
The Geodise
OptionsMatlab Toolbox

A User's Guide

 2

Release: OptionsMatlab v.0.13.0

Version: OptionsMatlabTutorial.doc 1.6.0

Title: Geodise OptionsMatlab Tutorial – A User's Guide

Authors: Dr Graeme Pound

 Dr Andrew Price, a.r.price@soton.ac.uk

PI: Prof Andy Keane, andy.keane@soton.ac.uk

 Prof Simon Cox, s.j.cox@soton.ac.uk

Web: http://www.geodise.org/

Copyright: Copyright © 2007, The Geodise Project, University of Southampton

 3

Contents

The Geodise OptionsMatlab Toolbox..1

1 Introduction..6

2 Installing OptionsMatlab ...9

2.1 Obtain a Gendat license file...9

2.2 Add OptionsMatlab to the Matlab search path ..9

2.3 View the documentation ..10

3 OptionsMatlab Tutorial..11

3.1 Create a input structure ..11

3.2 Run the search..12

3.3 View the search histories ...13

3.4 Build and search a Response Surface Model ...13

4 Function Reference ..15

Banana problem ...15

Beam problem..17

Bump problem ...19

optimisationAppendDataPoints ...21

optimisationCropDataPoints ..25

optimisationReplaceDataPoints ...27

optimisationDigest ...30

optimisationHistory..32

optimisationSampleRSM...34

optimisationSearchTrace..39

optimisationTerrain..42

optimisationTestSuite ..44

optimisationTestSuiteComb...44

optimisationTestSuiteUncon..44

optimisationTestSuiteSPM ..45

optimisationTilePlot...50

optimisationTrace ..55

OptionsMatlab..57

optjob ...67

optjobparallel ...70

optjobparallel2 ...72

optum1 ...74

Peaks4d problem..76

5 Frequently Asked Questions..78

 4

5.1 Why does Matlab crash when I call OptionsMatlab?78

5.2 How do I specify the search method? ..78

5.3 How do I run a Design of Experiments?..80

5.4 How do I build a Response Surface Model?..81

5.5 How do I plot my Response Surface Model? ..82

5.6 How do I generate Design of Experiment update points?83

5.7 How do I define an unconstrained optimisation? ..85

5.8 How do I write my own objective and constraint functions?85

5.9 How do I evaluate a combined objective and constraint function?86

5.10 Can OptionsMatlab calculate function evaluations in parallel?87

5.11 How do I tune the hyper-parameters for a stochastic process model RSM?89

5.12 Can I checkpoint the progress of an optimisation?......................................92

5.13 How do I pass Matlab variables to my objective function?.........................93

5.14 How do I define discrete design variables? ...93

5.15 How do I restart a Genetic Algorithm?..95

5.16 What is the meaning of the optional control parameters?............................97

5.17 How do I deal with failed calculations when constructing a response surface

model? 107

5.18 How do I build and evaluate a RSM faster? ..108

6 OptionsMatlab Examples...109

6.1 DoE Direct search ..109

6.2 RSM returning update points ...111

6.3 DoE evaluating candidate points ...111

6.4 RSM using candidate points ..112

6.5 Direct search with checkpointing...113

6.6 Parallel job submission with userdata..114

6.7 Hyper-parameter tuning...116

6.8 User-defined sequential optimiser ...116

6.9 Sample a Response Surface Model..117

6.10 Build a stochastic process model RSM with quick tuning118

6.11 Search a tuned stochastic process model RSM..119

6.12 Search the root mean square error of a tuned stochastic process model RSM

 120

6.13 Search the expected improvement of a tuned stochastic process model RSM

 123

6.14 Search the probability of improvement of a tuned stochastic process model

RSM 124

6.15 Search the constrained expected improvement of a tuned stochastic process

 5

model RSM..125

6.16 Search the constrained feasibility of improvement of a tuned stochastic

process model RSM ...127

7 References..130

 6

1 Introduction
OptionsMatlab integrates the Options design exploration and optimization package

[1] into the Matlab environment [2]. The advantages of this approach include; the

potential to rapidly prototype and debug objective and constraint functions, and the

ability to directly leverage the functionality available within the Matlab environment.

Matlab provides data analysis and visualisation capabilities. Additional functionality

is available from a variety of toolboxes, including the Geodise toolboxes for Grid-

enabled computational and data management [3].

OptionsMatlab provides access to all of the design search and optimisation algorithms

within the Options package whilst retaining the maximum flexibility. Users define the

objective and constraint functions that describe their problem as Matlab functions.

These functions can therefore include interpreted Matlab, compiled MEX functions,

or callbacks to external applications or to the Grid. The modular structure of

OptionsMatlab is shown by Figure 1.

Matlab environment Matlab environment

OptionsMatlab.dll

optjob.m

optjob optfun optconoptjob optfun optcon

optfun.m
optcon.m

OptionsMatlab.m

Figure 1 The modular structure of OptionsMatlab.

OptionsMatlab is invoked by calling the Matlab function OptionsMatlab . An input

structure describes the user’s problem, and configures the design search and

optimisation algorithm to be used. Additionally a large number of optional fields may

be used to adjust the Options control parameters. The results are returned to the

Matlab workspace in an output structure

 7

The usage of OptionsMatlab differs from the original Options interface. A programme

of design search and optimisation is based upon a sequence of invocations of the

OptionsMatlab function from the Matlab workspace. By comparison the Options

interface supports a number of operations upon a data-set managed by the internal

Options database. OptionsMatlab can be used to perform operations upon the results

of a previous optimisation, such as building a Response Surface Model, by passing

the results as a second input argument.

The modular structure of OptionsMatlab also allows the user to customise the

evaluation of the objective and constraint functions by replacing the function OPTJOB.

For example, the default implementation of OPTJOB supplied with OptionsMatlab,

optjob.m , evaluates the objective and constraint functions in serial. An alternative

job manager is provided which supports parallel function evaluations (see section

5.10).

This document provides an introduction to the use of the OptionsMatlab package. For

further details of the theory of design search and optimisation, and the use of the

Options package, please consult the Options manual [1].

OptionsMatlab has three modes of operation:

1. Direct Search. The specified optimisation algorithm is run over the user’s

problem, directly invoking the Matlab functions that define the objective and

constraint functions.

2. Search Response Surface Model. A Response Surface Model (RSM) is built

which models the behaviour of the user’s problem. The RSM is built from the

results of a previous design search, and is searched with the specified

optimisation algorithm.

3. Hyper-parameter tuning. The Stochastic Process Model hyper-parameters

which describe a Stochastic Process Model RSM must be tuned against an

existing data set. The specified optimisation is used to tune the hyper-

parameters against a data set describing the user’s objective function (and/or

constraints).

These modes are invoked depending upon the fields of the input structure (Figure 2).

 8

Tune
Hyperparameters

Build RSM

Direct
Search

1

2

Figure 2 OptionsMatlab’s modes of operation. Hyper-parameter tuning will be invoked if the input

field TUNEHYPER is set (#1). If the input field OBJMOD (or CONMOD) is set the specified

optimisation will be run over a RSM (#2). In all other conditions a direct search over the user's

objective function is used.

 9

2 Installing OptionsMatlab
This section describes the steps needed to install OptionsMatlab.

2.1 Obtain a Gendat license file

Gendat licenses are linked to the MAC address (Windows) or hostid (UNIX) of the

machine running OptionsMatlab, and are available from Prof. Andy Keane.

OptionsMatlab looks for a Gendat license file at the location specified by the

environment variable GENDAT_CODES. If this environment variable is not specified

then the UNIX version of OptionsMatlab looks for a Gendat license in the file

/usr/local/geodise/OptionsMatlab/gendat.cds and if this file does not

exist it will look for gendat.cds in the current directory. The Windows version of

OptionsMatlab will look for a Gendat license in the file

C:\fortran\gendat\GENDAT.CDS if the environment variable does not exist.

2.2 Add OptionsMatlab to the Matlab search path

The directory containing the OptionsMatlab functions should be added to the Matlab

search path.

If using the Matlab desktop navigate to the 'Set Path' dialog ('File' > 'Set Path'). Click

the 'Add Folder' button and browse to the directory containing the OptionsMatlab,

select 'OK' to confirm. You may wish to click the 'Save' button to preserve the

configuration between sessions. Click 'Close' to dismiss the dialog.

If using Matlab via the Unix terminal use the addpath function at the Matlab

command line.

>> addpath /home/USER/OptionsMatlab

System administrators configuring a multi-user Matlab installation may find it

preferable to edit $MATLABROOT/toolbox/local/pathdef.m to make changes to the

Matlab search path available to all users.

To confirm that the Matlab search path has been successfully configured run:

 >> str = which('OptionsMatlab ')

 10

The variable str should contain the path of the OptionsMatlab function.

2.3 View the documentation

To read the OptionsMatlab documentation type 'help OptionsMatlab' at the

Matlab command prompt. This text contains details of the input arguments to

OptionsMatlab and the output structures returned. For information about the

interfaces required by user-defined objective and constraint functions type 'help

optjob' .

