir to clean-up the

file and directory on the server:

>> gd_rmfile(host,'/home/<USER>/demo/date.out')

>> gd_rmdir(host,'/home/<USER>/demo/')

Frequently an engineer may wish to submit and run several jobs independently upon a

Globus resource, for example when conducting a parameter sweep. To prevent

conflicts between the input and output parameters of the different jobs it is convenient

to run the jobs in separate directories. The function gd_submitunique handles the

submission of compute jobs into unique directories, returning a job handle and the

path of the unique directory. In the following example we use the function

gd_submitunique to submit two concurrent jobs, we will then retrieve the results

and delete unique directories and their contents using gd_rmuniquedir .

>> rsl = '&(executable="/bin/date")(arguments="-u")

(stdout="date.out")';

>> [jobhandle1,uniquedir1] =

gd_submitunique(rsl,host,[],'/home/<USER>/')

>> [jobhandle2,uniquedir2] =

gd_submitunique(rsl,host,[],'/home/<USER>/')

 26

jobhandle1 =

https://server1.domain.com:30002/27658/1096386586/

uniquedir1 =

/home/<USER>/20040928T164946_176266/

jobhandle2 =

https://server1.domain.com:30002/27671/1096386587/

uniquedir2 =

/home/<USER>/20040928T164947_405706/

>> gd_jobpoll(jobhandle1);

>> localfile = tempname;

>> gd_getfile(host,[uniquedir1,'date.out'],localfil e);

>> type(localfile)

>> gd_rmuniquedir(host,uniquedir1);

Wed Sep 29 12:12:21 UTC 2004

>> gd_jobpoll(jobhandle2);

>> localfile = tempname;

>> gd_getfile(host,[uniquedir2,'date.out'],localfil e);

>> type(localfile)

>> gd_rmuniquedir(host,uniquedir2);

Wed Sep 29 12:12:23 UTC 2004

Scripting the Grid

The Geodise Compute Toolbox allows engineers to script Grid processes in the

Matlab environment. Unfortunately due to the dynamic nature of the Grid the

resources that you wish to use may become unavailable, or may be more or less

reliable. In these situations, when a function in the Geodise Compute Toolbox is

unable to complete its operation, the function will typically throw an error with a

diagnostic message.

>> gd_getfile(host,'\tmp\fileDoesNotExist.txt','dem o.txt')

 27

??? Error using ==> gd_getfile

Server Exception: No such file or directory.

If a Matlab function throws an error, this will cause the Matlab script or function

which invoked it to stop executing. Therefore it is important if you wish to write a

robust Matlab script or function that communicates with the Grid that you use Matlab

exception handling to deal with errors appropriately if and when they occur.

Matlab exception handling is based upon try , catch statements. By placing a block

of code between a pair of try , catch statements means that if an error occurs when

Matlab evaluates this code the script will not stop executing. Instead the code inside

the catch , end block is evaluated and the script continues. This behaviour is

demonstrated by the example below.

>> try

 gd_getfile(host,'\tmp\fileDoesNotExist.txt', 'demo.txt')

 catch

 disp('An error has occurred with the followi ng

message:')

 disp(lasterr)

 end

An error has occurred with the following message:

Error using ==> gd_getfile

Server Exception: No such file or directory.

In this way errors that occur when communicating with the Grid can be ‘caught’ by

the script and dealt with appropriately. The diagnostic error message can be examined

with the lasterr function, and if appropriate the script can continue, or stopped by

throwing another error (using error or rethrow).

We recommend that when writing a script or function that communicates with the

Grid that you enclose all Grid functions with try , catch statements. You should also

consider how the script should behave if an error occurs; should it tidy up and exit, or

should it continue? This way you will be prepared for the unexpected, and your

Matlab scripts and functions will be more robust as a result.

 28

Testing Grid resources

The unpredictability of Grid resources mean that is often wise to determine whether a

resource is functioning and responsive before attempting to use it. The Geodise

Compute Toolbox provides a suite of functions to test the availability and

responsiveness of the Globus services running on a resource.

To determine whether a resource is responding, and whether or not you are authorised

to access it, the following commands may be used:

>> success = gd_testauthentication(host)

>> time = gd_timeauthentication(host)

success =

 1

time =

 171

To test the availability of the GRAM job submission service, the following commands

will submit a small job to the job manager specified by host .

>> success = gd_testjobsubmission(host)

>> time = gd_timejobsubmission(host)

success =

 1

time =

 610

To test the availability and speed of GridFTP file transfers to a Globus resource the

following commands will transfer a small file to the specified directory on host :

>> success = gd_testfiletransfer(host)

>> time = gd_timefiletransfer(host)

 29

success =

 1

time =

 890

 30

Function Reference

gd_certinfo

Returns information about the user's certificate.

Syntax

subject = gd_certinfo

subject = gd_certinfo(filename)

Description

This command prints information about the user's certificate to the screen. The

command also returns the certificate subject line in a format which is suitable for use

in a Globus gridmap file. The default location of the user's certificate is specified by

the cog.properties file.

subject = gd_certinfo where subject is the certificate subject in the

Globus format.

subject = gd_certinfo(filename) as above, where filename is the

filename of the certificate to be queried. The certificate must be encoded in pem

format.

See also

gd_proxyinfo , gd_createproxy , gd_destroyproxy

 31

gd_chmod

Changes file permissions of a file on a Globus resource.

Syntax

gd_chmod(host,remotefile,mode)

gd_chmod(host,remotefile,mode,command)

Description

gd_chmod(host,remotefile,mode) where host is a string describing

the resource. It could be in one of the following formats:

- hostname

- hostname:port

- hostname/service

- hostname:port/service

The second argument remotefile is a string describing the full name of the file

starting from root '/'. The final argument mode is a string describing the permissions

of the file. The permission of a file can be either a symbolic representation of changes

to make, or an octal number representing the bit pattern for the new permissions (see

below).

gd_chmod(host,remotefile,mode,command) as above, except the

argument command is a string specifying the absolute path of the chmod command on

the Globus resource.

Input arguments

mode The argument mode may have two alternative forms:

1. Symbolic representation:

A combination of the letters `ugoa' controls which users' access to the

file will be changed: the user who owns it (u), other users in the file's

group (g), other users not in the file's group (o), or all users (a).

The operator '+' causes the permissions selected to be added to the

existing permissions of each file; '-' causes them to be removed; and '='

causes them to be the only permissions that the file has.

The letters 'rwxXstugo' select the new permissions for the affected

 32

users: read (r), write (w), execute (or access for directories) (x),

execute only if the file is a directory or already has execute permission

for some user (X), set user or group ID on execution (s), sticky (t), the

permissions granted to the user who owns the file (u), the permissions

granted to other users who are members of the file's group (g), and the

permissions granted to users that are in neither of the two preceding

categories (o).

2. Octal number representation:

A numeric mode is from one to four octal digits (0-7), derived by

adding up the bits with values 4, 2, and 1. Any omitted digits are

assumed to be leading zeros. The first digit selects the set user ID (4)

and set group ID (2) and sticky (1) attributes. The second digit selects

permissions for the user who owns the file: read (4), write (2), and

execute (1); the third selects permissions for other users in the file's

group, with the same values; and the fourth for other users not in the

file's group, with the same values.

For example, 0750 gives rwx permissions to the owner and rx

permissions to the group.

Examples

To give read/write/execute permissions to the owner and read/execute permissions to

the group of a file named '/tmp/foo' which is on a Globus resource called

'server.domain.com', you can use:

gd_chmod('server.domain.com','/tmp/foo','0750');

To remove group execute permissions from of the same file you can use:

gd_chmod('server.domain.com','/tmp/foo','g-x');

Notes

A valid proxy certificate is required to use this function.

See also

gd_fileexists , gd_listdir

 33

gd_condorsubmit

Submits a job through a Globus resource to a Condor pool.

Syntax

handle = gd_condorsubmit(classAD,RSLstruct,host)

handle =

gd_condorsubmit(classAD,RSLstruct,host,filesystem)

Description

handle = gd_condorsubmit(classAD,RSLstruct,host) returns a

string handle containing the Globus job handle for a successfully submitted job.

Where classAD is a structure describing the job to be submitted to the Condor pool,

the structure, RSLstruct describes the command used to submit the job to the

Condor pool, and host is a string describing the Globus resource to be used. The

argument host can have one of the following formats:

 - hostname

 - hostname:port

 - hostname/service

 - hostname:port/service

handle = gd_condorsubmit(classAD,RSL,host,filesyste m) as

above where the argument filesystem defines the filesystem on host . When

filesystem = 'NFS' a shared filesystem is assumed, otherwise a non-NFS

filesystem is assumed.

Input arguments

classAD The classAD structure contains a description of the requirements of

the job to be submitted to the Condor pool. The fields of the structure

specify the attributes of the Condor classAD file that is used to submit

the job. The valid fields include:

executable The name of the executable to be

submitted to the Condor pool

requirements A string specifying the requirements

from the machine upon which to the job

should be run. These requirements may

include:

 34

• Operating system: OpSys

• Architecture: Arch

• Memory: Memory

arguments The arguments to the executable

transfer_input_files A string containing a comma separated

list of files to be submitted with

executable

output The filename to pipe the output from the

job

error The filename to pipe the error from the

job

log The filename to which to write the

Condor log

universe A string specifying the type of Condor

job to be run. Possible values include:

• STANDARD

• VANILLA

• MPI

• JAVA

Other possible fields in the classAD structure include all of the valid

classADs attributes. These attributes are documented at the Condor

project homepage (http://www.cs.wisc.edu/condor/).

RSLstruct The RSLstruct structure contains the RSL attributes which specifies

the command used to submit the job to the Condor pool. The required

fields include:

executable The path to the 'condor_submit' executable on

host

arguments The name of the Condor classAD file produced by

gd_condorsubmit

directory The name of the working directory on host

 35

Examples

The following example demonstrates the submission of a Linux and a Windows job to

a Condor pool via the Globus server 'server.domain.com'. The Linux job is described

by the structure classAD_Linux , and the Windows job is described by the structure

classAD_Windows .

%Specify classAD_Linux

classAD_Linux.requirements = 'Arch == "INTEL" && Op Sys ==

"LINUX"';

classAD_Linux.executable = 'sleep.sh';

classAD_Linux.output = 'sleep.output';

classAD_Linux.error = 'sleep.error';

classAD_Linux.log = 'sleep.log';

classAD_Linux.universe = 'VANILLA';

classAD_Linux.transferfiles = 'ONEXIT';

classAD_Linux.should_transfer_files = 'YES';

classAD_Linux.when_to_transfer_output = 'ON_EXIT';

classAD_Linux.arguments = '1m';

% Specify classAD_Windows

classAD_Windows.requirements = 'Arch == "INTEL" && OpSys ==

"WINNT51"';

classAD_Windows.environment = 'path=c:\windows\syst em32';

classAD_Windows.executable = 'printname.bat';

classAD_Windows.output = 'printname.output';

classAD_Windows.error = 'printname.error';

classAD_Windows.log = 'printname.log';

classAD_Windows.universe = 'VANILLA';

classAD_Windows.transferfiles = 'ALWAYS';

classAD_Windows.should_transfer_files = 'YES';

classAD_Windows.when_to_transfer_output = 'ON_EXIT' ;

classAD_Windows.transfer_input_files = 'file1.txt, file2.txt,

file3.txt';

% Specify RSL

rsl.executable = '/usr/local/condor/bin/condor_subm it';

rsl.arguments = 'myJob.sub';

rsl.directory = '/home/<USER>/';

 36

rsl.stdout = 'myJob.stdout';

rsl.stderr = 'myJob.stderr';

% Make the Condor job submission

handle_Linux =

gd_condorsubmit(classAD_Linux,rsl,'server.domain.co m');

handle_Windows =

gd_condorsubmit(classAD_Windows,rsl,'server.domain. com');

Notes

A valid proxy certificate is required to use this function.

The field names of the ClassAD and RSL structures should be lower case characters.

ClassAD string variables should be in upper case characters, e.g. 'LINUX' not 'Linux',

or 'WINNT51' not WinNT51'.

See also

gd_jobsubmit , gd_submitunique

 37

gd_compute_version

Returns the current version of the Geodise Compute Toolbox

Syntax

version = gd_compute_version

Description

version = gd_compute_version returns the version of the current

Geodise Compute Toolbox release as a string of the form MAJOR.MINOR.POINT.

See also

README.txt

 38

gd_createproxy

Creates a Globus proxy certificate.

Syntax

gd_createproxy

Description

This command creates a Globus proxy certificate for the user's credentials at the

location specified by the cog.properties file. The user is queried for the passphrase to

their private key by a pop-up window.

See also

gd_proxyinfo , gd_proxyquery , gd_certinfo , gd_destroyproxy

 39

gd_destroyproxy

Destroys the local copy of the user's Globus proxy certificate.

Syntax

gd_destroyproxy

Description

This command deletes the local copy of the Globus proxy certificate for the user's

credentials at the location specified by the cog.properties file.

See also

gd_createproxy , gd_proxyinfo , gd_certinfo

 40

gd_fileexists

Tests the existence of files and directories on a Globus resource.

Syntax

exists = gd_fileexists(host,remotefile)

exists = gd_fileexists(host,remotefile,ispassive)

Description

exists = gd_fileexists(host,remotefile) returns an integer

exists indicating whether the file or directory specified by remotefile exists on

the Globus server specified by the string host . The argument exists will equal 1 is

the file exists on host , otherwise it will equal 0.

exists = gd_fileexists(host,remotefile,ispassive) where if

ispassive is false the active FTP mode will be used, otherwise the default passive

FTP mode will be used. If a passive connection cannot be established a warning is

displayed and an active mode connection will be attempted.

Example

result =

gd_fileexists('server.domain.com','/home/<USER>/tes t.dat');

Notes

A valid proxy certificate is required to use this function.

In earlier versions of this function the default FTP mode was active. The passive

mode is now used by default since this is may be more appropriate when the GridFTP

client is behind a firewall which blocks incoming connections

See also

gd_listdir

 41

gd_getfile

Retrieves a remote file using GridFTP.

Syntax

gd_getfile(host,remotefile,localfile)

gd_getfile(host,remotefile,localfile,filetype)

gd_getfile(host,remotefile,localfile,filetype,ispas sive)

Description

This command retrieves a file from a remote server using GridFTP. The user must

specify the remote file location on a remote server and the local destination for the

file. The user can also specify the file type.

gd_getfile(host,remotefile,localfile) transfers the remote ASCII

file remotefile from the machine host . The file is saved to the path and file

specified by the string localfile .

gd_getfile(host,remotefile,localfile,filetype) as above

except the string filetype sets the file transfer type. When filetype = 'ASCII' the

file transfer type will be ASCII (this is the default setting), alternatively when

filetype = 'binary' the file transfer type is set to binary.

gd_getfile(host,remotefile,localfile,filetype,ispas sive)

where if ispassive is false the active FTP mode will be used, otherwise the default

passive FTP mode will be used. If a passive connection cannot be established a

warning is displayed and an active mode connection will be attempted.

Examples

The following command copies the file 'data2.dat' from the users home directory on

the remote host 'server' to the local file 'C:\data1.dat'. The file is transferred as a

binary file type.

gd_getfile('server.domain.com','data2.dat','C:\data 1.dat',

'binary');

This example behaves as above except the file is copied from the subdirectory 'tmp' in

the users home directory.

 42

gd_getfile('server.domain.com','tmp/data2.dat','C:\ data1.dat',

'binary');

The following example is similar to the first example except the file is copied from

the subdirectory 'tmp' of the root directory on the remote machine.

gd_getfile('server.domain.com','/tmp/data2.dat','C: \data1.dat',

'binary');

Notes

A valid proxy certificate is required to use GridFTP. Suitable credentials may be

required to transfer files from a remote server.

In earlier versions of this function the default FTP mode was active. The passive

mode is now used by default since this is may be more appropriate when the GridFTP

client is behind a firewall which blocks incoming connections.

See also

gd_putfile , gd_createproxy

 43

gd_jobkill

Kills a Globus GRAM job specified by a job handle.

Syntax

gd_jobkill(jobhandle)

Description

 gd_jobkill(jobhandle) terminates the Globus job specified by the

Globus job handle.

Notes

A valid proxy certificate for the correct user credentials is required to kill a GRAM

job.

See also

gd_createproxy , gd_jobsubmit , gd_jobstatus

 44

gd_jobpoll

Queries the status of a Globus GRAM job until complete.

Syntax

gd_jobpoll(jobhandle)

gd_jobpoll(jobhandle,interval)

isdone = gd_jobpoll(jobhandle,interval,maxtime)

Description

This command polls the status of a Globus GRAM job specified by the job handle

until the job is complete. This function can be used to block the process of a Matlab

script until a job has finished. If the job fails an error is thrown.

gd_jobpoll(jobhandle) where jobhandle is the handle to a Globus

GRAM job.

gd_jobpoll(jobhandle,interval) where jobhandle is the handle to a

Globus GRAM job and interval is the interval (in seconds) between polling the job

handle.

isdone = gd_jobpoll(jobhandle,interval,maxtime) as above.

The argument maxtime allows an upper limit (in seconds) to be placed on the period

over which the job is polled. The return value isdone indicates whether the job

handle returned the DONE state (1), or whether polling was aborted (0).

Notes

The state DONE returned by job handle does not necessarily indicate that the job

completed successfully. A valid proxy certificate is required to query a GRAM job.

See also

gd_jobstatus , gd_jobsubmit , gd_jobkill

 45

gd_jobstatus

Gets the status of a Globus GRAM job.

Syntax

status = gd_jobstatus(jobhandle)

Description

status = gd_jobstatus(jobhandle) returns the status of a Globus

GRAM job, where status :

 -1 is UNKNOWN

 1 is PENDING

 2 is ACTIVE

 3 is DONE

 4 is FAILED

 5 is SUSPENDED

 6 is UNSUBMITTED

Notes

A valid proxy certificate is required to query a GRAM job.

See also

gd_createproxy , gd_jobsubmit , gd_jobkill

 46

gd_jobsubmit

Submits a compute job to a Globus GRAM job manager.

Syntax

jobhandle = gd_jobsubmit(RSL,host)

Description

This command submits the compute job described by a Resource Specification

Language (RSL) string to a Globus server running a GRAM job manager. Upon a

successful submission the command returns a job handle that may be used to query

the status of, or terminate, the job.

jobhandle = gd_jobsubmit(RSL,host) where RSL is a string

describing the submitted job, host is the name of the Globus server, and jobhandle

is the handle for a successfully submitted job. An error is thrown if job submission is

unsuccessful.

Example

jobhandle =

gd_jobsubmit('&(executable=/bin/date)','server.doma in.com')

Notes

A valid proxy certificate is required to submit a GRAM job. For more information

about RSL see http://www.globus.org/gram/.

See also

gd_createproxy , gd_jobkill , gd_jobstatus

 47

gd_listdir

Lists the contents of a directory on a GridFTP server.

Syntax

files = gd_listdir(host)

files = gd_listdir(host,remotedir)

files = gd_listdir(host,remotedir,listhidden)

files = gd_listdir(host,remotedir,listhidden,ispass ive)

[files,details] = gd_listdir(...)

Description

files = gd_listdir(host) where files is a cell array containing the

filenames of files in the user's home directory on the GridFTP server host .

files = gd_listdir(host,remotedir) where files is a cell array

containing the filenames of files in the directory remotedir on the GridFTP server

host (if remotedir is empty the contents of the user's home directory will be

listed).

files = gd_listdir(host,remotedir,listhidden) the list of

filenames will include hidden files if the argument listhidden is true (equal to 1).

Otherwise the names of hidden files will not be returned (default behaviour).

files = gd_listdir(host,remotedir,listhidden,ispass ive)

where if ispassive is false the active FTP mode will be used, otherwise the default

passive FTP mode will be used. If a passive connection cannot be established a

warning is displayed and an active mode connection will be attempted.

[files,details] = gd_listdir(host) as above where details is a

cell array containing structures that describe the details of the files and directories

contained in the remote directory.

Notes

A valid proxy certificate is required to use GridFTP.

In earlier versions of this function the default FTP mode was active. The passive

mode is now used by default since this is may be more appropriate when the GridFTP

 48

client is behind a firewall which blocks incoming connections

See also

gd_putfile , gd_getfile , gd_createproxy

 49

gd_makedir

Creates a remote directory using GridFTP.

Syntax

gd_makedir(host,directory)

Description

gd_makedir(host,directory) Creates a directory specified by the string

directory on the GridFTP server specified by the string host .

Notes

A valid proxy certificate is required to use GridFTP. Suitable credentials will be

required to create a directory on a GridFTP server.

See also

gd_getfile , gd_putfile , gd_rmdir , gd_rmfile

 50

gd_proxyinfo

Returns information about the user's proxy certificate.

Syntax

exists = gd_proxyinfo

[exists,subject] = gd_proxyinfo

Description

This command checks the existence of the user's proxy certificate and prints

information to the screen. The command also returns the subject line of the proxy

certificate.

exists = gd_proxyinfo where exists is 1 if the proxy certificate exists

at the default location, otherwise 0.

[exists,subject] = gd_proxyinfo where subject is the subject line

of the proxy certificate.

See also

gd_proxyquery , gd_certinfo , gd_createproxy , gd_destroyproxy

 51

gd_proxyquery

Queries whether a valid proxy certificate exists.

Syntax

isvalid = gd_proxyquery

isvalid = gd_proxyquery(proxyattrib,minvalue)

Description

This command determines whether a valid proxy certificate exists for user's

certificate. The strength or time remaining for the proxy certificate may also be

queried. The location of the user's proxy certificate is specified by the cog.properties

file.

isvalid = gd_proxyquery where isvalid is 1 if a valid proxy

certificate exists at the default location, otherwise 0.

isvalid = gd_proxyquery(proxyattrib,minvalue) where

isvalid is 1 if the proxy certificate meets the requirements of remaining lifetime or

cryptographic strength, otherwise 0. If proxyattrib = 'time' the time remaining for

the proxy certificate is queried against minvalue hours. If proxyattrib = 'strength'

the cryptographic strength of the proxy certificate is queried against minvalue bits.

Example

The following example returns isvalid = 0 for a proxy certificate of strength 512.

isvalid = gd_proxyquery('strength',1024)

isvalid =

 0

See also

gd_proxyinfo , gd_certinfo , gd_createproxy , gd_destroyproxy

 52

gd_putfile

Puts a file on a remote server using GridFTP.

Syntax

gd_putfile(host,localfile,remotefile)

gd_putfile(host,localfile,remotefile,filetype)

gd_putfile(host,localfile,remotefile,filetype,ispas sive)

Description

This command puts a local file upon a remote server using GridFTP. The user must

specify the remote server name, the local file path, and the remote file path. The user

can also specify the filetype.

gd_putfile(host,localfile,remotefile) transfers the ASCII file

localfile to the machine host . The file is saved to the path and file specified by

the string remotefile .

gd_putfile(host,localfile,remotefile,filetype) as above

except the string filetype sets the file transfer type. When filetype = 'ASCII' the

file transfer type will be ASCII (this is the default setting), alternatively when

filetype = 'binary' the file transfer type is set to binary.

gd_putfile(host,localfile,remotefile,filetype,ispas sive)

where if ispassive is false the active FTP mode will be used, otherwise the default

passive FTP mode will be used. If a passive connection cannot be established a

warning is displayed and an active mode connection will be attempted.

Examples

The following command places the local file 'C:\data1.dat' on the remote host 'server'

in the users home directory with the file name 'data2.dat'. The file is transferred as a

binary file type.

gd_putfile('server.domain.com','C:\data1.dat','data 2.dat',

'binary');

This example behaves as above except the file is placed in the existing subdirectory to

the users home directory; 'tmp'.

 53

gd_putfile('server.domain.com','C:\data1.dat','tmp/ data2.dat',

'binary');

This example is similar to the first example except the file is placed in the

subdirectory to the root directory; 'tmp'.

gd_putfile('server.domain.com','C:\data1.dat','/tmp /data2.dat',

'binary');

Notes

A valid proxy certificate is required to use GridFTP. Suitable credentials may be

required to transfer files to remote servers.

In earlier versions of this function the default FTP mode was active. The passive

mode is now used by default since this is may be more appropriate when the GridFTP

client is behind a firewall which blocks incoming connections.

See also

gd_getfile , gd_createproxy

 54

gd_rmdir

Deletes an empty remote directory using GridFTP.

Syntax

gd_rmdir(host,remotedir)

Description

gd_rmdir(host,remotedir) Deletes an empty directory specified by the

string remotedir on the GridFTP server specified by the string host .

Notes

A valid proxy certificate is required to use GridFTP. Suitable credentials will be

required to delete a directory on a GridFTP server.

See also

gd_getfile , gd_putfile , gd_makedir , gd_rmfile

 55

gd_rmfile

Deletes a remote file using GridFTP.

Syntax

gd_rmfile(host,remotefile)

Description

gd_rmfile(host,remotefile) Deletes the file specified by the string

remotefile on the GridFTP server specified by the string host .

Notes

A valid proxy certificate is required to use GridFTP. Suitable credentials will be

required to delete a file on a GridFTP server.

See also

gd_getfile , gd_putfile , gd_makedir , gd_rmdir

 56

gd_rmuniquedir

Deletes a remote directory and its contents.

Syntax

gd_rmuniquedir(host,remotedir)

gd_rmuniquedir(host,remotedir,ispassive)

Description

This function deletes a remote directory and the files that it contains using GridFTP.

The function will not delete the remote directory specified (or any of its contents) if

the remote directory contains any sub-directories. This is a safety feature which is

intended to mitigate the risks of wildcard deletions on a remote machine.

If the specified directory contains sub-directories an error will be thrown. Errors will

also be thrown if the directory does not exist or if permission is denied to delete the

directory or its contents.

gd_rmuniquedir(host,remotedir) where host is the name of the

GridFTP server and remotedir is the name of the directory to be deleted.

gd_rmuniquedir(host,remotedir,ispassive) where if ispassive

is false the active FTP mode will be used, otherwise the default passive FTP mode

will be used. If a passive connection cannot be established a warning is displayed and

an active mode connection will be attempted.

Notes

In earlier versions of this function the default FTP mode was active. The passive

mode is now used by default since this is may be more appropriate when the GridFTP

client is behind a firewall which blocks incoming connections.

See Also

gd_rmdir , gd_rmfile , gd_submitunique

 57

gd_servermetrics

Performs a number of tests upon a list of Globus resources.

Syntax

testresults = gd_servermetrics(servers)

testresults = gd_servermetrics(servers,filename)

Description

testresults = gd_servermetrics(servers) will perform a suite of

diagnostic tests on the Globus servers specified by servers . Where servers is a

structure defining Grid resources which has the following mandatory fields:

name Name of the Globus server.

directory Name of the directory on the server in which the

tests should be performed. This may be empty if

no directory is specified.

The output structure testresults contains the following fields:

name Name of the Globus server.

directory Name of the directory on the server.

authentication The elapsed time in milliseconds required for

authentication, or -1 if failed.

jobsubmission The elapsed time in milliseconds required for job

submission, or -1 if failed.

filetransfer The elapsed time in milliseconds required for file

transfer, or -1 if failed.

results = gd_servermetrics(servers) as above where the results of

the tests are output to the file specified by the string filename .

Example

The following example will run the diagnostic tests upon the servers

'server1.domain.com' and 'server2.domain.com'. The results of the tests will be output

to the structure testresults , and to the file 'metrics.dat' in the current directory on

 58

the local machine.

servers(1).name = 'server1.domain.com';

servers(1).directory = '/home/<USER>/';

servers(2).name = 'server2.domain.com';

servers(2).directory = '';

testresults = gd_servermetrics(servers,'metrics.dat ')

disp(testresults(1))

testresults =

1x2 struct array with fields:

 name

 directory

 authentication

 jobsubmission

 filetransfer

 name: 'server1.domain.com'

 directory: '/home/<USER>/'

 authentication: 141

 jobsubmission: 375

 filetransfer: 4234

Notes

A valid proxy certificate is required to use this function.

See also

gd_testauthentication , gd_testfiletransfer , gd_testjobsubmission ,

gd_timeauthentication , gd_timefiletransfer , gd_timejobsubmission

 59

gd_submitunique

Submits a GRAM job to a unique working directory.

Syntax

[jobhandle,uniquedir] = gd_submitunique(RSL,host)

[jobhandle,uniquedir] = gd_submitunique(RSL,host,fi les)

[jobhandle,uniquedir] = gd_submitunique(RSL,host,fi les,

remotedir)

[jobhandle,uniquedir] gd_submitunique(RSL,host,file s,

remotedir,ispassive)

Description

This command creates a unique working directory on a Globus server, transferring

files as required, and submits the compute job to the GRAM job manager. Upon a

successful submission the command returns a job handle and the name of the unique

directory.

[jobhandle,uniquedir] = gd_submitunique(RSL,host) where RSL

is a string describing the submitted job, and host is the name of the Globus server.

jobhandle is the handle for a successfully submitted job and uniquedir is the

location of the working directory created on host .

[jobhandle,uniquedir] = gd_submitunique(RSL,host,fi les)

as above, where files is a cell array containing a list of the files to be

transferred to the working directory on the host .