 11

3 OptionsMatlab Tutorial

3.1 Create a input structure

Use the function createBeamStruct to create an OptionsMatlab input structure. At

the command line enter:

>> input = createBeamStruct

input =

 DNULL: -777

 OLEVEL: 2

 MAXJOBS: 10

 NVRS: 2

 VNAM: {'BREADTH' 'HEIGHT'}

 LVARS: [5 2]

 UVARS: [50 25]

 VARS: [30 20]

 NCONS: 5

 CNAM: {'SIGMA-B' 'TAU' 'DEFLN' 'H-ON-B' 'F-CRIT'}

 LCONS: [-777 -777 -777 -777 5000]

 UCONS: [200 100 5 10 -777]

 NPARAMS: 7

 PNAM: {'LENGTH' 'FORCE' 'FACTOR' 'EE' 'G G' 'NU'

'SIGMAY'}

 PARAMS: [1500 5000 2 216620 86650 0.2700 200]

 ONAM: 'AREA'

 OMETHD: 2.8000

 DIRCTN: -1

 NITERS: 500

 OPTFUN: 'beamobjfun'

 OPTCON: 'beamobjcon'

 OPTJOB: 'optjob'

The OptionsMatlab input structure describes the problem to be searched, including the

design variables, constraints and parameters. The input structure will also include

details of the optimisation or design search to be run over the problem. The function

createBeamStruct is a utility function which creates an input structure specific to

 12

the Beam problem.

The fields of the structure input are described in detail by the documentation for

OptionsMatlab . Of particular interest are the fields OPTFUN and OPTCON that

specify the Matlab functions that describe the objective and constraint functions

respectively. The objective and constraint functions used, beamobjfun.m and

beamobjcon.m , is a Matlab implementation of the Beam problem described in the

Options manual [1].

The field OMETHD is a scalar which specifies the search method to be used (see FAQ

section 5.2 for further details). This example uses a Design of Experiments study,

OMETHD = 2.8 .

3.2 Run the search

OptionsMatlab can now be invoked with the input structure returned by

createBeamStruct . At the command line enter:

>> results = OptionsMatlab(input)

results =

 VARS: [2x1 double]

 OBJFUN: 2.9455e+003

 CONS: [5x1 double]

 OBJTRC: [1x1 struct]

 CONSTRC: [1x1 struct]

OptionsMatlab will quickly perform a Design of Experiments study, evaluating the

objective and constraint functions NITERS times. The results are returned in the

structure results . The fields OBJFUN and VARS contain the minimum objective

function found and the corresponding design variables. The field CONS contains the

values of the constraints at the design variables VARS.

Other fields OBJTRC and CONSTRC contain the search histories over the objective and

constraint functions. This information is valuable to examine the history of the

optimisation and build Response Surface Models.

 13

3.3 View the search histories

A simple tool is provided to view the search histories of problems with two design

variables. At the command line enter:

>> plotOptionsSurfaces(results, input)

This will produce plots for the objective function and each of the constraints against

the two design variables at each of the design variables evaluated. The final plot

shows the objective function plotted against the two design variables, in which each

point is coloured depending whether it exceeds the constraints (red), or not (blue)

(Figure 3).

Figure 3 The results of a 500 point DoE plotted with plotOptionsSurfaces

3.4 Build and search a Response Surface Model

The results returned by the Design of Experiments can be used to build a Response

Surface Model (RSM) that can be searched very rapidly. This approach may be

suitable when either the objective or constraint functions are expensive to evaluate.

To do this we must create another input structure, with the same problem definition.

We will modify this input structure to specify that a RSM is used to evaluate the

objective and constraint functions. At the command line enter:

>> inputRSM = createBeamStruct;

 14

>> inputRSM.OBJMOD = 3.5;

>> inputRSM.CONMOD = 3.5;

By specifying OBJMOD and CONMOD equal to 3.5 OptionsMatlab will produce a RSM

using a second order polynomial regression model. For a list of the alternative RSM

approximation methods available within OptionsMatlab see the FAQ section 5.4.

>> inputRSM.OMETHD = 4;

>> inputRSM.NITERS = 1000;

OMETHD equal to 4 specifies a Genetic Algorithm with 1,000 function evaluations.

OptionsMatlab will perform the function evaluations required for the Genetic

Algorithm against the RSM (rather than evaluating the user's objective or constraint

functions directly).

The input structure inputRSM must be passed into OptionsMatlab together with the

results of the Design of Experiments contained in the variable results .

>> resultsRSM = OptionsMatlab(inputRSM, results)

resultsRSM =

 VARS: [2x1 double]

 OBJFUN: 2.4824e+003

 CONS: [5x1 double]

The results structure returned, resultsRSM , does not contain search histories. This is

because the model used to evaluate the design variables is an approximation of the

user’s model and should not be considered to be equivalent to direct evaluation. It is

good practice to verify the results of a search over a RSM by direct evaluation of the

objective and constraint functions at the returned optimum design.

 15

4 Function Reference

Banana problem

An example of the unconstrained Banana problem based upon Rosenbrock's function.

Equation 1 Rosenbrock's function

Example

This problem may be extended into multiple dimensions; however by default the

problem is 2D. This example plots the objective function surface of the Banana

problem.

>> input = createbananastruct(2.8, 2);

>> input.OMETHD = 2.8;

>> input.MC_TYPE = 4;

>> input.NITERS = 500;

>> input.LVARS = [-1, -1];

>> output = OptionsMatlab(input)

output =

 VARS: [2x1 double]

 OBJFUN: 0

 OBJTRC: [1x1 struct]

>> optimisationTerrain(output,input,3)

 16

Figure 4 The objective function surface of the Banana problem

Functions

bananafun objective function

bananafun_parallel parallel version of the objective function

bananafun_parallel_parse parallel version of the objective function

createbananastruct creates an input structure for the banana problem

createbananastructparallel creates an input structure for the parallel

invocation of the banana problem

 17

Beam problem

An example of the constrained Beam problem

Example

This example plots the objective function surface of the Beam problem.

>> input= createBeamStruct;

>> input.MC_TYPE = 4;

>> input.NITERS = 500;

>> output = OptionsMatlab(input)

output =

 VARS: [2x1 double]

 OBJFUN: 2.9269e+003

 CONS: [5x1 double]

 OBJTRC: [1x1 struct]

 CONSTRC: [1x1 struct]

>> optimisationTerrain(output,input,3)

Figure 5 The valid objective function surface of the Beam problem

 18

Functions

beamcon_parallel parallel version of the constraint function

beamcon_parallel_parse parallel version of the constraint function

beamcon_parallel2 parallel version of the constraint function

beamcon_parallel2_parse2 parallel version of the constraint function

beamfun_parallel parallel version of the objective function

beamfun_parallel_parse parallel version of the objective function

beamfun_parallel2 parallel version of the objective function

beamfun_parallel2_parse parallel version of the objective function

beamobjcon constraint function

beamobjfun objective function

createBeamStruct creates an input structure for the beam problem

createBeamStructParallel creates an input structure for the parallel

invocation of the beam problem

createBeamStructParallel2 creates an input structure for the parallel

invocation of the beam problem using

optjobparallel2

createBeamStructRSM creates an input structure for the generation of a

RSM for the beam problem

 19

Bump problem

An example of the combined objective and constraint function of the Bump problem.

Example

The Bump problem may be extended into multiple dimensions. This example plots

the objective function surface of the Bump problem in two dimensions.

>> input= createbumpstruct(2.8, 2);

>> input.MC_TYPE = 4;

>> input.NITERS = 500;

>> output = OptionsMatlab(input)

output =

 VARS: [2x1 double]

 OBJFUN: 0.2021

 CONS: [2x1 double]

 OBJTRC: [1x1 struct]

 CONSTRC: [1x1 struct]

>> optimisationTerrain(output,input,3)

Figure 6 The valid objective function surface of the Bump problem in two dimensions

 20

Functions

bumpfuncombined combined objective and constraint function

bumpfuncombined_parallel parallel version of the combined objective and

constraint function

bumpfuncombined_parallel_parse parallel version of the combined

objective and constraint function

createbumpstruct creates an input structure for the bump problem

createbumpstructparallel creates an input structure for the parallel

invocation of the bump problem

 21

optimisationAppendDataPoints

Append data points to an output structure

This function appends data points to an OptionsMatlab output structure from a second

OptionsMatlab output structure. The function can either copy all of the points,

specified points, or the best point returned by the optimiser, from the second output

structure.

The edited structure is returned as an output argument.

Syntax

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OUT,

STRUCTOUT2)

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OUT,

STRUCTOUT2, POINTS)

Description

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OUT,

STRUCTOUT2) where STRUCTOUT is the results structure returned by

OptionsMatlab containing data points in a field OBJTRC (and CONSTRC) or

RSMTRC to which the data points are appended. STRUCTOUT2 is a results structure

from which all data points are copied. STRUCTOUTEDIT is a copy of STRUCTOUT

to which all of the points are copied.

Note that RSM results can only be copied from to a structure containing RSM results

(RSMTRC). Also unconstrained data points cannot be copied to a structure containing

constrained data.

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OUT,

STRUCTOUT2, POINTS) as above where POINTS is a string specifying the mode of

operation, or a vector specifying the points to be copied. POINTS may be a string

with the following values:

all all points from STRUCTOUT2 will be appended to

STRUCTOUT. This is the default operation if POINTS is

empty ([]).

best the best point returned specified by STRUCTOUT2 will be

appended to STRUCTOUT.

 22

If POINTS is a vector it must contain the indices of points in

STRUCTOUT2.OBJTRC.OBJFUN (or STRUCTOUT2.RSMTRC.OBJFUN) to be

appended to STRUCTOUT.

Examples

These examples will demonstrate the three modes of operation of

optimisationAppendDataPoints :

structin = createBeamStruct(2.8);

structin.NITERS = 10; %Do a DoE of ten points

structout = OptionsMatlab(structin);

structin2 = structin;

structin2.OMETHD = 4; %Do a GA of ten points

structout2 = OptionsMatlab(structin2);

In this example all data points from the second output structure will be appended to

the first.

structoutedit = optimisationAppendDataPoints(struct out,

structout2);

structoutedit.OBJTRC

structoutedit.CONSTRC

ans =

 OBJFUN: [1x20 double]

 VARS: [2x20 double]

 NCALLS: 20

ans =

 CONS: [5x20 double]

 VARS: [2x20 double]

 LCONS: [5x20 double]

 UCONS: [5x20 double]

 NCALLS: 20

In this example the best data point from the second output structure will be appended

to the first.

 23

structoutedit2 = optimisationAppendDataPoints(struc tout,

structout2, 'best');

structoutedit2.OBJTRC

structoutedit2.CONSTRC

ans =

 OBJFUN: [1x11 double]

 VARS: [2x11 double]

 NCALLS: 11

ans =

 CONS: [5x11 double]

 VARS: [2x11 double]

 LCONS: [5x11 double]

 UCONS: [5x11 double]

 NCALLS: 11

In this example the first, fifth and tenth data points from the second output structure

will be appended to the first.

structoutedit3 = optimisationAppendDataPoints(struc tout,

structout2, [1,5,10]);

structoutedit3.OBJTRC

structoutedit3.CONSTRC

ans =

 OBJFUN: [1x13 double]

 VARS: [2x13 double]

 NCALLS: 13

ans =

 CONS: [5x13 double]

 VARS: [2x13 double]

 LCONS: [5x13 double]

 UCONS: [5x13 double]

 NCALLS: 13

 24

See also

optimisationCropDataPoints , optimisationReplaceDataPoints

 25

optimisationCropDataPoints

Crops data points from an output structure

This function crops data points from an OptionsMatlab output structure. The output

structure can contain data points in a field OBJTRC (and CONSTRC) or RSMTRC.

The points to be cropped are specified by a vector of indices for points in the vector of

objective function evaluations. The edited structure is returned as an output argument.

Syntax

STRUCTOUTEDIT = optimisationCropDataPoints(STRUCTOU T,

POINTS)

Description

STRUCTOUTEDIT = optimisationCropDataPoints(STRUCTOU T,

POINTS) where STRUCTOUT is the results structure returned by OptionsMatlab

containing data points in a field OBJTRC (and CONSTRC) or RSMTRC. POINTS is a

vector of indices to data points in STRUCTOUT.OBJTRC.OBJFUN (or

STRUCTOUT.RSMTRC.OBJFUN).

STRUCTOUTEDIT is a copy of STRUCTOUT with the specified points cropped.

Example

In this example the first, fifth and tenth points are cropped from an output structure

containing ten points:

structin = createBeamStruct(2.8);

structin.NITERS = 10; %Do a DoE of ten points

structout = OptionsMatlab(structin);

structoutedit = optimisationCropDataPoints(structou t,

[1,5,10]);

structoutedit.OBJTRC

structoutedit.CONSTRC

ans =

 OBJFUN: [4.1998e+003 2.5211e+003 2.3857e+003 3. 2492e+003

 26

7.9283e+003 708.6411 1.7318e+003]

 VARS: [2x7 double]

 NCALLS: 7

ans =

 CONS: [5x7 double]

 VARS: [2x7 double]

 LCONS: [5x7 double]

 UCONS: [5x7 double]

 NCALLS: 7

See also

optimisationAppendDataPoints , optimisationReplaceDataPoints

 27

optimisationReplaceDataPoints

Replace data points based upon strategy

This function will replace data points from an OptionsMatlab output structure with

data points from a second structure selected depending upon the specified strategy.

The attribute used to select the data points may the value of the objective function, or

the normalized Euclidian distance from the best point specified in STRUCTOUT.

Syntax

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OUT,

STRUCTOUT2,STRATEGY,STRUCTIN)

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OUT,

STRUCTOUT2,STRATEGY,STRUCTIN,NUMPOINTS)

Description

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OUT,

STRUCTOUT2, STRATEGY, STRUCTIN) where STRUCTOUT and STRUCTOUT2 are

results structure returned by OptionsMatlab containing data points in a field

OBJTRC (and CONSTRC) or RSMTRC. STRATEGY is a string that specifies the strategy

used to replace data points:

select_best selects data points from STRUCTOUT and

STRUCTOUT2 depending upon the value of the

objective function

select_closest selects data points from STRUCTOUT and

STRUCTOUT2 depending upon the normalized

Euclidian distance from STRUCTOUT.VARS

replace_worst replaces the worst NUMPOINTS data points

from STRUCTOUT with the best points from

STRUCTOUT2 depending upon the value of the

objective function

replace_furthest replaces the furthest NUMPOINTS data points

from STRUCTOUT with the closest points from

STRUCTOUT2 depending upon the normalized

Euclidian distance from STRUCTOUT.VARS

 28

STRUCTIN is the OptionsMatlab input structure for the problem that was used to

generate the data points. STRUCTOUTEDIT is the edited copy of STRUCTOUT.

Note that RSM results can only be copied from to a structure containing RSM results

(RSMTRC). Also unconstrained data points cannot be copied to a structure containing

constrained data.

Note that duplicate points are not detected and may occur in STRUCTOUTEDIT.

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OUT,

STRUCTOUT2,STRATEGY,STRUCTIN,NUMPOINTS) where NUMPOINTS is an integer

value that has alternative meanings depending upon the strategy. Where STRATEGY:

select_* NUMPOINTS is the number of data points in

STRUCTOUTEDIT. If NUMPOINTS is not specified, or is

empty ([]), it will default to

STRUCTOUT.*TRC.NCALLS

replace_* NUMPOINTS is the number of data points in STRUCTOUT

replaced with points from STRUCTOUT2

Examples

These examples will demonstrate the alternative strategies to replace data points.

structin = createBeamStruct(2.8);

structin.NITERS = 10; %Do a DoE of ten points

structout = OptionsMatlab(structin)

structin2 = structin;

structin2.OMETHD = 4; %Do a GA of ten points

structout2 = OptionsMatlab(structin2)

In this example the best data points are selected from between structout and

structout2 .

structoutedit = optimisationReplaceDataPoints(struc tout, ...

 structout2,'select_best',struct in)

structoutedit.OBJTRC.OBJFUN

structoutedit.OBJTRC.VARS

 29

In this example 15 data points are selected from between structout and

structout2 depending upon their normalized Euclidian distance from

structout.VARS .

structoutedit = optimisationReplaceDataPoints(struc tout, ...

 structout2,'select_closest',str uctin,15)

structoutedit.OBJTRC.OBJFUN

structoutedit.OBJTRC.VARS

In this example the 5 worst data points from structout are replaced by the 5 best

data points from structout2 .

structoutedit = optimisationReplaceDataPoints(struc tout, ...

 structout2,'replace_worst',stru ctin,5)

structoutedit.OBJTRC.OBJFUN

structoutedit.OBJTRC.VARS

In this example the 5 data points from structout that are furthest from

structout.VARS are replaced by the 5 closest points from structout2 .

structoutedit = optimisationReplaceDataPoints(struc tout, ...

 structout2,'replace_furthest',s tructin,5)

structoutedit.OBJTRC.OBJFUN

structoutedit.OBJTRC.VARS

See also

optimisationCropDataPoints , optimisationAppendDataPoints

 30

optimisationDigest

Prints the results of an optimisation and returns validity of optimum

Syntax

ISVALID = optimisationDigest(STRUCTOUT,STRUCTIN)

ISVALID = optimisationDigest(STRUCTOUT,STRUCTIN,FIL ENAME)

ISVALID = optimisationDigest(STRUCTOUT,STRUCTIN,[])

Description

ISVALID = optimisationDigest(STRUCTOUT, STRUCTIN) Prints

digest to standard output, where STRUCTOUT is the output, and STRUCTIN the input,

from OptionsMatlab . ISVALID is 1 where the optimum point returned by the

optimisation does not violate the constraints or the design variable limits, otherwise

ISVALID is 0.

ISVALID = optimisationDigest(STRUCTOUT,STRUCTIN,FIL ENAME)

Prints direct to FILENAME

ISVALID = optimisationDigest(STRUCTOUT,STRUCTIN,[])

Suppresses digest output

Example

The output of optimisationDigest is illustrated by the following example:

>> input = createBeamStruct

>> results = OptionsMatlab(input)

>> isvalid = optimisationDigest(results,input)

 31

==

 Optimisation of the problem defined by "beamobjfun" and

"beamobjcon"

 Optimisation method: 2.8

 Status after 500 evaluations is:-

 Trial vector

 Lwr Bound Vector Uppr Bound Variable (units)

 5.00000000 < 19.96577454 > 50.00000000 BREADTH

 2.00000000 < 14.75254536 > 25.00000000 HEIGHT

 No of V. Boundary Violations = 0

 Objective Function (min.) = 2945.4599 AREA

 Constraints vector

 Lwr Bound Vector Uppr Bound Variable

(units)

 < 103.56009357 > 200.00000000 SIGMA-B

 < 2.54629163 > 100.00000000 TAU

 < 4.86091675 > 5.00000000 DEFLN

 < 7.38891713 > 10.00000000 H-ON-B

 5000.00000000 < 184550.01793812 F-CRIT

 No of Constraint Violations = 0

==

isvalid =

 1

See also

OptionsMatlab

 32

optimisationHistory

Plots a trace of the optimisation search history

optimisationHistory plots a trace of the objective function over the search

history. optimisationHistory provides a convenient way to view the search

history over a number of searches by combining this information in a single plot.