[jobhandle,uniquedir] = gd_submitunique(RSL,host,fi les,

remotedir) as above, where remotedir is the directory on the host within which

the unique working directory is created. files can be empty if no files are required.

[jobhandle,uniquedir] = gd_submitunique(RSL,host,fi les,

remotedir,ispassive) where if ispassive is false the active FTP mode will be

used, otherwise the default passive FTP mode will be used.

Example

This command creates a directory '20040427T130607_643492' in the user's home

directory on the machine host . The working directory in the user supplied RSL string

 60

is set to the unique directory.

[jobhandle,dirname] = gd_submitunique('&(executable =/bin/date)

(stdout="test.out")',host)

jobhandle =

https://host.domain.com:40001/15678/1083067567/

dirname =

20040427T130607_643492/

Notes

A valid proxy certificate is required to submit a GRAM job. For more information

about RSL see http://www.globus.org/gram/.

See also

gd_jobsubmit , gd_createproxy , gd_jobkill , gd_jobstatus

 61

gd_testauthentication

Tests authentication with a Globus resource.

Syntax

success = gd_testauthentication(host)

Description

success = gd_testauthentication(host) where success is the

outcome of authentication with the Globus server host . The value of success is 1

on success and 0 on failure.

Example

success = gd_testauthentication('server.domain.com');

Notes

A valid proxy certificate is required to use this function.

See also

gd_testfiletransfer , gd_testjobsubmission , gd_timeauthentication ,

gd_timefiletransfer , gd_timejobsubmission

 62

gd_testfiletransfer

Tests file transfer to a Globus resource.

Syntax

success = gd_testfiletransfer(host)

success = gd_testfiletransfer(host,remotedir)

Description

success = gd_testfiletransfer(host) where success is the

outcome of the file transfer of a small file to the Globus GridFTP server host . The

value of success is 1 on success and 0 on failure.

success = gd_testfiletransfer(host,remotedir) as above where

the file will be transferred into the directory remotedir on host .

Example

remotedir = gd_testfiletransfer('server','/home/<US ER>/');

Notes

A valid proxy certificate is required to use this function.

See also

gd_testauthentication , gd_testjobsubmission ,

gd_timeauthentication , gd_timefiletransfer , gd_timejobsubmission

 63

gd_testjobsubmission

Tests the job submission to a Globus resource.

Syntax

success = gd_testjobsubmission(host)

success = gd_testjobsubmission(host,remotedir)

Description

success = gd_testjobsubmission(host) where success is the

outcome of a job submission to the Globus server host . The value of success is 1

on success and 0 on failure.

success = gd_testjobsubmission(host,remotedir) as above

where the job will run in the directory remotedir on host .

Example

success =

gd_testjobsubmission('server.domain.com','/home/<US ER>/');

Notes

A valid proxy certificate is required to use this function.

See also

gd_testauthentication , gd_testfiletransfer ,

gd_timeauthentication , gd_timefiletransfer , gd_timejobsubmission

 64

gd_timeauthentication

Times authentication to a Globus resource.

Syntax

time = gd_timeauthentication(host)

Description

time = gd_timeauthentication(host) where time is the elapsed time

in milliseconds taken to authenticate with the Globus server host . If authentication

fails time will return -1.

Example

time = gd_timeauthentication('server.domain.com');

Notes

A valid proxy certificate is required to use this function.

See also

gd_testauthentication , gd_testfiletransfer , gd_testjobsubmission ,

gd_timefiletransfer , gd_timejobsubmission

 65

gd_timefiletransfer

Times file transfer to a Globus resource.

Syntax

time = gd_timefiletransfer(host)

time = gd_timefiletransfer(host,remotedir)

Description

time = gd_timefiletransfer(host) where time is the elapsed time in

milliseconds taken to transfer a small file to the Globus GridFTP server host . If file

transfer fails time will return -1.

time = gd_timefiletransfer(host,remotedir) as above where the

file will be transferred into the directory remotedir on host .

Example

time = gd_timefiletransfer('server.domain.com','/ho me/<USER>/')

Notes

A valid proxy certificate is required to use this function.

See also

gd_testauthentication , gd_testfiletransfer , gd_testjobsubmission ,

gd_timeauthentication , gd_timejobsubmission

 66

gd_timejobsubmission

Times a job submission to a Globus resource.

Syntax

time = gd_timejobsubmission(host)

time = gd_timejobsubmission(host,remotedir)

Description

time = gd_timejobsubmission(host,remotedir) where time is the

elapsed time in milliseconds taken to complete a job submission to the Globus server

host . If the job submission fails time will return -1.

time = gd_timejobsubmission(host,remotedir) as above where the

job will run in the directory remotedir on host .

Example

time =

gd_timejobsubmission('server.domain.com','/home/<US ER>/');

Notes

A valid proxy certificate is required to use this function.

See also

gd_testauthentication , gd_testfiletransfer , gd_testjobsubmission ,

gd_timeauthentication , gd_timefiletransfer

 67

gd_transferfile

Performs a third-party file transfer using GridFTP.

Syntax

gd_transferfile(host1,host2,remotefile1,remotefile2)

gd_transferfile(host2,host2,remotefile1,remotefile2 ,

filetype)

gd_transferfile(host1,host2,remotefile1,remotefile2 ,

filetype,host1listen)

Description

gd_transferfile(host1,host2,remotefile1,remotefile2)

transfers the file specified by the string remotefile1 on the GridFTP server host1

to the file specified by remotefile2 on host2 .

gd_transferfile(host1,host2,remotefile1,remotefile2 ,

filetype) as above except the string filetype sets the file transfer type. When

filetype = 'ASCII' the file transfer type will be ASCII (this is the default setting),

alternatively when filetype = 'binary' the file transfer type is set to binary.

gd_transferfile(host1,host2,remotefile1,remotefile2 ,

filetype,host1listen) as above, except when host1listen is true host1 will

listen for a data connection from host2 (i.e. host2 is the passive FTP client to

host1). Otherwise host2 will listen for a data connection from host1 (this is the

default behaviour).

Configuring this setting may be useful to negotiate third party file transfers through a

firewall. For example, if host2 is within a filewall which blocks inbound connections

setting host1listen = 1 may enable a third party file transfer from host1 .

Examples

The following command will transfer a file called '/tmp/test1' from 'server1' to a file

called '/tmp/test2' on 'server2' in ASCII mode,:

 gd_transferfile('server1.domain.com','server2.doma in.com',

'/tmp/test1','/tmp/test2')

 68

See also

gd_putfile , gd_getfile , gd_createproxy

 69

Geodise Database Toolbox

Introduction

The Geodise Database Toolbox consists of client and server tools which enable

distributed users to easily manage, share and reuse their data from within the Matlab

environment. Users with no database experience can integrate data management into

their applications by calling the archive, query and retrieve functions provided by the

toolbox. Any data files or Matlab variables can be stored in the Geodise archive. User

defined Matlab structures specify additional descriptive information (metadata),

which can be queried to easily locate data of interest. The Geodise Database Toolbox

allows you to:

• Manage data from the local Matlab environment or remotely in scripts.

• Store files and variables with customized descriptive metadata.

• Organise related data into datagroups.

• Query over metadata to easily locate required data using functions or a GUI.

• Retrieve data based on logical data identities, no need to remember file locations.

• Share data with other distributed users by granting them access permissions.

There are a separate set of server side tools for the Geodise Database Toolbox.

Variables and metadata are stored in an Oracle 9i and 10g database as XML,

converted using the XML Toolbox. The Geodise Database Toolbox functions call

data management services which utilise Grid, Web Service and database technologies

with certificate based authentication and authorisation. The server side tools are not

described in any detail in this document.

 70

Tutorial

Getting started

Before using the Geodise Database Toolbox you need to register your details in the

database by providing your certificate subject to an administrator, who will then

assign you a username. To get your certificate subject call gd_certinfo from the

Compute Toolbox.

>> subject = gd_certinfo

subject: C=UK,O=eScience,OU=Southampton,L=SeSC,CN=s ome user

issuer: C=UK,O=eScience,OU=Authority,CN=CA,E=ca-

operator@grid-support.ac.uk

start date: Tue Oct 07 13:00:31 BST 2003

end date: Wed Oct 06 13:00:31 BST 2004

subject =

/C=UK/O=eScience/OU=Southampton/L=SeSC/CN=some user

To setup the Database Toolbox call gd_dbsetup which will create a .geodise

directory in your home directory and copy the necessary configuration files into it.

>> gd_dbsetup

You will be prompted for details of your file store host (where gd_archive will

store your files). Set hostname to a Globus enabled server you have GridFTP

permission on, and set hostdir to an existing directory on that server where files can

be stored. These settings will be saved in <home_dir>/.geodise/ClientConfig.xml.

A valid proxy certificate is required to use the Database Toolbox functions, and this

can be created using the function gd_createproxy from the Compute Toolbox.

>> gd_createproxy

A GUI will appear and prompt you for your certificate passphrase. Click the ‘Create’

button to generate the proxy certificate. When this is finished click ‘Cancel’ to close

the GUI and press 'Enter' at the Matlab prompt.

 71

See the Compute Toolbox Tutorial for more information on certificates and proxy

certificates.

Archiving files

To archive a file from the local filesystem, first create a metadata structure containing

some information that describes your file. This can be any combination of doubles,

strings, arrays, cell arrays, complex numbers and substructures.

>> m.model.name = 'test_design';

>> m.model.params = [1 4.7 5.3];

>> m.product = 25.5431;

Add some standard information (localName , format , comment, version or tree)

about the file.

>> m.standard.comment = 'Test design model file';

>> m.standard.version = '1.2.0';

The file can then be archived with the metadata.

>> fileID = gd_archive('C:\file.dat',m)

fileID =

file_dat_c6afa4b4-03cb-49a4-8c4e-008c38aae413

In addition to the optional metadata structure, gd_archive takes a string

representing the path and filename of a local file. It stores this file on a remote file

store (specified in <user_home>/.geodise/ClientConfig.xml). An ID is

returned which is a unique handle that can be used to retrieve the file.

The metadata is stored in a database and can be queried to help you find relevant files.

When the file is archived some additional metadata is automatically generated and

stored in the standard substructure, regardless of whether user defined metadata

was also provided. This consists of localName (the original name of the file),

byteSize , format , archiveDate , createDate (when the original file was

created/modified) and userID . See gd_query for further information on these fields.

You can specify your own overriding values for standard.localName and

 72

standard.format if you prefer. You can also include the optional user defined

metadata fields comment, version and tree . To help data organisation the tree

field can be assigned a hierarchy string, similar to a directory path, e.g.

'myuserID/designs/testmodel' .

Querying file metadata

To query file metadata pass a query string to the gd_query function. A query takes

the form 'field = value' , where = can be replaced by other comparison

operators. More than one query condition can be included in the string using & to join

them together. A call to gd_query returns a cell array of structures, one for each

matching result.

>> result = gd_query('standard.version=1.2.0 & prod uct>25.4')

result =

 [1x1 struct]

>> result{1}

ans =

 standard: [1x1 struct]

 model: [1x1 struct]

 product: 25.5431

gd_display is a convenient way to view your query results.

>> gd_display(result)

 73

*** Content of the structure result{1} (Total struc tures: 1)

 standard.ID: file_dat_c6afa4b4-03cb-49a4-8c4e-008 c38aae413

 standard.localName: file.dat

 standard.byteSize: 24

 standard.format: dat

 standard.createDate: 2004-09-15 15:25:33

 standard.archiveDate: 2004-10-07 11:03:10

 standard.userID: jlw

 standard.comment: Test design model file

 standard.version: 1.2.0

 standard.datagroups:

 model.name: test_design

 model.params:

 1.0000 4.7000 5.3000

 product: 25.5431

*** No more results. ***

It is possible to select which metadata fields are returned in the query results. This is

done by passing a string containing a comma separated list of these fields as the third

argument to gd_query . The second argument specifies that we want to query files,

but is normally omitted because it is the default.

>> r = gd_query('product>25','file','standard.ID, m odel.*');

>> gd_display(r)

*** Content of the structure ***

 standard.ID: file_dat_c6afa4b4-03cb-49a4-8c4e-008 c38aae413

 model.name: test_design

 model.params:

 1.0000 4.7000 5.3000

To search for some text within a metadata value use the 'like' operator together with %

to specify any characters, or _ to specify one character.

>> gd_query('standard.comment like %design m_del%') ;

The * wildcard can be used to represent an anonymous subfield, or any number of

subfields if it appears at the beginning.

 74

>> gd_query('*.name = test_design');

Use gd_query without any input arguments to start the Query Graphical User

Interface (GUI), see Figure 2. You can set query conditions for standard metadata by

selecting an operator (=, > etc) from the drop down list next to the relevant metadata

item and typing in a value. Further query conditions for user defined metadata can be

entered in the ‘Query custom metadata or variables’ text field. In the following text

field you can enter a comma separated list to specify which metadata items are

returned for each matching query result.

Click the ‘Submit Query’ button to run your query. The corresponding gd_query

script command is displayed, followed by the results of the query.

Figure 2 The Query GUI can be used to submit queries and view results.

 75

Hyperlinks are provided in the query results for downloading and browsing data.

Figure 3 demonstrates that a file can be downloaded by clicking on its standard.ID

hyperlink. In the Save dialog box you can use the default file name value (original

name of file) or specify a new file name. Browsing data is further discussed in the

Grouping data section.

Figure 3 Click on a file's standard.ID link to download that file.

Retrieving files

A file can be retrieved to the local filesystem by specifying its unique ID. This string

is returned by gd_archive when the file is archived, and also appears in the

metadata query results as standard.ID .

>> ID = result{1}.standard.ID

 76

ID =

file_dat_c6afa4b4-03cb-49a4-8c4e-008c38aae413

The file can be retrieved to a specific file location.

>> gd_retrieve(ID,'C:\filesdir\myfile.dat')

ans =

C:\filesdir\myfile.dat

Alternatively the file can be retrieved to a specified directory (the original file name is

used).

>> gd_retrieve(ID,'C:\filesdir')

ans =

C:\filesdir\file.dat

Archiving, querying and retrieving Matlab variables

To archive a variable simply pass it to gd_archive with an optional metadata

structure.

>> v.width = 12;

>> v.height = 6;

>> metadata.standard.comment = 'measurements variab le';

>> varID = gd_archive(v,metadata);

It is possible to query the contents of an archived structure. Including ‘var’ as the

second argument indicates that you want to query the contents of a variable (as

opposed to the metadata of the variable).

>> result = gd_query('height=6','var');

>> gd_display(result{1})

 77

*** Content of the structure ***

 standard.varID: var_7c73ac04-cb90-4b28-988c-1e056 2e4659d

 standard.datagroups:

 width: 12

 height: 6

The contents of the variable are returned along with a small subset of its metadata

(standard.varID and standard.datagroups) which may be required for further

queries. You can also query a variable's full metadata by including ‘varmeta’ as the

second argument.

>> r = gd_query('standard.comment like measure%','v armeta');

>> gd_display(r{1})

*** Content of the structure ***

 standard.ID: var_7c73ac04-cb90-4b28-988c-1e0562e4 659d

 standard.archiveDate: 2004-10-07 11:35:19

 standard.userID: jlw

 standard.comment: measurements variable

 standard.datagroups:

A variable can be retrieved into the local Matlab workspace by specifying its unique

ID. This string is returned when the variable is archived (e.g. varID) and also appears

in the variable query results as standard.varID and in the metadata query results

as standard.ID .

>> v2 = gd_retrieve(varID)

v2 =

 width: 12

 height: 6

Grouping data

Related data can be logically grouped together using a datagroup as follows:

Specify metadata that applies to the whole group.

>> dgmetadata.standard.comment = 'Group for experim ent 123';

 78

Call gd_datagroup to create a datagroup, giving it a name.

>> datagroupID=gd_datagroup('Experiment 123',dgmeta data);

Add archived files or variables to the datagroup.

>> gd_datagroupadd(datagroupID,fileID);

>> gd_datagroupadd(datagroupID,varID);

Archive a new file (with no metadata this time) and add it to the datagroup.

>> gd_archive('C:\anotherfile.txt',[],datagroupID);

The datagroup metadata now contains references to the files and variables it contains.

Datagroup metadata can be queried by including ‘datagroup’ as the second argument.

>> r = gd_query('standard.datagroupname=Experiment 123',

'datagroup');

>> gd_display(r)

*** Content of the structure r{1} (Total structures : 1) ***

 standard.ID: dg_111385dd-44b8-4ac4-9ec3-f7f19af85 e6e

 standard.datagroupname: Experiment 123

 standard.archiveDate: 2004-10-07 11:42:03

 standard.userID: jlw

 standard.comment: Group for experiment 123

 standard.datagroups:

 standard.subdatagroups:

 standard.files.fileID: file_dat_c6afa4b4-03cb-49a 4-8c4e...

 standard.files.fileID: anotherfile_txt_8886aa7a-5 464-48...

 standard.vars.varID: var_7c73ac04-cb90-4b28-988c- 1e0562...

*** No more results. ***

Metadata for the files and variables also contain references to the datagroup(s) that

they belong to, with a standard.datagroups.datagroupID field for each

datagroup.

 79

Datagroups can be added to other datagroups to create a hierarchy as follows:

>> parentDatagroupID = datagroupID;

>> childDatagroupID = gd_datagroup('child datagroup ');

Add the child datagroup (also called a subdatagroup) to the parent datagroup.

>> gd_datagroupadd(parentDatagroupID,childDatagroup ID);

Find all the datagroups that are in the parent datagroup.

>> children = gd_query(['standard.datagroups.datagr oupID='

parentDatagroupID],'datagroup');

Find all the datagroups that contain the child datagroup.

>> parents = gd_query(['standard.subdatagroups.data groupID='

childDatagroupID],'datagroup');

 80

Figure 4 Using hyperlinks to browse between related data in the query GUI.

Using the Query GUI you can browse between related datagroups, files and variables

by clicking on hyperlinks. In Figure 4 a query on datagroup metadata has been made

by selecting datagroup from the drop down list at the top of the window, then

specifying the query conditions. The matching datagroup shown in the figure has

related subdatagroups, files and variables which are displayed as hyperlinks. Clicking

on the standard.vars.varID link brings up a new window containing the metadata for

that variable. Clicking on standard.ID in this window will display the contents of the

variable itself.

Granting access to data.

The gd_addusers function allows you to grant other users permission to query

particular files, variables and datagroups that you own. These users may also retrieve

 81

the variables to their local Matlab workspace and the files to their local filesystem

(providing they have read permission for the appropriate directory on the Globus file

server).

In the following example the user with username ‘bob’ is given access to an archived

variable.

>> users = {'bob'};

>> gd_addusers(varID, users);

Access may also be granted as part of the metadata when a file or variable is archived,

or when a datagroup is created.

>> m.access.users = {'bob'};

>> gd_archive('C:\file.dat',m);

Further information.

All of these functions have help information which can be viewed by using the help

command in Matlab.

>> help gd_display

gd_display Displays the results of a query (a cell of

structures), or a single structure.

gd_display(qresults) can be used to display a cell array of

structures, e.g. the results of a call to the gd_qu ery

function. This is a convenient way of viewing struc tures to

get an overview of their contents.

gd_display(qresults{i}) displays the contents of a structure,

e.g. a single result from a query, where i is the i ndex of a

structure in the cell array.

Further descriptions and examples for each function are available in the next section

of this document.

 82

Function Reference

gd_addusers

Grants an array of users or user groups permission to access some data (file, variable

or datagroup).

Syntax

success = gd_addusers(ID,users)

success = gd_addusers(datagroupID,users)

success = gd_addusers(ID,groups,'groups')

success = gd_addusers(datagroupID,groups,'groups')

Description

success = gd_addusers(ID,users) grants other users permission to

query or retrieve a file or variable, specified by its ID. A userID for each user should

be provided in the users cell array. Alternatively a single user can be specified as a

string.

success = gd_addusers(datagroupID,users) is similar but grants

other users permission to query a datagroup, specified by its ID.

success = gd_addusers(ID,groups,'groups') grants a group of

users permission to query or retrieve a file or variable, specified by its ID. A groupID

for each user group should be provided in the groups cell array. Alternatively a

single group can be specified as a string. Every registered user is a member of the

built in group 'allusers' and other user groups can be set up by the database

administrator.

success = gd_addusers(datagroupID,groups,'groups') is similar

but grants a group of users permission to query a datagroup, specified by its ID.

The function returns 1 if successful, or 0 if failed (for example if one of the users

already has access permission or does not exist). All valid userIDs or groupsIDs in the

array will be granted permission, and a warning message will be displayed for any

that fail.

 83

Example

Grant users with user IDs user1 and user2 access to an archived file.

fileID = gd_archive('C:\file.dat');

users = {'user1','user2'};

gd_addusers(fileID,users);

Grant all registered users access to an archived file.

gd_addusers(fileID,'allusers','groups');

Notes

You must be the owner of the data to give others permission to access it.

A valid proxy certificate is required (see gd_createproxy from the Geodise

Compute Toolbox).

Your certificate subject must have been added to the authorisation database.

See also

gd_archive , gd_archivefiles , gd_datagroup , gd_query , gd_createproxy

 84

gd_archive

Stores a file or variable with some metadata into the archive.

Syntax

ID = gd_archive(filename)

ID = gd_archive(filename,metadata)

ID = gd_archive(filename,metadata,datagroupID)

ID = gd_archive(v)

ID = gd_archive(v,metadata)

ID = gd_archive(v,metadata,datagroupID)

ID = gd_archive(v,metadata,datagroupID,'var')

Description

ID = gd_archive(filename) takes a string representing a filename and

archives that file in a file store (specified in the ClientConfig.xml file). Some standard

information about the file (metadata) is automatically generated and can be later

queried with gd_query . A unique identifier (ID) for the archived file is returned

which can be used to retrieve the file with gd_retrieve .

ID = gd_archive(filename,metadata) archives a file with some user

defined metadata which can later be queried with gd_query . Standard metadata

about the file is also generated.

ID = gd_archive(filename,metadata,datagroupID) archives a file

and adds it to a datagroup specified by datagroupID . A datagroup is used to group

together a collection of related files, variables and other datagroups, see

gd_datagroup and gd_datagroupadd . To specify a datagroupID without

including user defined file metadata, set metadata to empty [].

ID = gd_archive(v) takes a variable and archives it in a database

(accessible via the webservices specified in the ClientConfig.xml file). v can be of

type char, double, complex, struct, sparse, cell array, or logical. Some standard

metadata about the variable is generated automatically and can be later queried with

gd_query . A unique identifier (ID) for the archived variable is returned which can be

used to retrieve the variable to the workspace with gd_retrieve . A variable can

also be assigned user defined metadata and added to a datagroup by supplying a

datagroupID in the same way as a file.

 85

ID = gd_archive(v,metadata,datagroupID,'var') should be used

when archiving a variable that is a string (char). If v has any other type it will be

automatically detected, but when it is a string ‘var’ must be specified to indicate it is a

variable and not a filename. If there is no user defined metadata or datagroupID ,

set them to empty [].

Input Arguments

metadata The metadata structure can contain any combination of named

variables, matrices and substructures (char, double, complex, struct,

sparse, cell or logical) necessary to describe the data. However, there

are two special substructures, standard and access , which may only

contain certain values.

Some metadata is automatically generated (even when no metadata is

passed to the function) and stored in the standard substructure of

metadata . For files and variables this consists of ID , userID and

archiveDate , and for files only: byteSize , format , localName

(the original name of the file) and createDate (when the original file

was created/modified). Optional comment, version and tree fields

can be added to standard and overriding values for

standard.localName and standard.format can also be

specified. The tree field is a string which can be used to represent a

user defined hierarchy for the data, similar to a directory path, e.g.

'myuserID/designs/testmodel' . See gd_query for further

information on these fields. Any other fields set in the standard

substructure will be overwritten or removed.

The access substructure of metadata controls who may query and

retrieve the data. The person who archived the data automatically has

access to it and does not need to be added. access can contain two

fields, each of which can be a single string or a cell array of strings:

users User ID strings specifying which users may access the

data.

groups Group ID strings specifying which groups of users may

access the data (currently a group must be created in

the database by an administrator).

 86

Examples

Archive a file with no user defined metadata.

ID = gd_archive ('C:\file.dat')

ID =

file_dat_ce868f40-8de0-445e-8ae5-36c05eec25a9

Archive a file with some metadata, m (user defined metadata and a standard

comment), and give access permission to user1 and user2.

m.model.name = 'test_design';

m.params = [1 4.7 5.3];

m.iterations = 9000;

m.standard.comment = 'Comment about file';

m.access.users = {'user1','user2'};

gd_archive('C:\file.dat',m);

Archive a file and add it to a datagroup, using [] to indicate no user defined metadata.

datagroupID = gd_datagroup('design opt 2004-09-03') ;

gd_archive('C:\file.dat',[],datagroupID);

Archive a structure with some user defined metadata.

v.width = 12;

v.height = 6;

m.standard.comment = 'measurement variables';

gd_archive(v,m);

Notes

A valid proxy certificate is required to archive a file or variable (see

gd_createproxy from the Geodise Compute Toolbox).

You must have access to the host machine the files will be archived on. Your

certificate subject must be added to the gridmap file on the host and to the

authorisation database.

 87

See also

gd_archivefles , gd_addusers , gd_retrieve , gd_retrievefiles ,

gd_query , gd_datagroup , gd_datagroupadd , gd_createproxy

 88

gd_archivefiles

Stores a list of files with some metadata into an archive

Syntax

IDs = gd_archivefiles(filepaths, [metadata], [datag roupIDs])

Description

IDs = gd_archivefiles(filepaths, [metadata], [datag roupIDs])

takes a cell array of strings representing filepaths, and archives the files to a file store

(specified in the ClientConfig.xml file). A unique identifier (ID) for each archived file

is returned in a cell array which can be used to retrieve the files with

gd_retrievefiles .

Input Arguments

The function optionally takes a metadata structure or a cell array of metadata

structures. The metadata structure specifying some user defined information about the

files at can be later queried with gd_query . The optional datagroupIDs is the ID of a

datagroup or a cell array of datagroup ID that the files should be added to. A

datagroup is used to group together a collection of files, variables and other

datagroups, see gd_datagroup and gd_datagroupadd .

For more information about the metadata, see gd_archive .

Examples

Archive two files with no user defined metadata, and add them to datagroups dgId1

and dgId2 respectively.

IDs = gd_archivefiles({'C:\file.dat', 'C:\input.txt '},[],

{'dgId1', 'dgId2'})

IDs =

 'file_dat_c8227861-93ae-4daa-9472-1ad77f2ff2dc'

 'input_txt_bcd1e2cf-605e-4e43-baa7-2842f9ce5617'

Archive two files that share the same user defined metadata, and give user1 and user2

READ access to them.

 89

m.model.name = 'test_design';

m.iterations = 9000;

m.standard.comment = 'This is a test.';

m.access.users = {'user1','user2'};

gd_archivefiles({'C:\file.dat', 'C:\input.txt'}, m) ;

Archive two files with own user defined metadata (e.g. m1 and m2 contain the

metadata for file.dat and config.txt respectively), and give users 'tim', 'sam', and group

'genie' READ access. Add these two files into the datagroup 'dg3'.

m1.model.name = 'test_design_1';

m1.iterations = 9000;

m1.standard.comment = 'Comment about file.dat.';

m1.access.users = {'tom','sam'};

m2.model.name = 'test_design_2';

m2.iterations = 5000;

m2.standard.comment = 'Comment about input.txt.';

m2.access.groups = {'genie'};

gd_archivefiles({'C:\file.dat', 'C:\input.txt'}, {m 1, m2},

'dgId3');

Notes

A valid proxy certificate is required to archive a file (see gd_createproxy from the

Geodise Compute Toolbox).

You must have access to the host machine the files will be archived on. Your

certificate subject must be added to the gridmap file on the host and to the

authorisation database.

See also

gd_archive , gd_addusers , gd_retrieve , gd_retrievefiles , gd_query ,

gd_datagroup , gd_datagroupadd , gd_createproxy

 90

gd_datagroup

Creates a new datagroup, used to group together archived files, variables and

subdatagroups.

Syntax

datagroupID = gd_datagroup(datagroupname)

datagroupID = gd_datagroup(datagroupname,metadata)

datagroupID = gd_datagroup(datagroupname,metadata,

'monitor')

Description

datagroupID = gd_datagroup(datagroupname) creates a new, empty

datagroup with a datagroup name. The datagroupname argument can act as a user

defined identifier for the datagroup, although it does not have to be unique. Some

standard information about the datagroup (metadata) is also generated which can be

later queried with gd_query . A unique identifier (datagroupID) is returned which

can then be used to add files and variables to the datagroup while they are being

archived with gd_archive . Files, variables and other datagroups already in the

archive can be added to a datagroup with gd_datagroupadd .

datagroupID = gd_datagroup(datagroupname,metadata) creates a

new, empty datagroup with a datagroup name and some user defined metadata which

can later be queried with gd_query . Standard metadata about the datagroup is also

generated.

datagroupID = gd_datagroup(datagroupname,metadata,

'monitor') is useful for monitoring a group of data produced by a computational

job. It is similar to an ordinary datagroup but stores extra index information that

allows a user of gd_query to easily find the datagroup associated with their most

recent job, or the most recent job meeting certain metadata criteria. This functionality

is provided for convenience so that the user does not have to remember any particular

field names, values, or what time the datagroup was created.