Syntax

optimisationHistory(RESULTS)

optimisationHistory(RESULTS,LABELS)

optimisationHistory(RESULTS,LABELS,WITHMARKERS)

optimisationHistory(RESULTS,LABELS,WITHMARKERS,ISLO G)

Description

optimisationHistory(RESULTS) Where RESULTS is a cell array

containing all of the search results to be plotted. The elements of this array may be

either OptionsMatlab output structures or vectors containing objective function

values.

optimisationHistory(RESULTS,LABELS) Where LABELS is a cell array

of strings containing the labels for a legend which annotates each of the searches

plotted. LABELS must be the same length as RESULTS, otherwise LABELS may be

empty if no legend is required.

optimisationHistory(RESULTS,LABELS,WITHMARKERS) Where

WITHMARKERS specifies whether markers are to be used on the plot. If WITHMARKERS

equals 0 markers will not be used, otherwise markers are generated automatically

(default).

optimisationHistory(RESULTS,LABELS,WITHMARKERS,ISLO G)

Where ISLOG specifies whether the scale of the Y-axis is logarithmic. If

WITHMARKERS equals 0 a linear scale will be used (default), otherwise a logarithmic

scale will be used for the Y-axis.

Example

The following example illustrates the use of optimisationHistory :

 33

>> input = createBeamStruct;

>> input.OMETHD = 1.6;

>> resultscell{1} = OptionsMatlab(input);

>> resultscell{2} = rand(200,1)*3000+1000;

>> labels = {'Optivar SEEK','Random values'}

>> optimisationHistory(resultscell, labels)

Figure 7 The plot produced by optimisationHistory

See also

OptionsMatlab , plotOptionsSurfaces

 34

optimisationSampleRSM

Builds and samples a Response Surface Model.

This function will generate an array of candidate points and then invokes

OptionsMatlab to build a Response Surface Model (RSM) and samples the candidate

points. The structure returned by optimisationSampleRSM can then be plotted.

Syntax

STRUCTOUT = optimisationSampleRSM(STRUCTIN,RESULTS,

NUMPOINTS)

STRUCTOUT = optimisationSampleRSM(...,LVARS,UVARS)

[STRUCTOUT, VECTORS] = optimisationSampleRSM(...)

Description

STRUCTOUT = optimisationSampleRSM(STRUCTIN,RESULTS,

NUMPOINTS) where STRUCTIN is an OptionsMatlab input structure which

specifies the RSM, and RESULTS is an output structure containing the results over

which the RSM is built. If NUMPOINTS is a scalar value, this will specify the total

number of sample points which will be distributed evenly across NVRS dimensions.

Otherwise NUMPOINTS must be a vector of length NVRS which specifies the number

of sample points in each dimension (the total number of sample points will equal

PROD(NUMPOINTS)). The return argument STRUCTOUT will contain the output

structure returned by OptionsMatlab .

To hold a design variable constant set the corresponding element of

NUMPOINTS equal to zero. All design variables for which NUMPOINTS is zero will be

sampled at the value specified by STRUCTIN.VARS.

STRUCTOUT = optimisationSampleRSM(...,LVARS,UVARS) as above

where LVARS and UVARS are vectors that specify the upper and lower limits between

which the design variables are sampled. If these vectors are not specified the values of

LVARS and UVARS defined in STRUCTIN are used.

[STRUCTOUT, VECTORS] = optimisationSampleRSM(...) as above

where VECTORS is a cell array containing NVRS vectors of the points at which the

each of the design variables were sampled.

 35

Examples

The first example will sample response surface models built over the beam problem.

%Run a DOE in OptionsMatlab

input1 = createBeamStruct;

input1.NITERS = 50;

output1 = OptionsMatlab(input1);

%Create an input structure to search a RSM

input2 = createBeamStruct;

input2.OBJMOD = 3.3;

input2.CONMOD = 3.3;

%Sample 100 evenly spaced points

output2 = optimisationSampleRSM(input2, output1, 10 0)

output2 =

 VARS: [2x1 double]

 OBJFUN: 2.3606e+003

 CONS: [5x1 double]

 RSMTRC: [1x1 struct]

%Plot an interpolated surface over the sampled poin ts

fig = optimisationTerrain(output2, input2);

%Plot the original points

optimisationTrace(output1, input1, 1, fig);

 36

Figure 8 First plot of the output of optimisationSampleRSM

%Sample 5 points in the first dimension and 20 poin ts in the

%second dimension

output3 = optimisationSampleRSM(input2, output1, [5 , 20])

optimisationTerrain(output3, input2);

output3 =

 VARS: [2x1 double]

 OBJFUN: 2.3606e+003

 CONS: [5x1 double]

 RSMTRC: [1x1 struct]

 37

Figure 9 Second plot of the output of optimisationSampleRSM

The second example samples the bump problem over two dimensions of a five

dimensional problem. The values of the design variables which are held constant are

specified by input5.VARS .

%Run a DOE over the bump function in 5 dimensions

input4 = createbumpstruct(2.8, 5);

input4.NITERS = 50;

output4 = OptionsMatlab(input4);

%Build a RSM over the DOE and sample in the second and third

%dimensions

input5 = createbumpstruct(2.8, 5);

input5.OBJMOD = 3.3;

input5.CONMOD = 3.3;

output5 = optimisationSampleRSM(input5,output4,[0,2 0,20,0,0]);

%Plot the sampled points in the second and third di mensions

optimisationTerrain(output5, input5, 1, [], [-37.5, 30], [2,3]);

 38

Figure 10 Third plot of the output of optimisationSampleRSM

See also

optimisationTerrain , OptionsMatlab

 39

optimisationSearchTrace

Search trace history for values at optimum VARS

This function searches the optimisation trace history(ies) in OBJTRC (and CONSTRC)

or RSMTRC fields of an OptionsMatlab output structure for the values of the

objective and constraint functions at the optimum vector in the VARS field. The

function will only operate on structures for which the values of OBJFUN and/or CONS

are zero. This function is intended for use when a search has been performed at

OLEVEL<2 and the values at the optimum point have not been returned.

The edited structure is returned as an output argument.

Syntax

STRUCTOUTEDIT = optimisationSearchTrace(STRUCTOUT)

Description

 STRUCTOUTEDIT = optimisationSearchTrace(STRUCTOUT) where

STRUCTOUT is the results structure returned by OptionsMatlab containing data

points in a field OBJTRC (and CONSTRC) or RSMTRC.

Example

This example demonstrates how the values of the objectives and constraints are

retrieved from the trace history when the search has been performed at OLEVEL=0:

structin = createBeamStruct(2.8);

structin.OLEVEL = 0; %Validation call not made

structin.NITERS = 10; %Do a DoE of ten points

structout = OptionsMatlab(structin)

structout.OBJFUN

structout.CONS

 40

structout =

 VARS: [2x1 double]

 OBJFUN: 0

 CONS: [5x1 double]

 OBJTRC: [1x1 struct]

 CONSTRC: [1x1 struct]

ans =

 0

ans =

 0

 0

 0

 0

 0

This searches the problem at OLEVEL=0 and consequently the values of the objective

and constraints at structout.VARS are returned as zeros in structout.OBJFUN

and structout.CONS . The values of the objective and constraints at the optimum

point are assigned to these variables by searching the trace history:

structout2 = optimisationSearchTrace(structout)

structout2.OBJFUN

structout2.CONS

 41

structout2 =

 VARS: [2x1 double]

 OBJFUN: 5.0853e+003

 CONS: [5x1 double]

 OBJTRC: [1x1 struct]

 CONSTRC: [1x1 struct]

ans =

 5.0853e+003

ans =

 1.0e+005 *

 0.0004

 0.0000

 0.0000

 0.0001

 5.4913

See also

OptionsMatlab

 42

optimisationTerrain

Mesh, surface & contour plots of optimisation results

This function plots surfaces produced by interpolation between the points at which the

objective function was evaluated. The optimisation terrain may be represented as a

mesh, surface or contour plot. The points which do not meet the optimisation

constraints will be cropped from the surface.

Syntax

optimisationTerrain(STRUCTOUT,STRUCTIN)

optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE)

optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG)

optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG ,VIEW)

optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG ,VIEW,DIMS)

FIG = optimisationTerrain(...)

Description

optimisationTerrain(STRUCTOUT,STRUCTIN) where STRUCTOUT is

the results structure returned by OptionsMatlab and STRUCTIN is the

OptionsMatlab input structure.

optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE) as above

where PLOTTYPE is a scalar which indicates the type of plot. The valid values of

PLOTTYPE are:

1 = Mesh of valid points [default]

2 = Mesh of valid points in a single colour

3 = Surface of valid points

4 = 3D contour plot of valid points

5 = 3D contour plot of valid points with a mesh

6 = Mesh of all points

7 = Mesh of all points in a single colour

8 = Surface of all points

9 = 3d contour plot of all points

10 = 3d contour plot of all points with a mesh

optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG) as

above where FIG is the figure in which to plot the optimisation terrain. If FIG is not

 43

provide a new figure will be generated. FIG can also be empty [].

optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG ,VIEW)

as above where VIEW is a two element vector that sets the view of the 3D plot. For

example VIEW = [0 90] for overhead plots. The default view is [-37.5, 30]. VIEW can

also be empty [].

optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG ,VIEW,

DIMS) as above where DIMS is a two element vector specifying the two design

variables to be plotted. By default the first two design variables are plotted.