Input Arguments

metadata The metadata structure can contain any combination of named

variables, matrices and substructures (char, double, complex, struct,

sparse, cell or logical) necessary to describe the datagroup. However,

 91

there are two special substructures, standard and access , which

may only contain certain values.

Some metadata is automatically generated (even when no metadata is

passed to the function) and stored in the standard substructure of

metadata . For datagroups this consists of ID , userID and

archiveDate . Optional comment, version and tree fields can also

be added to standard . The tree field is a string which can be used to

represent a user defined hierarchy for the data, similar to a directory

path, e.g. 'myuserID/designs/testmodel' . See gd_query for

further information on these fields. Any other fields set in the

standard substructure will be overwritten or removed.

The access substructure of metadata controls who may query the

datagroup. The person who created the datagroup automatically has

access to it and does not need to be added. access can contain two

fields, each of which can be a single string or a cell array of strings:

users User ID strings specifying which users may access the

datagroup.

groups Group ID strings specifying which groups of users may

access the datagroup (currently a user group must be

created in the database by an administrator).

Examples

Create a datagroup with some metadata, m (user defined metadata and a standard

comment), and give access permission to user1 and user2.

m.expnum = 123;

m.standard.comment = 'Data for experiment 123';

m.access.users = {'user1','user2'};

datagroupID = gd_datagroup('design opt 2004-09-03', m)

datagroupID =

dg_ce868f40-8ds0-455e-9ae5-36c05epc25a9

 92

Add a file to the datagroup when it is archived.

gd_archive('C:\file.dat', [], datagroupID);

Add a variable to the datagroup after it has been archived.

v.width = 12;

varID = gd_archive(v);

gd_datagroupadd(datagroupID,varID);

Create a monitored datagroup and find it with a query.

monID = gd_datagroup('design opt 2004-09-03 job',[] ,'monitor')

gd_datagroupadd(monID,varID);

gd_query('standard.jobIndex = max','monitor');

Further examples are given in gd_datagroupadd and gd_query .

Notes

A valid proxy certificate is required (see gd_createproxy from the Geodise

Compute Toolbox).

Your certificate subject must have been added to the authorisation database.

See also

gd_datagroupadd , gd_archive , gd_retrieve , gd_archivefiles ,

gd_retrievefiles , gd_query , gd_createproxy

 93

gd_datagroupadd

Adds an archived file, variable or subdatagroup to a datagroup.

Syntax

success = gd_datagroupadd(datagroupID,ID)

success = gd_datagroupadd(datagroupID,subdatagroupI D)

Description

success = gd_datagroupadd(datagroupID,ID) adds a file or variable

to a datagroup. The datagroup is specified by its unique identifier datagroupID and

the identifier of the file or variable to add is specified with ID . The datagroup must

have been created with gd_datagroup and the file or variable must have been

archived using gd_archive . The function returns 1 if successful, or 0 if failed (for

example if the datagroup does not exist).

success = gd_datagroupadd(datagroupID,subdatagroupI D) adds

a datagroup (subdatagroupID) to another datagroup (datagroupID). The

datagroup to be added is known as a subdatagroup. Both datagroups must have been

created with gd_datagroup .

Examples

Add a file and a variable to a datagroup after they have been archived.

datagroupID = gd_datagroup('design opt 2004-09-03') ;

fileID = gd_archive('C:\file.dat');

gd_datagroupadd(datagroupID,fileID);

v.width = 12;

varID = gd_archive(v);

gd_datagroupadd(datagroupID,varID);

Add a datagroup to another datagroup

datagroupID = gd_datagroup('parent datagroup');

subdatagroupID = gd_datagroup('child datagroup');

gd_datagroupadd(datagroupID,subdatagroupID);

 94

Notes

Only the owner of a datagroup can add data to it.

Attempting to add a file, variable or subdatagroup twice to the same datagroup will

cause an error.

Attempting to add a datagroup to another datagroup that it is already the parent or

ancestor of will cause an error. E.g. If datagroup b is added to datagroup a, and

datagroup c is added to b, then a cannot be added to b or c .

A valid proxy certificate is required (see gd_createproxy from the Geodise

Compute Toolbox).

Your certificate subject must have been added to the authorisation database.

See also

gd_datagroup , gd_archive , gd_retrieve , gd_archivefiles ,

gd_retrievefiles , gd_query , gd_createproxy

 95

gd_dbsetup

Creates and populates the .geodise directory with configuration files.

Syntax

gd_dbsetup

gd_dbsetup(hostprompt)

Description

gd_dbsetup creates a .geodise directory in the user’s home directory if one

does not exist then copies the necessary configuration files into it. The user is

prompted to configure the name of the Globus server and directory where gd_archive

will store data files and this information is saved in .geodise/ClientConfig.xml.

Example locations for the .geodise directory are:

Windows C:\Documents and Settings\your_username\.geodise

Linux $HOME/.geodise

gd_dbsetup(0) creates a .geodise directory as above but does not prompt

for the name of the Globus server and directory where gd_archive will store data files,

using default values instead. The default settings are either taken from a previous

copy of ClientConfig.xml in .geodise or from ClientConfig.xml in the distribution.

Notes

The file .geodise/ClientConfig.xml can be edited to manually configure settings such

as which Globus file store to archive files on, see installation document for more

information.

 96

gd_db_help

Gives an overview of functions and files in the Geodise Database Toolbox.

Syntax

gd_db_help

Description

gd_db_help displays a summary of the functions and files included in the

Geodise Database Toolbox.

 97

gd_db_version

Gets the Geodise Database Toolbox version number.

Syntax

gd_db_version()

Description

gd_db_version() returns the version of the current Geodise Database

Toolbox for Matlab release as a string of the form MAJOR.MINOR.POINT.

 98

gd_display

Displays the results of a query (a cell of structures), or a single structure.

Syntax

gd_display(qresults)

gd_display(qresults{i})

Description

gd_display(qresults) can be used to display a cell array of structures,

e.g. the results of a call to the gd_query or gd_querydeleted function. This is a

convenient way of viewing structures to get an overview of their contents.

gd_display(qresults{i}) displays the contents of a structure, e.g. a

single result from a query where i is the index of a structure in the cell array.

Example

Display all the results from a query.

r = gd_query('iterations = 9000');

gd_display(r);

*** Content of structure r{1} (Total structures: 2) ***

 standard.ID: file_dat_66830074-e749-4de0-b976-61f 4d32

 standard.localName: file.dat

 standard.byteSize: 245

 standard.format: dat

 standard.createDate: 2004-08-23 10:40:33

 standard.archiveDate: 2004-09-03 15:25:45

 standard.userID: jlw

 standard.comment: Comment about file

 standard.datagroups:

 model.name: test_design

 params:

 1.0000 4.7000 5.3000

 iterations: 9000

Press ENTER to continue ..., q to quit:

 99

To display just one result from a query use that result’s index.

gd_display(r{1});

See also

gd_query , gd_querydeleted

 100

gd_markfordeletion

Marks data for deletion from the archive.

Syntax

marktotal = gd_markfordeletion(ID)

marktotal = gd_markfordeletion(IDs)

Description

marktotal = gd_markfordeletion(ID) takes an ID string and marks

the corresponding file, variable or datagroup for deletion from the archive. The

function returns 1 if successful or 0 if failed, in which case the reason is displayed in a

warning message (for example the ID does not exist). Once data is marked for

deletion it is no longer visible using gd_query , gd_retrieve or any other Database

Toolbox functions (apart from gd_unmarkfordeletion or gd_querydeleted).

The data is then eligible for permanent deletion by an administrator.

marktotal = gd_markfordeletion(IDs) is similar but takes a cell of

ID strings and marks the corresponding files, variables and datagroups for deletion

from the archive. The function returns marktotal , the total number of IDs

successfully marked for deletion, and displays warning messages for those that were

unsuccessful.

Examples

Mark a single file for deletion from the archive.

ID = gd_archive('C:\file.dat');

marktotal = gd_markfordeletion(ID)

marktotal =

 1

Query variable metadata, and then mark the corresponding variables for deletion from

the archive.

q = 'standard.archiveDate > 2004-12-01 & a.b < -500 ';

qresults = gd_query(q, 'varmeta');

for i=1:size(qresults,2)

 101

 IDs{i} = qresults{i}.standard.ID;

end

marktotal = gd_markfordeletion(IDs)

marktotal =

 5

Notes

Only the owner of the data (the person who archived it) can mark it for deletion.

A valid proxy certificate is required (see gd_createproxy from the Geodise

Compute Toolbox).

See also

gd_unmarkfordeletion , gd_querydeleted , gd_createproxy

 102

gd_query

Performs queries over metadata or Matlab structures stored in the archive.

Syntax

gd_query

qresults = gd_query(query)

qresults = gd_query(query,datasource)

qresults = gd_query(query,datasource,resultfields)

qresults = gd_query(query,datasource,resultfields,

 orderby)

qresults = gd_query(query,datasource,resultfields,

 orderby,resultlimit)

qresults = gd_query(query,datasource,resultfields,

 resultlimit)

Description

gd_query with no input arguments starts the query GUI, a Graphical User

Interface for querying metadata and structures which also allows hyperlink browsing

between related data. See the Geodise Database Toolbox Tutorial for more details.

qresults = gd_query(query) sends a query string to the database

requesting all file metadata that meets the criteria specified in the string. A query

takes the form 'field = value' , where = can be replaced by other comparison

operators. More than one query condition can be included in the string using & to join

them together. The function returns a cell array of metadata structures, one for each

matching result. To view the query results, use function gd_display .

qresults = gd_query(query,datasource) sends a query string to the

database requesting matching archived structures or metadata of a certain type,

depending on the value of the datasource string. To query metadata set

datasource to ‘file’ (default), ‘varmeta’ (metadata about variables), ‘datagroup’ or

‘monitor’. A cell array of matching structures is returned, one for each result. To

query variables stored in the database set datasource to ‘var’. In this case the

function will return a cell array of matching variables. The only variables that can be

queried in this way are structures, because they contain named fields that can be

searched for.

 103

qresults = gd_query(query,datasource,resultfields) sends a

query string to the database as above but only returns selected fields for each

matching result. The resultfields string can be one of the following:

1. A comma separated list indicating which fields should be returned for each

result, for example just the standard.ID fields. The default, * , returns all

fields. Prefix with the keyword 'distinct' to remove duplicates from the

results, e.g. 'distinct field1, field2' .

2. An aggregate function (count , max, min , sum, avg) applied to a field,

followed by an optional 'groupby' clause. For example,

gd_query(query,'file','count(field1)') executes the query

and returns the number of matching results which contain field1. The

number of matching results for each different value of field2 can be

returned with 'count(*) groupby field2' . Further details are given

in the Input Arguments section.

qresults = gd_query(query,datasource,resultfields,

orderby) sends a query to the database and sorts the results by one or more fields,

specified as a comma separated list prefixed with the keyword 'orderby'. Use num()

or str() on each field in the list to indicate whether to sort it numerically or

alphabetically, e.g. 'orderby num(field1), str(field2) '. The default sort

order is ascending; append the keyword 'desc' after a field to sort it in descending

order, e.g. ‘orderby num(field1) desc ’.

qresults = gd_query(query,datasource,resultfields,

orderby, resultlimit) limits the number of results returned from a query. An

integer value means return the top resultlimit values from the sorted results. An

ordinal string of the form '1st' or '2nd' etc means return a specific result based on its

position.

qresults=gd_query(query,datasource,resultfields,

resultlimit) limits the number of results returned using resultlimit as above

but without the overhead of sorting, which makes the operation quicker. This can be

used to get a sample set of results when the order does not matter.

Input Arguments

query A query takes the form 'field = value' where field is the name

of a field in the archived metadata/variable structure, for example

iterations or standard.ID (dot notation is used to access the

 104

subfields of a structure). The value is an alphanumeric value the field

should contain. The operator & (meaning ‘and’) can be used to specify

more than one search condition.

The following operators can be used to compare fields with values:

= Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

like Similar to

not like Not similar to

Similarity matches with like and not like use the following

wildcards:

_ Matches any single character.

% Matches any string of any length (including 0).

For example, 'standard.localName like %dat%' will match

strings containing the phrase ‘dat’, and 'model.name like _est%'

will match strings starting with any character followed by ‘est’ and

then any string. To search for the characters _ and %, precede them

with the \ escape character.

The operators do case sensitive comparison when used with string

values. To make an operator case insensitive surround it with two #

characters. For example, #=#, #!=#, #like#, #not like#.

Another wildcard, *, provides flexibility in describing the field path.

For example, model.name can be replaced by *.name for a less

specific search.

 105

 In addition to user defined metadata fields, the following standard

metadata fields can be queried:

standard.ID ID that uniquely identifies a file,

variable or datagroup.

standard.datagroupname Name of datagroup. Only used when

querying datagroups.

standard.localName Name of a local file before it was

archived.

standard.byteSize Size in bytes of a file.

standard.format Format of file (default is its

extension).

standard.createDate Date the file was created/modified.

standard.archiveDate Date the file or variable was archived,

or the datagroup was created.

standard.userID ID of the user who archived the data

or created the datagroup.

standard.comment Comment about the file, variable or

datagroup.

standard.version User defined version number for the

file, variable or datagroup.

standard.tree String representing a user defined data

hierarchy, similar to a directory path.

standard.files.fileID Each file in a datagroup.

standard.vars.varID Each variable in a datagroup.

standard.

subdatagroups.

datagroupID

Each subdatagroup in a datagroup.

standard.datagroups.

datagroupID

Each datagroup a file, variable or

subdatagroup belongs to.

Datagroups are collections that can contain files, variables or other

datagroups, see gd_datagroup and gd_datagroupadd .

 106

The fields in an archived structure variable can also be queried in

conjunction with the standard metadata fields for that variable.

However, this can be an expensive operation because two data sources,

‘var’and ‘varmeta’ (see below), are queried.

datasource The data source indicates which type of data to query, and can be

specified by one of the following strings (the default datasource

value is 'file'):

‘file’ Metadata about files.

‘datagroup’ Metadata about datagroups.

‘monitor’ Metadata about monitorable datagroups.

‘varmeta’ Metadata about Matlab variables.

‘var’ Matlab variables.

A datagroup that was created with the ‘monitor’ flag can be queried as

an ordinary datagroup, or as a collection of data about a computational

job, by setting datasource to ‘monitor’. This provides a quick and

easy query mechanism for finding a user’s most recent job, or the latest

job meeting certain other metadata criteria. It is provided for

convenience so that the user does not have to remember any particular

field names, values, or what time the datagroup was created. In

addition to standard.ID , standard.userID and user defined

metadata, the following standard metadata can be used together with

‘monitor’ to query a job monitoring datagroup.

standard.jobIndex Job index. Special query syntax

jobIndex = max gets the highest

index (most recent job).

standard.jobName Name of job (same as datagroupname).

standard.startDate Start date of job (when the datagroup

was created).

resultfields

The resultfields string indicates a subset or summary of the query

result fields that should be returned. The default, * , returns all fields. A

 107

comma separated list indicates particular fields that should be returned.

This list can be prefixed with the 'distinct' keyword to remove

duplicates from the results.

Alternatively the resultfields string contains an aggregate function

(count , max, min , sum, avg) applied to one field, e.g. 'count(b)' .

These aggregate functions return summary data from all the results

matching a query as follows:

count Total number of results.

'count(*)' counts all results

'count(b)' counts only results containing the field b.

'count(distinct b)' counts only results containing

unique values of b.

max Maximum value for a field.

'max(b)' or 'max(num(b))' treats all values as

numbers.

'max(str(b))' treats all values as strings.

min Minimum value for a field.

'min(b)' or 'min(num(b))' treats all values as

numbers.

'min(str(b))' treats all values as strings.

sum All values of a particular field added together.

avg Average of all the values of a particular field.

By default an aggregate function is applied to a particular field over all

the results. For example, 'avg(b)' returns a single result containing a

number, the average of all b field values across the result set. It is also

possible to apply an aggregate function to groups of values within the

result set using the groupby keyword. For example, 'avg(b)

groupby standard.format' returns the average value of b for

each different file format.

Examples

Query file metadata to find files archived on or after 1st September 2004 where

iterations = 9000. A datasource argument is not required because ‘file’ is the default.

 108

q = 'standard.archiveDate>=2004-09-01 & iterations= 9000';

qresults = gd_query(q)

qresults =

 [1x1 struct] [1x1 struct]

disp(qresults{1});

 standard: [1x1 struct]

 model: [1x1 struct]

 params: [1 4.7000 5.3000]

 iterations: 9000

disp(qresults{1}.standard.archiveDate);

2004-09-03 15:25:45

See gd_display for an example of displaying the full contents of query results.

Query to find files which have a name field equal to ‘test_design’ in their metadata

and only return the fields standard.ID and params, removing any duplicates.

q = '*.name = test_design';

qresults = gd_query(q,'file','distinct standard.ID, params');

disp(qresults{1})

 standard: [1x1 struct]

 params: [1 4.7000 5.3000]

Query to find datagroups with comments containing the text ‘experiment’.

q = 'standard.comment like %experiment%';

gd_query(q,'datagroup');

Query variable metadata to find the metadata for all variables that are in a particular

datagroup.

 109

q = 'standard.datagroups.datagroupID = dg_ce868f40- 8ds0-45...';

gd_query(q,'varmeta');

Query variables to find structures where field width is between 9 and 14 inclusive.

gd_query('width >= 9 & width <= 14','var');

Find files that have a comment in their metadata, using "" (two double quotes) to

indicate an empty value.

gd_query('standard.comment != ""');

Find the 10 most recent files archived by user ‘bob’. The default sort order is

ascending so keyword ‘desc’ is used to list the dates in descending order.

q = 'standard.userID = bob';

gd_query(q,'file','*','orderby standard.archiveDate desc',10);

Find all the files in a particular datagroup and order the results first by iterations

then by model.name . For custom metadata you must specify whether to sort

numerically (num) or alphabetically (str).

q = 'standard.datagroups.datagroupID = dg_ce868f40- 8ds0-45...';

gd_query(q,'file','*',...

 'orderby num(iterations), str(model.name)');

Find the total number of variables archived by user ‘bob’.

qresults = gd_query('standard.userID = bob','var',' count(*)');

gd_display(qresults{1})

*** Content of the structure ***

 standard.count: 150

Find the maximum value for iterations in file metadata archived by user ‘bob’.

q = 'standard.userID = bob';

 110

qresults = gd_query(q,'file','max(iterations)');

gd_display(qresults{1})

*** Content of the structure ***

 standard.max: 12000

Find the maximum value for model.name in file metadata archived by user ‘bob’.

Find the maximum alphabetically (str) rather than numerically (default).

gd_query(q,'file','max(str(model.name))');

Count the number of files of each different format that user bob has archived.

r = gd_query(q,'file','count(*) groupby standard.fo rmat');

gd_display(r)

*** Content of structure r{1} (Total structures: 2) ***

 standard.format: dat

 standard.count: 73

Press ENTER to continue ..., q to quit:

*** Content of structure r{2} (Total structures: 2) ***

 standard.format: txt

 standard.count: 22

*** No more results. ***

Find the latest job monitoring datagroup then find the latest job monitoring datagroup

which matches some other criteria.

m.modelver = 0.6; m2.modelver = 0.71;

gd_datagroup('design model job xyz',m,'monitor');

gd_datagroup('design model job abc',m,'monitor');

gd_datagroup('design model job 999',m2,'monitor');

r1 = gd_query('standard.jobIndex = max','monitor');

r1{1}.standard.jobName

 111

ans =

design model job 999

r2 = gd_query('standard.jobIndex = max & modelver < = 0.6',

'monitor');

r2{1}.standard.jobName

ans =

design model job abc

Notes

When querying standard date information (archiveDate or createDate), specify

the date/time using the International Standard Date and Time Notation (ISO 8601)

which is: "YYYY-MM-DD hh:mm:ss" (hh:mm:ss is optional).

The sum and avg aggregate functions will only work on fields containing numerical

data. Non-numerical custom metadata is ignored in the calculation and non-numerical

standard metadata (e.g. standard.comment) throws an error.

Treating numerical data as strings when using orderby, max or min can lead to

unexpected results. This can be illustrated in Matlab where sort({‘1’,’5’,’10’}) returns

'1' '10' '5'. Always use the numerical syntax, e.g. orderby(num(a)) or max(a), when

working with numbers in custom metadata.

In the current release orderby , groupby , distinct and the aggregate functions

cannot be used on standard metadata about datagroup relationships

(standard.datagroups , standard.subdatagroups , standard.files and

standard.vars).

Only results for data you are authorised to access will be returned. Function

gd_addusers can be used to grant access to others.

A valid proxy certificate is required to query the database (see gd_createproxy

from the Geodise Compute Toolbox).

Your certificate subject must have been added to the authorisation database.

 112

See also

gd_display , gd_createproxy , gd_archive , gd_retrieve ,

gd_archivefiles , gd_retrievefiles , gd_datagroup , gd_datagroupadd ,

gd_addusers

 113

gd_querydeleted

Performs queries over metadata or Matlab structures marked for deletion in the

archive.

Syntax

qresults = gd_querydeleted(query)

qresults = gd_querydeleted(query,datasource)

qresults = gd_querydeleted(query,datasource,resultf ields)

qresults = gd_querydeleted(query,datasource,resultf ields,

 orderby)

qresults = gd_querydeleted(query,datasource,resultf ields,

 orderby,resultlimit)

qresults = gd_querydeleted(query,datasource,resultf ields,

 resultlimit)

Description

qresults = gd_querydeleted(...) has exactly the same functionality

as gd_query but performs the queries over data that has been marked for deletion

using the gd_markfordeletion function. gd_querydeleted returns a cell array

of metadata structures, one for each matching result. The standard.ID field in each

result can be passed to the gd_unmarkfordeletion function, which can recover

data that was mistakenly marked for deletion. This function will only return results for

data that has not already been permanently deleted from the archive by an

administrator.

A brief description of the input arguments is given here, see gd_query for further

information. To view the query results, use function gd_display .

Input Arguments

query A query takes the form 'field = value' where field is the

name of a field in the archived metadata/variable structure, for

example iterations or standard.ID (dot notation is used to

access the subfields of a structure). The value is an alphanumeric

value the field should contain. The operator & (meaning ‘and’) can

be used to specify more than one search condition.

datasource The data source indicates which type of data to query, and can be

 114

specified by one of the following strings (the default datasource

value is 'file'):

‘file’ Metadata about files.

‘datagroup’ Metadata about datagroups.

‘monitor’ Metadata about monitorable datagroups.

‘varmeta’ Metadata about Matlab variables.

‘var’ Matlab variables.

resultfields The resultfields string is a comma separated list indicating which

fields should be returned for each result, for example just the

standard.ID fields. The default, * , returns all fields. It can also

be used to express aggregate functions (count , max, min , avg ,

sum) applied on a result field, e.g. 'count(standard.ID)' .

orderby The results may be sorted by one or more fields, specified as a

comma separated list prefixed with the keyword 'orderby'. Fields

are sorted numerically (num) or alphabetically (str), e.g.

'orderby num(field1), str(field2)' . The default sort

order is ascending; append the keyword 'desc' after a field to sort it

in descending order, e.g. 'orderby num(field1) desc' .

resultlimit The number of results returned from a query can be limited. An

integer value means return the top resultlimit values from the

results. An ordinal string of the form '1st' or '2nd' etc means return

a specific result based on its position.

Examples

Query variable metadata that has been marked for deletion, and then unmark the

corresponding variables so that they are no longer eligible for deletion from the

archive.

q = 'standard.archiveDate > 2004-12-01 & a.b < -500 ';

qresults = gd_querydeleted(q, 'varmeta');

for i=1:size(qresults,2)

 IDs{i} = qresults{i}.standard.ID;

end

 115

unmarktotal = gd_unmarkfordeletion(IDs)

unmarktotal =

 5

Notes

When querying standard date information (archiveDate or createDate), specify

the date/time using the International Standard Date and Time Notation (ISO 8601)

which is: "YYYY-MM-DD hh:mm:ss" (hh:mm:ss is optional).

The sum and avg aggregate functions will only work on fields containing numerical

data. Non-numerical custom metadata is ignored in the calculation and non-numerical

standard metadata (e.g. standard.comment) throws an error.

Treating numerical data as strings when using orderby, max or min can lead to

unexpected results. This can be illustrated in Matlab where sort({‘1’,’5’,’10’}) returns

'1' '10' '5'. Always use the numerical syntax, e.g. orderby(num(a)) or max(a), when

working with numbers in custom metadata.

In the current release orderby , groupby , distinct and the aggregate functions

cannot be used on standard metadata about datagroup relationships

(standard.datagroups , standard.subdatagroups , standard.files and

standard.vars).

Only results for data marked for deletion and owned by the user (i.e. data the user

archived/created) will be returned.

If the marked data has been permanently deleted from the archive by an administrator

it cannot be queried.

A valid proxy certificate is required (see gd_createproxy from the Geodise

Compute Toolbox).

Your certificate subject must have been added to the authorisation database.

See also

gd_unmarkfordeletion , gd_markfordeletion , gd_display , gd_query ,

gd_createproxy

 116

 117

gd_retrieve

Retrieves a file, variable or metadata from the archive to the local machine.

Syntax

filename = gd_retrieve(ID,filename)

filename = gd_retrieve(ID,directory)

filename = gd_retrieve(ID,filename,[],'overwrite')

filename = gd_retrieve(ID,directory,[],'overwrite')

v = gd_retrieve(ID)

metadata = gd_retrieve(ID,[],'metadata')

Description

The ID needed to retrieve some data can be found in its metadata as standard.ID ,

and is also returned by gd_archive .

filename = gd_retrieve(ID,filename) retrieves a file from the

archive based on its unique identifier (ID) and saves it to a local file specified by the

filename string. The function returns the retrieved file’s new location as a string,

which is equal to the filename argument in this case. If a file exists with the same

name a prompt will appear asking whether to overwrite it.

filename = gd_retrieve(ID,directory) retrieves a file from the

archive based on its unique identifier (ID) and saves it to a local directory specified by

the directory string. The original name of the file will be used, which is determined by

the standard.localName property in the file’s metadata, see gd_archive and

gd_query . The function returns the retrieved file’s new location as a string.

filename = gd_retrieve(ID,filename,[],'overwrite') retrieves

a file and saves it to the local file system. If a file exists with the same name it will be

overwritten without prompting. This is also the case when a directory is given as

the second argument.

v = gd_retrieve(ID) returns a variable from the archive to the Matlab

workspace based on its unique identifier (ID).

metadata = gd_retrieve (ID,[],'metadata') will return a metadata

structure which corresponds to the file, variable or datagroup identified by ID . This is

 118

a shortcut, as the same result can be achieved using gd_query .

Examples

Retrieve a file and save it with a specific file name.

fileID = gd_archive('C:\file.dat');

gd_retrieve(fileID,'C:\filesdir\myfile.dat')

ans =

C:\filesdir\myfile.dat

Retrieve a file to a directory and use its original name.

gd_retrieve(fileID,'C:\filesdir')

ans =

C:\filesdir\file.dat

Retrieve a variable to the Matlab workspace.

v.width = 12;

v.height = 6;

varID = gd_archive(v);

x = gd_retrieve(varID)

x =

 width: 12

 height: 6

Retrieve some metadata about a file.

m = gd_retrieve(fileID,[],'metadata');

Notes

You can only retrieve data that you archived or that someone else has given you

permission to access.

 119

A valid proxy certificate is required to retrieve a file, variable or metadata (see

gd_createproxy from the Geodise Compute Toolbox).

You must have access to the host machine the files will be retrieved from. Your

certificate subject must be added to the gridmap file on the host and to the

authorisation database.

See also

gd_retrievefiles , gd_archive , gd_archivefiles , gd_datagroup ,

gd_datagroupadd , gd_query , gd_createproxy

 120

gd_retrievefiles

Retrieves a list of files from the archive to the local computer

Syntax

filenames = gd_retrievefiles(IDs, directory)

filenames = gd_retrievefiles(IDs, localpaths)

Description

Warning: If a file exists with the same name on the local machine, it will be

overwritten !!!

The ID needed to retrieve a file can be found in its metadata as standard.ID, and is

also returned by gd_archive.

filenames = gd_retrievefiles(IDs, directory) retrieves a list of files

from the archive given a cell array of file ID strings, and saves the files to a local

directory specified by the directory string. The original name of the file will be used,

which is determined by the standard.localName property in the file’s metadata. The

function returns the retrieved files' new locations as a cell array of strings.

filenames = gd_retrievefiles(IDs, localpaths) retrieves a list of files

from the archive given a cell array of file ID strings, and saves each file to a local file

specified by the corresponding localpath string. The function returns the retrieved

files' new locations as a cell array of strings.

Examples

Retrieve a list of files to a directory and use their original file names.

gd_retrievefiles ({fileID1, fileID2, fileID3},'C:\m yDir')

ans =

 'C:\myDir\input.dat'

 'C:\myDir\output.dat'

 'C:\myDir\config.txt'

Retrieve a list of files to the specified localpaths.