FIG = optimisationTerrain(...) as above where FIG is a the number

of figure in which the terrain was plotted.

Example

input = createBeamStruct;

results = OptionsMatlab(input)

optimisationTerrain(results, input)

Figure 11 Plot produced by optimisationTerrain

See also

view , mesh, griddata

 44

optimisationTestSuite

A script which demonstrates the functionality of OptionsMatlab with the Beam

problem.

See also

beamcon_parallel , beamcon_parallel_parse , beamfun_parallel ,

beamfun_parallel_parse , beamobjcon , beamobjfun , createBeamStruct ,

createBeamStructParallel , createBeamStructRSM

optimisationTestSuiteComb

A script which demonstrates the functionality of OptionsMatlab with the combined

objective and constraint function of the Bump problem.

See also

bumpfuncombined , bumpfuncombined_parallel ,

bumpfuncombined_parallel_parse ,

createbumpstruct , createbumpstructparallel

optimisationTestSuiteUncon

A script which demonstrates the functionality of OptionsMatlab with

unconstrained Banana problem based upon Rosenbrock's function.

See also

bananafun , bananafun_parallel , bananafun_parallel_parse ,

createbananastruct , createbananastructparallel

 45

optimisationTestSuiteSPM

A script which demonstrates the stochastic process model functionality of

OptionsMatlab with constrained or unconstrained problems.

This function is intended as an extension to the test suites and performs additional

tests that search and sample stochastic process model RSMs using quick tuned hyper-

parameters. These tests can be invoked on constrained and unconstrained design

problems and demonstrate how to build and investigate stochastic process models.

Syntax

optimisationTestSuiteSPM(STRUCTIN, STRUCTOUT_DOE,

STRUCTOUT_HP)

optimisationTestSuiteSPM(..., PLOTTYPE)

Description

 optimisationTestSuiteSPM(STRUCTIN, STRUCTOUT_DOE,

STRUCTOUT_HP) where STRUCTIN is the default input data structure for the design

problem, STRUCTOUT_DOE is the trace history of a previous design search which

contains the information required to generate the RSM and STRUCTOUT_HP is the

results of tuning the hyperparameters of a stochastic process model over the points in

the DoE.

 optimisationTestSuiteSPM(..., PLOTTYPE) where PLOTTYPE is a

scalar which indicates the type of plot used in calls to optimisationTerrain . The

valid values of PLOTTYPE are:

0 = No plotting

1 = Mesh of valid points [default]

2 = Mesh of valid points in a single colour

3 = Surface of valid points

4 = 3D contour plot of valid points

5 = 3D contour plot of valid points with a mesh

6 = Mesh of all points

7 = Mesh of all points in a single colour

8 = Surface of all points

9 = 3d contour plot of all points

10 = 3d contour plot of all points with a mesh

 46

Example

This example demonstrates how the SPM tests can be invoked on the Banana problem

>> inputStruct = createbananastruct;

Perform a 50 point DoE over the problem

>> input1 = inputStruct;

>> input1.OLEVEL = 0;

>> input1.OMETHD = 2.8; %Design of Experiments

>> input1.NITERS = 50; %Number of iterations

>> input1.MC_TYPE = 4; %Full factorial DoE

>> output1 = OptionsMatlab(input1);

Perform a quick tuning of the hyperparameters of the stochastic process model RSM

>> input10 = inputStruct;

>> input10.OLEVEL = 0;

>> input10.OBJMOD = 4.1; %Stochastic process model

>> input10.CONMOD = 4.1; %Stochastic process model

>> input10.RSM_QCK_HP = 1; %Quick hyperparameter tuning

>> output10 = OptionsMatlab(input10, output1);

Invoke the stochastic process model test suite on the problem

>> optimisationTestSuiteSPM(inputStruct, output1, o utput10, 5)

 47

Figure 12 Sampled stochastic process model RSM surface and result of the search for the optimum

Figure 13 Sampled Root Mean Square Error of the stochastic process model RSM and the result of the

search for the maximum in the surface.

 48

Figure 14 Sampled Expected Improvement of the stochastic process model RSM and the result of the

search for the maximum in the surface. NB. When the direction of the underlying search is negative

(minimisation) Options automatically inverts the surface to seek the numerical minimum in the EI

surface which will be the point of maximum EI in the true problem – the test suite plots the raw

minimisation search in figure 1 and plots the inverted surface in figure 2.

Figure 15 Sampled Probability of Improvement of the stochastic process model RSM and the result of

the search for the maximum in the surface. NB. When the direction of the underlying search is negative

(minimisation) Options automatically inverts the surface to seek the numerical minimum in the PI

 49

surface which will be the point of maximum PI in the true problem – the test suite plots the raw

minimisation search in figure 1 and plots the inverted surface in figure 2.

See also

optimisationTestSuite, optimisationTestSuiteComb,

optimisationTestSuiteUncon

 50

optimisationTilePlot

Tile plot of four dimensions of a problem

This plots the behaviour of the objective function over four dimensions of a problem.

The first two of the design variables (A and B) are plotted across rows and columns of

tiles. The third and fourth design variables (1 and 2) will be plotted across the x and y

axes of each tile.

Each design variable will be sampled at the specified number of points between the

limits defined within the fields LVARS and UVARS of STRUCTIN. For example a

problem in which the variables A and B are each sampled at two points the resulting

tile plot will have four tiles.

The value of the objective function is plotted as a surface within each 2D tile. The

surface colormap is consistent between the tiles. The tile plot is interactive, and by

clicking on a tile it is visible as a 3D plot in a separate figure window.

Syntax

optimisationTilePlot(STRUCTOUT,STRUCTIN,DESIGNVARS,

NUMPOINTS,TILETYPE)

optimisationTilePlot(...,PLOTPOINTS)

optimisationTilePlot(...,FIG)

FIG = optimisationTilePlot(...)

[FIG,TILESOUT,TILESIN] = optimisationTilePlot(...)

optimisationTilePlot(TILESOUT,TILESIN)

Description

optimisationTilePlot(STRUCTOUT,STRUCTIN,DESIGNVARS,

NUMPOINTS,TILETYPE) where STRUCTOUT is the results structure returned by

OptionsMatlab and STRUCTIN is the corresponding OptionsMatlab input structure. If

 51

the TILETYPE is direct search STRUCTOUT can be empty [] .

DESIGNVARS must be a four element vector that defines the design variables

to be plotted [A,B,1,2] based upon their index in STRUCTIN.VARS. NUMPOINTS must

also be a four element vector that defines the number of points to be evaluated for

each of the DESIGNVARS.

TILETYPE is an integer that defines how the tile is to be evaluated. The valid

values of TILETYPE are:

1 = Evaluation of the RSM defined by the fields OBJMOD and

CONMOD of STRUCTIN

 2 = Direct search of the objective function

optimisationTilePlot(...,PLOTPOINTS) as above when

PLOTPOINTS is a flag that indicates whether to plot the data points. For a RSM if

PLOTPOINTS = 1 the original data points contained in STRUCTOUT will be plotted in

each tile, otherwise for a direct search the evaluated points will be plotted. If

PLOTPOINTS = 0 the points will not be plotted. Default value PLOTPOINTS = 0.

optimisationTilePlot(...,FIG) as above where FIG is the figure in

which to plot the tile plot. If FIG is not provide a new figure will be generated. FIG

can also be empty [] .

FIG = optimisationTilePlot(...) as above where FIG is a the

number of figure in which the tiles were plotted.

[FIG,TILESOUT,TILESIN] = optimisationTilePlot(...) as above

where TILESOUT and TILESIN are cell arrays containing the OptionsMatlab output

and input structures that were used to generate the surfaces for each of the tiles.

optimisationTilePlot(TILESOUT,TILESIN) replots the tile plot with

data returned in the cell arrays TILESOUT and TILEIN . All other input arguments are

optional. The PLOTPOINTS argument can be supplied to indicate that the data points

should be plotted.

Examples

The following example demonstrates a tile plot of the peaks4d problem using direct

search:

 52

>> structin = createpeaks4dstruct(2.8);

>> optimisationTilePlot([],structin,[3,4,1,2],[2,3, 15,15],2)

Figure 16 Tile plot of the peaks4d problem produced by direct search

By clicking on the tiles of the tile plot with the mouse that tile will be displayed in

3D. For example by clicking on the tile in the top left of the figure the following plot

will be displayed:

 53

Figure 17 Tiles may be viewed in 3D by clicking on the tile plot

The second example demonstrates a tile plot of the peaks4d problem produced using a

Shepard RSM. Using the PLOTPOINTS argument the points of the original data set

are also plotted:

>> structin = createpeaks4dstruct(2.8);

>> structin.NITERS = 25;

>> structout = OptionsMatlab(structin);

>> structin.OBJMOD = 1; %Shepard RSM

>> structin.CONMOD = 1;

>> optimisationTilePlot(structout,structin,[3,4,1,2],

[2,3,15,15],1,1)

 54

Figure 18 Tile plot of the peaks4d problem produced with a Shepard RSM and the original data set

See also

optimisationTerrain , optimisationTrace

 55

optimisationTrace

Plots the objective function against two design variables

This function plots points at which the objective function was evaluated. The

objective function points may be plotted in colour or black and white. The points may

also be joined to represent the sequence of function evaluations.