 121

gd_retrievefiles ({fileID1, fileID2, fileID3},{'C:\ myDir',

'E:\temp\myOutput.dat', 'E:\temp\myConfig.txt'})

ans =

 'C:\myDir\input.dat'

 'E:\temp\myOutput.dat'

 'E:\temp\myConfig.txt'

Notes

You can only retrieve data that you archived or that someone else has given you

permission to access.

A valid proxy certificate is required to retrieve a file, variable or metadata (see

gd_createproxy from the Geodise Compute Toolbox).

You must have access to the host machine the files will be retrieved from. Your

certificate subject must be added to the gridmap file on the host and to the

authorisation database.

See also

gd_retrieve , gd_archive , gd_archivefiles , gd_datagroup ,

gd_datagroupadd , gd_query , gd_createproxy

 122

gd_unmarkfordeletion

Recovers data marked for deletion, if it has not been permanently deleted by an

administrator.

Syntax

unmarktotal = gd_unmarkfordeletion(ID)

unmarktotal = gd_unmarkfordeletion(IDs)

Description

unmarktotal = gd_unmarkfordeletion(ID) takes an ID string and

unmarks the corresponding file, variable or datagroup so it is no longer marked for

deletion from the archive. This is a safety measure to recover data that was mistakenly

marked for deletion. This function is only applicable for data that has not already been

permanently deleted from the archive by an administrator. The function returns 1 if

successful or 0 if failed, in which case the reason is displayed in a warning message

(for example the ID does not exist). If data is successfully unmarked it is visible again

to gd_query , gd_retrieve and other Database Toolbox functions.

unmarktotal = gd_unmarkfordeletion(IDs) is similar but takes a cell

of ID strings and unmarks the corresponding files, variables and datagroups so they

are no longer marked for deletion from the archive. The function returns

unmarktotal , the total number of IDs successfully unmarked for deletion, and

displays warning messages for those that were unsuccessful.

Examples

Unmark a single file so that it is no longer eligible for deletion from the archive.

ID = gd_archive('C:\file.dat');

gd_markfordeletion(ID);

unmarktotal = gd_unmarkfordeletion(ID)

unmarktotal =

 1

Query variable metadata that has been marked for deletion, and then unmark the

corresponding variables so that they are no longer eligible for deletion from the

archive.

 123

q = 'standard.archiveDate > 2004-12-01 & a.b < -500 ';

qresults = gd_querydeleted(q, 'varmeta');

for i=1:size(qresults,2)

 IDs{i} = qresults{i}.standard.ID;

end

unmarktotal = gd_unmarkfordeletion(IDs)

unmarktotal =

 5

Notes

Only the owner of the data (the person who archived it) can unmark it for deletion.

If the marked data has been permanently deleted from the archive by an administrator

it cannot be recovered.

A valid proxy certificate is required (see gd_createproxy from the Geodise

Compute Toolbox).

See also

gd_markfordeletion , gd_querydeleted , gd_createproxy

 124

XML Toolbox

Introduction

The XML Toolbox for Matlab allows users to convert and store variables and

structures from the Matlab workspace into the plain text XML format, and vice versa.

This XML format can be used to store parameter structures, variables and results from

engineering applications in non-proprietary files, or XML-capable databases, and can

be used for the transfer of data across the Grid. The toolbox contains bi-directional

conversion routines implemented as four small intuitive and easy-to-use Matlab

functions. As an additional feature, this toolbox allows the comparison of internal

Matlab structures by comparing their XML representation, which was not previously

possible.

• Almost any type of XML document can be read and converted into Matlab's

struct format or cell data type.

• Matlab structures and variables can be stored in a non-proprietary format and

used by other tools.

• XML representations can be stored and queried using the functions provided

by the Geodise Database Toolbox.

• The ability to leverage XML and database technologies makes the data

available beyond the Matlab environment, and facilitates data sharing and

reuse between users.

• Access to XML data-driven tools such as Web Services becomes more

transparent to engineering users.

The following definitions are valid for XML Toolbox Version ≥ 2.0 (2.0, 2.1, 2.2,

3.0a, 3.1, 3.2). The size of data structures the XML Toolbox can deal with is only

limited by the available memory; as an indication, 60MB large data structures can be

easily converted on a 256MB PC running Matlab.

 125

xml_format Converts Matlab data to an XML string

xml_formatany Converts Matlab data to an XML string
with user-defined attributes

xml_parse Converts an XML string into Matlab data

xml_parseany Converts an XML string with attributes
into Matlab data

xml_load Loads an XML file and returns Matlab
data

xml_save Saves Matlab data into an XML file

xml_help Displays help for each xml_ function

Table 6 XML Toolbox functions

 126

Tutorial

The XML Toolbox for Matlab can be used independently of the Compute and

Database Toolboxes. No proxy certificate is required to make use of its functionality.

Converting Matlab data types to XML

All common Matlab data types can be converted into XML with the simple-to-use

commands xml_format (with or without attributes) or xml_formatany . We

highlight the differences in XML output structure in the following three examples.

>> v.a = 1.2345
>> v.b = [1 2 3 4; 5 6 7 8]
>> v.c = 'This is a string.'
>> v.d = {'alpha','beta'}
>> v.e = (1==2)
>> v.f.sub1.subsub1 = 1
>> v.f.sub1.subsub2 = 2
>> v.g(1).aa(1) = {'g1aa1'}
>> v.g(1).aa(2) = {'g1aa2'}
>> v.g(2).aa(1) = {'g2aa1'}

This first example shows the formatting of the Matlab variable with no additional

input parameters specified. The XML is formatted in such a way that any subsequent

parsing of the created XML string with xml_parse reconstructs an exact copy of the

original Matlab variable.

>> xmlstr = xml_format(v)

xmlstr =

<root xml_tb_version="3.1" idx="1" type="struct" si ze="1 1">
 1.2345
 <b idx="1" type="double" size="2 4">1 5 2 6 3 7 4 8
 <c idx="1" type="char" size="1 17">This is a stri ng.</c>
 <d idx="1" type="cell" size="1 2">
 <item idx="1" type="char" size="1 5">alpha</ite m>
 <item idx="2" type="char" size="1 4">beta</item >
 </d>
 <e idx="1" type="boolean" size="1 1">0</e>
 <f idx="1" type="struct" size="1 1">
 <sub1 idx="1" type="struct" size="1 1">
 <subsub1 idx="1" type="double" size="1 1">1</ subsub1>
 <subsub2 idx="1" type="double" size="1 1">2</ subsub2>
 </sub1>
 </f>
 <g idx="1" type="struct" size="1 2">
 <aa idx="1" type="cell" size="1 2">
 <item idx="1" type="char" size="1 5">g1aa1</i tem>
 <item idx="2" type="char" size="1 5">g1aa2</i tem>
 </aa>
 <aa idx="2" type="cell" size="1 1">
 <item idx="1" type="char" size="1 5">g2aa1</i tem>
 </aa>
 </g>
</root>

 127

The Matlab-specific attributes idx , type and size , which allow the exact

reconstruction of the Matlab data types, can be turned off by specifying the second

parameter in the xml_format function call as 'off'. This results in a more generic

formatting of the structure, however, the XML contents are now interpreted purely as

strings when parsed back into Matlab as type and size information are lost:

>> xmlstr = xml_format(v,'off')

xmlstr =

<root>
 <a>1.2345
 1 5 2 6 3 7 4 8
 <c>This is a string.</c>
 <d>
 <item>alpha</item>
 <item>beta</item>
 </d>
 <e>0</e>
 <f>
 <sub1>
 <subsub1>1</subsub1>
 <subsub2>2</subsub2>
 </sub1>
 </f>
 <g>
 <aa>
 <item>g1aa1</item>
 <item>g1aa2</item>
 </aa>
 <aa>
 <item>g2aa1</item>
 </aa>
 </g>
</root>

The user can write the XML representation of a Matlab variable immediately into a

XML file using the command xml_save . This command uses the same XML format

as the function xml_format .

If the user wishes to define XML attributes other than the default idx , type and

size parameters, these can be added using a substructure called 'ATTRIBUTE' in the

Matlab structure and performing the formatting with the command xml_formatany .

This command converts Matlab cell data vectors into several XML elements with the

same name tag without using the 'item' tag as in the previous example.

xml_formatany may be preferable to xml_format when converting Matlab data into

XML which is processed in other applications, however, some of the information

about the original data types may be lost when converting the XML back into Matlab

 128

using xml_parseany :

>> xmlstr = xml_formatany(v)

xmlstr =

<root>
 <a>1.2345
 1 5 2 6 3 7 4 8
 <c>This is a string.</c>
 <d>alpha</d>
 <d>beta</d>
 <e>0</e>
 <f>
 <sub1>
 <subsub1>1</subsub1>
 <subsub2>2</subsub2>
 </sub1>
 </f>
 <g>
 <aa>g1aa1</aa>
 <aa>g1aa2</aa>

</g>
<g>

 <aa>g2aa1</aa>
 </g>
</root>

We can specify additional attributes for the subfields f.sub1 and g(2)

>> v.f.sub1.ATTRIBUTE.fontname = 'Helvetica'
>> v.g(2).ATTRIUTE.fontname = 'Helvetica2'

which then results in the following XML string:

>> xmlstr = xml_formatany(v)

xmlstr =

<root>
 [...]
 <f>
 <sub1 fontname="Helvetica">
 <subsub1>1</subsub1>
 <subsub2>2</subsub2>
 </sub1>
 </f>
 <g>
 <aa>g1aa1</aa>
 <aa>g1aa2</aa>
 </g>
 <g fontname="Helvetica2">
 <aa>g2aa1</aa>
 </g>
</root>

 129

Converting XML to Matlab data types

As XML can contain any arbitrary contents as long as they follow the W3C XML

Recommendation (www.w3.org), parsing and translating of these constructs into a

Matlab-specific environment can be complex. The functions xml_parse and

xml_parseany allow the conversion of XML strings into Matlab data structures in a

sensible way.

There are three distinct ways of importing XML into Matlab data structures. These

correspond to the techniques shown above for xml_format and xml_formatany .

(There are actually four ways; however, we no longer support the old method from

version 1.x).

If the XML contains Matlab specific descriptors, such as created by xml_format

with attributes switched on (i.e. the idx , type , size attributes), the XML Toolbox

will be able to re-create exactly the Matlab data type and content described by the

XML string.

For example,

>> xmlstr = ...

<root xml_tb_version="3.1" idx="1" type="struct" si ze="1 1">
 1.2345
 <b idx="1" type="double" size="2 4">1 5 2 6 3 7 4 8
 <c idx="1" type="char" size="1 17">This is a stri ng.</c>
 <d idx="1" type="cell" size="1 2">
 <item idx="1" type="char" size="1 5">alpha</ite m>
 <item idx="2" type="char" size="1 4">beta</item >
 </d>
 <e idx="1" type="boolean" size="1 1">0</e>
 <f idx="1" type="struct" size="1 1">
 <sub1 idx="1" type="struct" size="1 1">
 <subsub1 idx="1" type="double" size="1 1">1</ subsub1>
 <subsub2 idx="1" type="double" size="1 1">2</ subsub2>
 </sub1>
 </f>
 <g idx="1" type="struct" size="1 2">
 <aa idx="1" type="cell" size="1 2">
 <item idx="1" type="char" size="1 5">g1aa1</i tem>
 <item idx="2" type="char" size="1 5">g1aa2</i tem>
 </aa>
 <aa idx="2" type="cell" size="1 1">
 <item idx="1" type="char" size="1 5">g2aa1</i tem>
 </aa>
 </g>
</root>

can be parsed using the command

 130

>> v = xml_parse(xmlstr)

and returns the structure

v =

 a: 1.2345

 b: [2x4 double]

 c: 'This is a string.'

 d: {'alpha' 'beta'}

 e: 0

 f: [1x1 struct]

 g: [1x2 struct]

which corresponds exactly to the Matlab variable used in xml_format to create the

XML string.

If we use the same command, xml_parse , but tell the parser to ignore the attributes

with the command

>> v_wo_att = xml_parse(xmlstr,'off')

we obtain a structure where types and sizes of the data will not be adapted to match

standard Matlab data types, that means that all alphanumeric content will be returned

as strings.

v_wo_att =

 a: '1.2345'

 b: '1 5 2 6 3 7 4 8'

 c: 'This is a string.'

 d: {'alpha' 'beta'}

 e: '0'

 f: [1x1 struct]

 g: [1x2 struct]

The structural information (in fields f and g) is still preserved, although matrix

contents, such as in field b, and numeric values, such as in fields a and e, are returned

as pure strings.

 131

The third possibility is to use xml_parseany which is able to convert most XML

strings to Matlab data structures while taking care of namespaces and attributes. As

the structure in XML strings can be very complex (for example in WSDL documents),

the variable returned is a struct variable with sub-structures defined as cells.

If we parse, for example,

>> xmlstr = ...

 <gem:project name="MyProject">

 <username type="string">Me</username>
 <date_created type="date">2004-10-12</date_create d>
 <description fontsize="10"> cool! </description>
 <parameters n="4">
 <eps1 type="dielectric" units="1"> 8.92 </eps1>
 <eps2 type="dielectric" units="1"> 1.00 </eps2>
 <StT type="structuretype"> rod </StT>
 <nofEV> 47 </nofEV>
 </parameters>

 </project>

with

>> v = xml_parseany(xmlstr)

we obtain the variable

v =
 ATTRIBUTE: [1x1 struct]
 username: {[1x1 struct]}
 date_created: {[1x1 struct]}
 description: {[1x1 struct]}
 parameters: {[1x1 struct]}

with the following variable structure

v.ATTRIBUTE(1).name MyProject
v.ATTRIBUTE(1).NAMESPACE gem
v.username{1}.ATTRIBUTE.type string
v.username{1}.CONTENT Me
v.date_created{1}.ATTRIBUTE.type date
v.date_created{1}.CONTENT 2004-10-12
v.description{1}.ATTRIBUTE.fontsize 10
v.description{1}.CONTENT cool!
v.parameters{1}.eps1{1}.ATTRIBUTE.type dielectric
v.parameters{1}.eps1{1}.ATTRIBUTE.units 1
v.parameters{1}.eps1{1}.CONTENT 8.92
v.parameters{1}.eps2{1}.ATTRIBUTE.type dielectric
v.parameters{1}.eps2{1}.ATTRIBUTE.units 1
v.parameters{1}.eps2{1}.CONTENT 1.00
v.parameters{1}.StT{1}.ATTRIBUTE.type structuretype
v.parameters{1}.StT{1}.CONTENT rod
v.parameters{1}.nofEV{1}.ATTRIBUTE.type numeric
v.parameters{1}.nofEV{1}.CONTENT 47
v.parameters{1}.ATTRIBUTE.n 4

 132

Function Reference

xml_format

Converts a Matlab variable into an XML string.

Syntax

xmlstr = xml_format(v)

xmlstr = xml_format(v,attswitch)

xmlstr = xml_format(v,attswitch,name)

Description

xml_format converts Matlab variables and data structures (including deeply nested

structures) into XML and returns the XML as string.

Input Arguments

v Matlab variable of type "struct", "char", "double"(numeric),

"complex", "sparse", "cell", or "logical"(boolean).

attswitch optional, default='on':

'on' writes header attributes idx , size , type for identification

by Matlab when parsing the XML later;

'off' writes "plain" XML without header attributes.

name optional, give root element a specific name, eg. 'project'.

Output Arguments

xmlstr string, containing XML description of the variable v .

The root element of the created XML string is called 'root' by default but this can be

overwritten with the name input parameter. A default xml_tb_version attribute is

added to the root element unless attswitch is set to 'off'.

If attswitch is left empty, [], or set to 'on', the default attributes idx , type , and

size will be added to the XML element headers. This allows xml_parse to parse

and convert the XML string correctly back into the original Matlab variable or data

structure.

 133

If attswitch is set to 'off', some of the information is lost and subsequently the

contents of XML elements will be read in as strings when converting back using

xml_parse .

Examples

This example shows how to convert a simple number into an XML string. Note that

we could have used xml_format(5) instead.

v = 5;

xmlstr = xml_format(v)

xmlstr =

<root xml_tb_version="3.0" idx="1" type="double"

 size="1 1">5</root>

We can tell the command to ignore all the attributes and obtain the following XML:

xmlstr = xml_format(v,'off')

xmlstr =

<root>5</root>

The root elements can be assigned a different name by adding this as third parameter

to the xml_format function:

xmlstr = xml_format(v,'off','myXmlNumber')

xmlstr =

<myXmlNumber>5</myXmlNumber>

This example shows how pre-defined Matlab data (here pi) is translated into XML.

The number of decimals stored is the number required to reconstruct the exact same

variable in Matlab from XML with the xml_parse function.

v = pi;

xmlstr = xml_format(v,[],'pi')

 134

xmlstr =

<pi xml_tb_version="3.0" idx="1" type="double" size ="1 1">

3.141592653589793</pi>

Character arrays or strings can also be converted into XML:

v = 'The Hitchhikers Guide to the Galaxy';

xmlstr = xml_format(v);

xmlstr =

<root xml_tb_version="3.0" idx="1" type="char" size ="1 35">

The Hitchhikers Guide to the Galaxy</root>

One of the most powerful ways to use the XML Toolbox is to convert whole data

structures (with substructures) which can contain any Matlab data type.

v.project.name = 'my Project no. 001';

v.project.date = datestr(now,31);

v.project.uid = '208d0174-a752-f391-faf2-45bc397';

v.comment = 'This is a new project';

xmlstr = xml_format(v,'off');

xmlstr =

<root>

 <project>

 <name>my Project no. 001</name>

 <date>2004-09-09 16:18:29</date>

 <uid>208d0174-a752-f391-faf2-45bc397</uid>

 </project>

 <comment>This is a new project</comment>

</root>

Notes

If different attributes are required in the output string, please see description for

xml_formatany.

See also

xml_parseany , xml_formatany , xml_parse , xml_load , xml_save , xml_help

 135

xml_formatany

Converts a Matlab variable into an XML string with user-defined attributes.

Syntax

xmlstr = xml_formatany(v)

xmlstr = xml_formatany(v,attswitch)

xmlstr = xml_formatany(v,attswitch,name)

Description

xml_formatany converts Matlab variables and structures (including deeply nested

structures) into an XML string. The user can specify attributes for each XML element

in substructures of the struct variable, v .

Input Arguments

v Matlab variable of type "struct", "char", "double"(numeric),

"complex", "sparse", "cell", or "logical"(boolean).

attswitch optional, default='on':

'on' writes header attributes idx , size , type for identification

by Matlab when parsing the XML later;

'off' writes "plain" XML without header attributes.

name optional, give root element a specific name, eg. 'project'.

Output Arguments

xmlstr string, containing XML description of the variable v .

The root element of the created XML string is called 'root' by default but this can be

overwritten with the name input parameter. A default xml_tb_version attribute is

added to the root element unless attswitch is set to 'off'.

If attswitch is left empty, [], or set to 'on', the default attributes idx, type, and size

will be added to the XML element headers. This allows xml_parse to parse and

convert the XML string correctly back into the original Matlab variable or data

structure.

If attswitch is set to 'off', some of the information is lost and subsequently the

 136

contents of XML elements will be read in as strings when converting back using

xml_parse .

Examples

In this example, we define a data structure in Matlab and add attributes to it before

converting it into an XML string.

v.project.name = 'my Project no. 002';

v.project.date = datestr(now, 31);

v.project.uid = '2004-0909-1618-29af-04c7';

v.project.ATTRIBUTE.id = 'AA5119278466';

v.comment.CONTENT = 'This is a new project';

v.comment.ATTRIBUTE.fontname = 'Times New Roman';

xmlstr = xml_formatany(v);

xmlstr =

<root>

 <project id="AA5119278466">

 <name>my Project no. 002</name>

 <date>2004-09-09 16:18:29</date>

 <uid>2004-0909-1618-29af-04c7</uid>

 </project>

 <comment fontname="Times New Roman">This is a new

 project</comment>

</root>

Notes

If attributes are required for string data, the string must be explicitly assigned to a

CONTENT field of the Matlab structure. In the above example, the comment field is

defined as

comment.ATTRIBUTE.fontname = 'Times New Roman'

comment.CONTENT = 'This is a new project';

This is due to the ATTRIBUTE field overwriting the contents otherwise.

See also

xml_parseany , xml_format , xml_parse , xml_load , xml_save , xml_help

 137

xml_help

Shows a one-page summary of the usage for all XML Toolbox commands.

Syntax

xml_help

XML TOOLBOX FOR MATLAB X.Y

FUNCTIONS:

 xml_format converts a Matlab variable/structure in to an XML string

 xml_parse parses and converts an XML string into Matlab variable

 xml_save saves a Matlab variable/structure in XM L format in a file

 xml_load loads an .xml file written with xml_sav e back into Matlab

 xml_help this file, displays info about availabl e xml_* commands

 tests/xml_tests tests the xml toolbox by writin g/reading a number

 of xml test files

FILES:

 doc/xml_toolbox.* documentation containing info o n installation,

 usage, implementation, etc.

 matlab.xsd contains a Schema to validate X ML files for the

 toolbox (V.1.0) (if not present , look at

 http://www.geodise.org/matlab.x sd)

RELATED:

 xmlread, xmlwrite (shipped with Matlab from versi on 6.5)

Further information can be obtained by using the he lp command on

a specific function, e.g. help xml_format.

--- -----------

 Copyright (C) 2002-2004

 Author: Marc Molinari <m.molinari@soton.ac.uk>

 $Revision: 1.5 $ $Date: 2004/03/31 15:51:04 $

See also

xml_parseany , xml_formatany , xml_format , xml_parse , xml_load ,

xml_save

 138

xml_load

Loads an XML file and converts its content into a Matlab structure or variable.

Syntax

v = xml_load(filename)

v = xml_load(filename,attswitch)

Description

xml_load reads the file given in parameter filename and uses xml_parse to convert

it into a Matlab data structure or variable. If the file cannot be found, an error will be

displayed.

Input Arguments

filename filename of xml file to load (if extension .xml is omitted,

xml_load tries to append it if the file cannot be found).

attswitch optional, default='on':

'on' takes into account attributes idx , size , type for creating

corresponding Matlab data types;

'off' ignores attributes in XML element headers.

 Output Arguments

v Matlab structure or variable.

Examples

This example simply loads the sample file from the given location and converts its

contents to a Matlab data structure. (The file has previously been created using

xml_save).

v = xml_load('c:/data/myfavourite.xml')

v =

 name: 'Google'

 url: 'http://www.google.com'

 rating: 5

description: 'Great search functionality for the we b'

 139

In the following example, we perform the same action, however, as we are specifying

the additional parameter 'off' for attributes, the idx , size , and type attributes are

ignored and the result is slightly different: v.rating in this case is returned as a Matlab

string variable, '5' .

v = xml_load('c:/data/myfavourite.xml','off')

v =

 name: 'Google'

 url: 'http://www.google.com'

 rating: '5'

description: 'Great search functionality for the we b'

See also

xml_parseany , xml_formatany , xml_format , xml_parse , xml_save ,

xml_help

 140

xml_parse

Parses an XML string, xmlstr, and returns the corresponding Matlab structure v.

Syntax

v = xml_parse(xmlstr)

v = xml_parse(xmlstr,attswitch)

Description

This is a non-validating parser. XML processing entries or comments starting with

'<?' or '<!', are ignored by the parser.

Input Arguments

xmlstr XML string, for example read from a file with

xmlstr = fileread(filename)

attswitch optional, default='on':

'on' reads XML header attributes idx , size , type if present and

interprets these to create the correct Matlab data types.

'off' ignores XML element header attributes and interprets

contents as strings.

Output Arguments

v Matlab variable or structure.

Examples

This example shows how to define a simple XML string and parse it into a Matlab

variable. As the idx , type , and size attributes are defined, the resulting Matlab data

type conforms to these specifications (class double vector of size [1x2]).

xmlstr = ...

'<root idx="1" type="double" size="1 2">3.1416 1.41 42</root>';

V1 = xml_parse(xmlstr)

 141

V1 =

 [3.1416, 1.4142] % (class double)

Again, setting the attswitch parameter to 'off' lets the parser ignore the

attributes and the returned variable is interpreted as a string.

V2 = xml_parse(xmlstr,'off')

V2 =

 '3.1416 1.4142' % (class char)

Let's define a more complex data set in XML:

xmlstr =
'<root>
 <project>
 <name>myProjectName</name>
 <date>2004-09-13</date>
 <bytes>10472</bytes>
 </project>
 <project>
 <name>myProject Two</name>
 <date>2004-09-13</date>
 <bytes>9851</bytes>
 </project>
</root>'

v = xml_parse(xmlstr);

v: 1x2 struct array with fields:

 project

v(1).project:

 name: 'myProjectName'

 date: '2004-09-13'

 bytes: '10472'

v(2).project:

 name: 'myProject Two'

 date: '2004-09-13'

 bytes: '9851'

See also

xml_parseany , xml_formatany , xml_format , xml_load , xml_save , xml_help

 142

xml_parseany

Parses an XML string with attributes and returns corresponding Matlab structure.

Syntax

v = xml_parseany(xmlstr)

Description

Parses XML string xmlstr and returns the corresponding Matlab structure, v . In

comparison with xml_parse, this command reads all XML element attributes and

returns these in additional attribute fields, thus enabling the user to read most types of

XML into a Matlab variable.

This is a non-validating parser. XML entries starting with the exclamation mark tag

"<!" and "<?" are ignored by the parser.

Any substructure is returned as a cell data type in Matlab as the parser assumes that

child elements can contain any kind of complex XML element.

Input Arguments

xmlstr XML string, for example read from file with

xmlstr = fileread(filename)

Output Arguments

v Matlab variable or structure with field .ATTRIBUTE if XML

element attributes are present.

Examples

In this example, we specify an XML string and look at the difference between the

xml_parse and xml_parseany functions:

xmlstr = ...

'<root idx="1" type="double" size="1 2">3.1416 1.41 42</root>';

v1 = xml_parse(xmlstr);

v1: [3.1416, 1.4142] % (class double)

v2 = xml_parseany(xmlstr);

 143

v1.ATTRIBUTE.idx = '1'

v1.ATTRIBUTE.type = 'double'

v1.ATTRIBUTE.size = '1 2'

v1.CONTENT = '3.1416 1.4142'

We see that the xml_parse command uses the specific attributes to convert the

content into the corresponding Matlab data types. The function xml_parseany ,

however, returns all attributes in a substructure called ATTRIBUTE and the content in

a field called CONTENT. xml_parseany does not use the attributes for type

conversions to Matlab data types as these may not have originated from the XML

Toolbox.

For more generic XML, the xml_parseany command acts as follows:

xmlstr = ...

 '<root color="red" language="en">

 <project id="alpha">

 <name>Project_Alpha</name>

 <author>Arthur</author>

 <link location="url">http://www.com/a</link>

 </project>

 <project id="beta">

 <name>Project_Beta</name>

 <author>Ben</author>

 <link location="file">c:\temp\b.pro</link>

 </project>

 </root>';

v = xml_parseany(xmlstr)

v =

 project: {[1x1 struct] [1x1 struct]}

 ATTRIBUTE: [1x1 struct]

v.ATTRIBUTE

ans =

 color: 'red'

 language: 'en'

 144

v.project{1}

ans =

 name: {[1x1 struct]}

 author: {[1x1 struct]}

 link: {[1x1 struct]}

 ATTRIBUTE: [1x1 struct]

v.project{2}.name{1}

ans =

 ATTRIBUTE: [0x0 struct]

 CONTENT: 'Project_Beta'

v.project{2}.link{1}

ans =

 ATTRIBUTE: [1x1 struct]

 CONTENT: 'c:\temp\b.pro'

v.project{2}.link{1}.ATTRIBUTE

ans =

 location: 'file'

Note

All subfields of the returned data structure are Matlab cell data types and therefore

indexed with curly braces {.}. This adds a bit more complexity for the developer if the

level of nesting is high; however, it also means that XML documents are returned to

Matlab in a well-defined state.

Namespaces & valid Matlab variable names:

If an XML element has a namespace attached, for example "soap:services", the "soap"

namespace is transferred into a subfield of the ATTRIBUTE structure, called

"NAMESPACE". This is done to ensure that the name corresponds to a valid Matlab

variable name. For the same reasons are any hyphens, "-" replaced by the underscore

"_" during the parsing operation.

See also

xml_formatany , xml_format , xml_parse , xml_load , xml_save , xml_help

 145

xml_save

Stores XML representation of Matlab variable or structure in XML format in a file.

Syntax

xml_save(filename,v)

xml_save(filename,v,attswitch)

Description

xml_save stores a Matlab variable in plain text XML format into the file specified by

the user.

Input Arguments

The Matlab variable v can be any of the types supported by xml_format .

 filename full filename (including path and extension).

 v Matlab variable or structure to store in file.

 attswitch optional, 'on' stores XML type attributes

 idx , size , type (default),

 'off' doesn't store XML type attributes.

Examples

This example saves a Matlab structure as XML in a file at a given location.

v.name = 'Google'

v.url = 'http://www.google.com'

v.rating = 5

v.description = 'Great search functionality for the web'

xml_save('c:/data/myfavourite.xml', v)

See also

xml_formatany , xml_format , xml_parse , xml_load , xml_help