Syntax

optimisationTrace(STRUCTOUT,STRUCTIN)

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE)

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG)

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,V IEW)

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,V IEW,

DIMS)

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,

VIEW,DIMS,LABELS)

FIG = optimisationTrace(...)

Description

optimisationTrace(STRUCTOUT,STRUCTIN) where STRUCTOUT is the

results structure returned by OptionsMatlab and STRUCTIN is the

OptionsMatlab input structure.

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE) as above

where PLOTTYPE is a scalar which indicates the type of plot. The valid values of

PLOTTYPE are:

1 = Coloured point plot [default]

2 = Black and white point plot

3 = Coloured joined point plot

4 = Back and white joined point plot

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG) as above

where FIG is the figure in which to plot the optimisation terrain. If FIG is not provide

a new figure will be generated. FIG can also be empty [].

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,V IEW) as

above where VIEW is a two element vector that sets the view of the 3D plot. For

 56

example VIEW = [0 90] for overhead plots. The default view is [-37.5, 30]. VIEW can

also be empty [].

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,V IEW,

DIMS) as above where DIMS is a two element vector specifying the two design

variables to be plotted. By default the first two design variables are plotted.

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,V IEW,

DIMS,LABELS) as above where LABELS is a flag specifying whether the plot should

be labelled. By default labelling is switched off (LABELS = 0).

FIG = optimisationTrace(...) as above where FIG is a the number of

figure in which the terrain was plotted.

Example

input = createBeamStruct;

results = OptionsMatlab(input)

optimisationTrace(results, input)

Figure 19 Plot produced by optimisationTrace

See also

view , mesh, griddata

 57

OptionsMatlab

Options optimisation and design search package

OptionsMatlab makes the Options optimisation and design search package

available to Matlab, calling user-defined constraint and objective functions defined as

Matlab functions. OptionsMatlab also supports a number of Response Surface

Model algorithms that allow optimisation to be carried out cheaply using

approximations of the values of the objective function and/or constraints.

Syntax

STRUCTOUT = OptionsMatlab(STRUCTIN)

STRUCTOUT = OptionsMatlab(STRUCTIN,STRUCTOUT)

Description

STRUCTOUT = OptionsMatlab(STRUCTIN) where STRUCTIN is a Matlab

structure containing the problem definition and control parameters for the

optimisation algorithms, and STRUCTOUT is a structure containing optimum design

variables and the objective function and constraint values at this point.

STRUCTOUT2 = OptionsMatlab(STRUCTIN,STRUCTOUT) where

STRUCTIN is a Matlab structure containing the problem definition and control

parameters for an optimisation over a Response Surface Model (RSM), and where

STRUCTOUT is the trace history of a previous design search which contains the

information required to generate the RSM. STRUCTIN should contain values for either

of the parameters OBJMOD or CONMOD which specify the RSM used, if any, for the

objective function and constraints. The design search used to generate data points

from which the RSM is produced should ideally be a space-filling search such as a

Genetic Algorithm (GA) or Design of Experiments (DoE).

Input argument

The structure STRUCTIN must contain a number of mandatory fields, and may also

contain a number of optional control parameters. The mandatory fields required are:

DNULL: A number that corresponds to a NULL value in the problem setup

OLEVEL: [optional] The output level of the OptionsMatlab package [0-10].

Default value OLEVEL = 1.

MAXJOBS: [optional] Allows the user to limit the number of parallel jobs.

Default value MAXJOBS = 1.

 58

NVRS: The number of design variables

VARS: A vector of NVRS design variables corresponding to the initial design

variables to be evaluated

VNAM: A cell array of length NVRS containing the names of the design

variables for the internal GENDAT database (variable names must not exceed

10 chars)

LVARS: A vector of length NVRS representing the lower limits to the design

variable values.

UVARS: A vector of length NVRS representing the upper limits to the design

variable values.

NDVRS: [optional] The maximum number of discrete design variable values

for any single design variable. Default value NDVRS = 0, where all design

variables are contiguous.

DVARS: [required if NDVRS > 0] A matrix of size NVRS by NDVRS of the

discrete design variable values (set to DNULL if contiguous)

NCONS: [optional] The number of design constraints. If NCONS is set to zero

the problem will be unconstrained, and OPTCON will not be invoked. Default

value NCONS = 0.

CNAM: [required if NCONS > 0] A cell array of length NCONS containing the

names of the design constraints for the internal GENDAT database (constraint

names must not exceed 10 chars)

LCONS: [required if NCONS > 0] A vector of length NCONS representing the

lower limits to the design constraints (set to DNULL if no lower limit)

UCONS: [required if NCONS > 0] A vector of length NCONS representing the

upper limits to the design constraints (set to DNULL if no upper limit)

NPARAMS: [optional] The number of user-defined parameters. If NPARAMS are

set to zero an empty parameter array will be passed to the user-defined

functions. Default value NPARAMS = 0.

PARAMS: [required if NPARAMS > 0] A vector of NPARAMS user-defined

parameter values

PNAM: [required if NPARAMS > 0] A cell array of length NPARAMS containing

the names of the user-defined parameters for the internal GENDAT database

(parameter names must not exceed 10 chars)

ONAM: A char array (max length 10 chars) containing the name of the objective

 59

function in the internal GENDAT database.

OMETHD: The number of the optimisation or design search algorithm to be

used. The available search methods are:

0.0 to just evaluate the user's problem code at the point specified

1.1 for OPTIVAR routine ADRANS

1.2 for OPTIVAR routine DAVID

1.3 for OPTIVAR routine FLETCH

1.4 for OPTIVAR routine JO

1.5 for OPTIVAR routine PDS

1.6 for OPTIVAR routine SEEK

1.7 for OPTIVAR routine SIMPLX

1.8 for OPTIVAR routine APPROX

1.9 for OPTIVAR routine RANDOM

2.1 for user specified routine OPTUM1

2.2 for user specified routine OPTUM2

2.3 for NAG routine E04UCF

2.4 for bit climbing

2.5 for dynamic hill climbing

2.6 for population based incremental learning

2.7 for numerical recipes routines

2.8 for design of experiment based routines

3.11 for Schwefel library Fibonacci search

3.12 for Schwefel library Golden section search

3.13 for Schwefel library Lagrange interval search

3.2 for Schwefel library Hooke and Jeeves search

3.3 for Schwefel library Rosenbrock search

3.41 for Schwefel library DSCG search

3.42 for Schwefel library DSCP search

3.5 for Schwefel library Powell search

3.6 for Schwefel library DFPS search

3.7 for Schwefel library Simplexsearch

3.8 for Schwefel library Complexsearch

3.91 for Schwefel library two-membered evolution strategy

3.92 for Schwefel library multi-membered evolution strategy

4 for genetic algorithm search

5 for simulated annealing

6 for evolutionary programming

 60

7 for evolution strategy

DIRCTN: The search direction (in the range +/-2). The optimizers try to

minimize the objective function if this argument is -1, maximize it if is +1,

minimize the log of the function if it is -2 or maximize the log if it is +2

NITERS: The maximum number of iterations to be used

OPTJOB: The name of the Matlab function responsible for calling the user-

defined objective and constraint functions (maximum length 255 chars)

OPTFUN: A string describing the user-defined objective function routine to be

called by the OPTJOB (maximum length 255 chars)

OPTCON: [required if NCONS > 0] A string describing the user-defined

constraint function routine to be called by the OPTJOB (maximum length 255

chars)

OBJMOD: [optional] The RSM method to be used to approximate the value of

objective function. The available methods are:

1.0 for a Shepard response surface model should

2.1 for linear Radial Basis Function

2.2 for thin plate Radial Basis Function

2.3 for cubic splines Radial Basis Function

2.4 for cubic splines Radial Basis Function with regression via

reduced bases

3.1 for mean polynomial regression model

3.2 for first order polynomial regression model

3.3 for first order polynomial regression model plus squares

3.4 for first order polynomial regression model plus products

(cross-terms)

3.5 for second order polynomial regression model

3.6 for second order polynomial regression model plus cubes

4.1 for a Stochastic Process Model

4.2 for the root mean square error of the Stochastic Process Model

4.3 for the expected improvement of the Stochastic Process Model

4.31 for the expected improvement of the constrained Stochastic

 Process Model [requires CONMOD=4.1]

4.32 for the feasibility of improvement of the constrained Stochastic

 Process Model [requires CONMOD=4.1]

4.33 for the probability of improvement of the Stochastic Process

Model

 61

0.0 if the underlying user supplied function is to be called.

CONMOD: [optional] The RSM method to be used to approximate the values of

the constraints. The available methods are:

1.0 for a Shepard response surface model should

2.1 for linear Radial Basis Function

2.2 for thin plate Radial Basis Function

2.3 for cubic splines Radial Basis Function

2.4 for cubic splines Radial Basis Function with regression via

reduced bases

3.1 for mean polynomial regression model

3.2 for first order polynomial regression model

3.3 for first order polynomial regression model plus squares

3.4 for first order polynomial regression model plus products

(cross-terms)

3.5 for second order polynomial regression model

3.6 for second order polynomial regression model plus cubes

4.1 for a Stochastic Process Model

4.2 for the root mean square error of the Stochastic Process Model

4.3 for the expected improvement of the Stochastic Process Model

0.0 if the underlying user supplied function is to be called.

NUMUPDATE: [optional] is a scalar which determines the number of update

points to be returned when a search routine is run over a RSM. Update points

can be used to improve the accuracy of the dataset that was used to generate

the RSM. The update points are return in a sub-structure DOE_TRACE in the

output structure. If NUMUPDATE is not specified then update points are not

returned by OptionsMatlab .

DOE_TRACE: [optional] is a structure containing the user-supplied DOE points

to be used when the control parameter MC_TYPE equals 7. DOE_TRACE

requires two mandatory fields:

DOE_TRACE.NCALLS: the number of user-supplied DOE points. Note

that DOE_TRACE.NCALLS must equal NITERS-1 as the DOE will first

evaluate the design variables VARS.

DOE_TRACE.VARS: the design points to be evaluated during the DOE

(size NVARS by DOE_TRACE.NCALLS)

OBJHYPER: [optional] is a structure containing Stochastic Process Model

 62

hyper-parameters used to approximate the value of the objective function.

OBJHYPER has three recognised fields:

OBJHYPER.OBJ_LAMBDA: the value of hyper-parameter LAMBDA

OBJHYPER.OBJ_THETA: the values of hyper-parameter THETA

 (length NVARS; see RSM_QCK_HP)

OBJHYPER.OBJ_EXP: the values of hyper-parameter EXP (length

NVARS; see RSM_QCK_HP)

CONHYPER: [optional] is a structure containing Stochastic Process Model

hyper-parameters used to approximate the value of the constraints. CONHYPER

has three recognised fields:

CONHYPER.CST_LAMBDA: the value of hyper-parameter LAMBDA

CONHYPER.CST_THETA: the values of hyper-parameter THETA

(length NVARS; see RSM_QCK_HP)

CONHYPER.CST_EXP: the values of hyper-parameter EXP (length

NVARS; see RSM_QCK_HP)

RSM_QCK_HP: [optional] is a flag that indicates whether quick hyper-

parameter tuning should be used when building and searching a Stochastic

Process Model RSM. Quick tuning will be used when RSM_QCK_HP is true

(e.g. 1). In this condition single values of the hyper-parameters THETA and

EXP will be tuned across all design variables, rather than NVARS values of

THETA and EXP corresponding to each design variable. This approach is faster

but less accurate, and may be appropriate for some problems. If true the values

of OBJ_EXP and OBJ_THETA, and of CST_EXP and CST_THETA (in the

structures OBJHYPER and CONHYPER) will be scalar, rather than a vector of

length NVARS. Quick hyper-parameter tuning is not available when manually

tuning the hyper-parameters (i.e. when TUNEHYPER>0).

USERDATA: [optional] is an optional field which can contain any type of

Matlab variable. This variable will be passed to the user-defined objective and

constraint functions via the OPTJOB function.

TUNEHYPER: [optional] is a flag that indicates whether Stochastic Process

Model hyper-parameters should be tuned over the search history contained in

the second input argument. Hyper-parameters will be tuned if TUNEHYPER is

true (e.g. 1). When TUNEHYPER is called the hyper-parameters are tuned using

the search method specified by the input structure. Note that the user's

problem is not searched, and the output structure will return the structures

 63

OBJHYPER (and CONHYPER where appropriate) in addition to the objective

function OBJ_CLF (and CST_CLF).

It is possible to tune the values of specific hyper-parameters with following

values of TUNEHYPER:

0 No tuning

1 Tune THETA, EXP and LAMBDA

2 Tune THETA and EXP

3 Tune THETA and LAMBDA

4 Tune THETA

If a value of TUNEHYPER greater than 1 is specified, and no user-defined

hyper-parameters are supplied (via OBJHYPER or CSTHYPER), then initial

values for all hyper-parameters will be generated but only the specified hyper-

parameters will be tuned with the designated search method.

CHKPT_INTV: [optional] is an integer value that specifies the interval with

which the search history is checkpointed to a MAT file. If parallel optimiser is

used (OMETHD 2.8 or 4) CHKPT_INTV should be a multiple of MAXJOBS. If

CHKPT_INTV equals 0 there will be no checkpointing (default). If OMETHD

equals 4 CHKPT_INTV will contain the structure GA_VARS (once available)

that will allow the genetic algorithm to be restarted.

CHKPT_FILE: [optional] specifies the file name that the checkpoint file is

written (maximum length 20 characters). The default checkpoint file name is

'OptionsCHKPNT.mat'.

OPTUM1: [optional] A string describing the user-defined sequential

optimisation routine to be called when OPTUM1 = 2.1 (maximum length 255

chars). The default value 'optum1' corresponds to the example

implementation of a random optimiser (see help optum1 for more details).

Other valid STRUCTIN fields correspond to scalar Options control parameters

documented in the Options manual (http://www.soton.ac.uk/~ajk/options.ps) sections

8.8 and 8.9. See also FAQ section 5.16. These control parameters include:

BC_NBIN, BC_NRANDM, BC_PENAL, CST_BAD_PT, DHC_INITS Z,

DHC_NRANDM, DHC_PENAL, DHC_THRESH, DOE_NRANDM, EP_IMUTNT,

EP_NBIN, EP_NPOP, EP_NRANDM, EP_PENAL, EP_TOURN, ES _DELSIG,

ES_MDSCRT, ES_NCPOP, ES_NPPOP, ES_NRANDM, ES_PENAL, ES_UCHILD,

 64

ES_VDSCRT, FUSION_TYP, GA_ALPHA, GA_DMAX, GA_DMIN, GA_NBIN,

GA_NBREED, GA_NCLUST, GA_NPOP, GA_NRANDM, GA_PBEST, GA_PCROSS,

GA_PENAL, GA_PINVRT, GA_PMUTNT, GA_PRPTNL, GA_PSEED, MC_MAND,

MC_P1, MC_P2, MC_PENAL, MC_TYPE, NAG_BIGBND, NAG_ET A, NAG_RHO,

OBJ_BAD_PT, OPT_CTOL, OPT_STEP, OPT_TOL, OPT_TSIZE, OVR_CONV,

OVR_MAND, OVR_NPTS, OVR_PENAL, OVR_SEED, OVR_SHRK, OVR_SIMP,

OVR_STEP, OVR_STOP, PL_LRATE, PL_NBIN, PL_NPOP, PL_ NRANDM,

PL_PENAL, PL_PMUTNT, RSM_EIF_W, RSM_NCSKIP, RSM_NSK IP,

RSM_NULL_T, SA_NBIN, SA_NRANDM, SA_PCOLD, SA_PENAL, SA_PMUTNT,

SA_PTEMP, SA_PWIDTH, SA_SCHED, SC_BKORRL, SC_CONV, SC_DELI,

SC_DELP, SC_DELS, SC_IELTER, SC_IREKOM, SC_KONVKR, SC_LR,

SC_LS, SC_NACHKO, SC_NITERS, SC_NRANDM, SC_NS, SC_P ENAL,

SC_SN, SC_TYPE

Output argument

The structure STRUCTOUT contains the following fields:

VARS: The optimum design variables

OBJFUN: The objective function value at VARS

CONS: The constraint values at VARS

Following a direct search over the user's code the objective function and constraint

search histories are returned to the user in to sub-structures, OBJTRC and CONSTRC

(respectively). Following evaluation of a RSM search histories are returned in the

field RSMTRC.

OBJTRC: The history of evaluations of the objective function

OBJTRC.NCALLS: The number of objective function evaluations

OBJTRC.OBJFUN: The values of the objective function (a vector of length

OBJTRC.NCALLS)

OBJTRC.VARS: The variables at which the objective function was evaluated

(size NVARS by OBJTRC.NCALLS)

CONSTRC: The history of evaluations of the constraints

CONSTRC.NCALLS: The number of constraint evaluations

CONSTRC.CONS: The values of the constraints (size NCONS by

CONSTRC.NCALLS)

CONSTRC.VARS: The variables at which the constraints were evaluated (size

NVARS by CONSTRC.NCALLS)

CONSTRC.UCONS: The upper limits to the constraints at each evaluation (size

 65

NCONS by CONSTRC.NCALLS)

CONSTRC.LCONS: The lower limits to the constraints at each evaluation (size

NCONS by CONSTRC.NCALLS)

If the field NUMUPDATE is specified in the input structure for a search over a RSM a

sub-structure DOE_TRACE is returned containing suggested points that would improve

the initial dataset.

DOE_TRACE: Suggested points that would improve the dataset

DOE_TRACE.NCALLS: The number of suggested update points

DOE_TRACE.VARS: The design variables

Following an optimisation over a RSM OptionsMatlab will return the search history

in the following field of the output structure (OptionsMatlab 0.9.0+):

RSMTRC: Search history of points evaluated over a RSM

RSMTRC.NCALLS: The number of user specified points used

RSMTRC.VARS: The user-specified design points used

RSMTRC.OBJFUN: The value of the objective function RSM at the user-

specified design points.

RSMTRC.CONS: The value of the problem constraint RSM at the user-specified

design points.

RSMTRC.UCONS: The upper limits of the problem constraint at the user-

specified design points.

RSMTRC.LCONS: The upper limits of the problem constraint at the user-

specified design points.

If a genetic algorithm (OMETHD=4) is used OptionsMatlab will return the values of the

GA variables that may be used to restart the genetic algorithm. This information is

contained in the following field of the output structure:

GA_VARS: The GA restart variables

GA_VARS.GA_POP: The GA population design variable and fitness values

GA_VARS.GA_CODE: The final GA code string values

GA_VARS.GA_NRANDM: The random number sequence used by the genetic

algorithm.

Following an optimisation over approximate values of the objective and constraint

functions using a Stochastic Process Model (OBJMOD and CONMOD respectively) the

values and limits of the hyper-parameters will be returned. The hyper-parameters used

to approximate values of the objective function will be returned in the structure

 66

OBJHYPER, and the constraint hyper-parameters will be returning in the structure

CONHYPER. The structures OBJHYPER and CONHYPER are identical to the optional

fields of the input structure described above.

Notes

OptionsMatlab requires a valid Options licence file.

See also

optjob , createBeamStruct

 67

optjob

Multiple objective function and constraint evaluation for OptionsMatlab

Optjob.m provides an example implementation of a broker for multiple objective

function and constraint evaluations for OptionsMatlab . These evaluations are done

in serial, other implementations of optjob support concurrent evaluations.

The optjob function to be used by OptionsMatlab must be set in the OPTJOB field

of the structure passed to OptionsMatlab . The function name of user-defined

objective function and constraint functions should be set in the OPTFUN and OPTCON

fields for the structure passed to OptionsMatlab . If the OPTFUN and OPTCON fields

are equal it is assumed that the objective function routine will return constraint values

as the fifth output argument (see below).

The user-defined objective function called by optjob should conform to the

following function prototype:

[eval,gd,H,PARAMS,CONS,U_CONS,L_CONS]=opfun(VARS,PA RAMS,

U_CONS,L_CONS,DATA)

The user-defined constraint function called by optjob should conform to the

following function prototype:

[CONS,ceq,GC,Gceq,PARAMS,U_CONS,L_CONS]=objcon(VARS ,

PARAMS,U_CONS,L_CONS,DATA)

Reimplementing optjob

OPTJOB takes a matrix of size NJOBS by NVARS and returns a vector of function

evaluations of length NJOBS. Other arguments include the names of the user-defined

OPTFUN and OPTCON functions, as well as user defined parameters, constraints and

upper and lower constraint limits.

The minimum required function prototype of the optjob function is:

[evals,cons] = optjob(optfunname,optconname,vars)

where the input arguments are:

 68

optfunname : the name of the user defined objective function

optconname : the name of the user defined constraint functions

vars : the matrix of design variables size NJOBS by NVARS (where NJOBS is

the number of design points to be evaluated and NVARS the number of design

variables)

where the output arguments are:

evals : a vector of NJOBS function evaluations

cons : a matrix of NJOBS by NCONS constraints

The complete function prototype of the optjob function is:

[evals,cons,params,u_cons,l_cons]=optjob(optfunnam,

optconnam,vars,params,cons,u_cons,l_cons,data)

as above where additional input arguments are

params : a vector of size NPARAMS of user-defined parameters

cons : a vector of NCONS constraints at the design variables to be evaluated

(applies only to a single function evaluation for OPTFUN only otherwise

empty)

u_cons : a vector of size NCONS of the upper limits for the user defined

constraints (where there is no limit set to inf)

l_cons : a vector of size NCONS of the lower limits for the user defined

constraints (where there is no limit set to -inf)

data : the user-supplied data passed unaltered from the field USERDATA of the

input structure

and as above where additional output arguments are:

params : a revised vector of size NPARAMS of user defined parameters

u_cons : a revised vector of size NCONS of the upper limits for the user

defined constraints

l_cons : a revised vector of size NCONS of the lower limits for the user

defined constraints

The optjob Matlab function is invoked from three places with OptionsMatlab ,

OPTJOB, OPTFUN and OPTCON, each of these FORTRAN subroutines will use the

optjob function in a different fashion.

OPTJOB: Calls the optjob Matlab function for NJOBS function (and

constraint) evaluations. Passes all of the available input parameters, apart from

 69

the vector cons for which is substituted an empty array. The user-defined

routine optfun must be called for each of the NJOBS designs supplied. If the

problem is constrained the constraints will be can be evaluated by a combined

objective/constraint function (where optfunname == optconname), or by a

separate constraint function (defined by optconname). For unconstrained

optimisations the argument optconname will be empty. OPTJOB requires the

output arguments evals and cons to be returned, all other output arguments

will be ignored.

OPTFUN: Calls the optjob Matlab function for a single function evaluation.

Passes all of the available input parameters, apart from the string optconnam

for which is substituted an empty string. The user-defined routine

optfunname is called once. Requires the output argument evals to be

returned, the cons output argument will be ignored, and the params , u_cons

and l_cons output arguments will be used to update the corresponding values

in the internal GENDAT database if returned.

OPTCON: Calls the optjob Matlab function for a single constraint evaluation.

Passes all of the available input parameters, apart from the string optfunnam

for which is substituted an empty string and the vector cons for which is

substituted an empty array. The user-defined routine optconname is called

once. Requires the output argument cons to be returned, the evals output

argument will be ignored, and the params , u_cons and l_cons output

arguments will be used to update the corresponding values in the internal

GENDAT database if returned.

See also

OptionsMatlab , createBeamStruct

 70

optjobparallel

Multiple objective function and constraint evaluation for OptionsMatlab

Optjobparallel evaluates user defined objective and constraint functions in

parallel. To evaluate the objective function the user must define two functions, the

first which initiates the calculation of the objective function, and the second which

returns the values of the objective function.

In practice the first function will typically perform a Globus GRAM job submission

returning a handle which can be polled and an application specific job ID. The second

function will typically use the application specific job ID to retrieve the output of the

GRAM job and parse the objective function (and optionally the values of the

constraints also).

The user-defined objective function called by optjobparallel to perform the job

submission should conform to the following function prototype:

[JOBHANDLE,RETRIEVALID]=objfun(VARS,PARAMS,U_CONS,L _CONS,

DATA) where JOBHANDLE is a GRAM job handle which can be polled by

gd_jobpoll , and RETRIEVALID is an identifier used by retrieve the results. If

JOBHANDLE is empty it will not be polled. The only mandatory input argument is

VARS, the other input arguments PARAMS, U_CONS, L_CONS and DATA are all

optional.

This function must be specified in the OPTFUN field of the OptionsMatlab input

structure.

A second retrieval function is be defined to return the value of the objective function.

This function must have the same name as the job submission function appended with

'_parse' . For example when the objective function submission function is saved in

the file 'objfun.m' the retrieval function must be saved in the file

'objfun_parse.m' .

The retrieval function should conform to the following function prototype:

[EVAL,PARAMS,CONS,U_CONS,L_CONS]=objfun_parse(RETRI EVALID

) where RETRIEVALID is the identifier returned by the job submission function.

 71

EVAL is the value of the objective function. The other output arguments PARAMS,

CONS, U_CONS and L_CONS are all optional. CONS is the value of the constraints.

If the value of the constraints and the objective function are return by the same

function the field OPTCON should be set to equal OPTFUN. Alternatively if the

constraints are evaluated independently of the objective function the user may also

define two separate functions to perform the job submission and to parse the

constraints. In this case the functions indicated by the field OPTCON should conform

to the following function prototypes:

[JOBHANDLE,RETRIEVALID]=objcon(VARS,PARAMS,U_CONS,L _CONS,DATA)

[CONS,PARAMS,U_CONS,L_CONS] = objcon_parse(RETRIEVA LID)

See also

optjob , OptionsMatlab , optjobparallel2

 72

optjobparallel2

Multiple objective function and constraint evaluation for OptionsMatlab

optjobparallel2 evaluates user defined objective and constraint functions in

parallel. To evaluate the objective function the user must define two functions, the

first which initiates the calculation of the objective function, and the second which

determines the state of the job and, if complete, return the value of the objective or

constraint functions.

The user-defined objective function called by optjobparallel2 to perform the job

submission should conform to the following function prototype:

RETRIEVALID = objfun(VARS,PARAMS,U_CONS,L_CONS,DATA) where

RETRIEVALID is an identifier used by retrieve the results, for example this may be a

structure containing a number of fields. The only mandatory input argument is VARS,

the other input arguments PARAMS, U_CONS, L_CONS and DATA are all optional.

This function must be specified in the OPTFUN field of the OptionsMatlab input

structure.

A second retrieval function is be defined to determine whether the job has completed,

and if so return the value of the objective function. This function must have the same

name as the job submission function appended with '_parse2' . For example, when

the objective function submission function is saved in the file 'objfun.m' the

retrieval function must be saved in the file 'objfun_parse2.m' .

The retrieval function should conform to the following function prototype:

[EVAL,PARAMS,CONS,U_CONS,L_CONS]=objfun_parse2(

RETRIEVALID) where RETRIEVALID is the identifier returned by the job submission

function. EVAL is the value of the objective function (or empty if the job has not

completed). The other output arguments PARAMS, CONS, U_CONS and L_CONS are all

optional. CONS is the value of the constraints.

This function should determine whether the job has completed. If the job has

completed the value of EVAL (and that of CONS) should be returned. If the job is still

running the function should return an empty value for EVAL (i.e. EVAL = []), in

 73

which case the status of other jobs will be determined before the '_parse2' function

is invoked again for this job. If the job has failed a suitable bad point indicator should

be returned.

If the value of the constraints and the objective function are return by the same

function the field 'OPTCON' should be set to equal 'OPTFUN' . Alternatively if the

constraints are evaluated independently of the objective function the user may also

define two separate functions to perform the job submission and to parse the

constraints. In this case the functions indicated by the field 'OPTCON' should

conform to the following function prototypes:

RETRIEVALID = objcon(VARS,PARAMS,U_CONS,L_CONS,DATA)

[CONS,PARAMS,U_CONS,L_CONS] = objcon_parse2(RETRIEV ALID)

See also

optjob , OptionsMatlab

 74

optum1

Example user-defined sequential optimiser for OptionsMatlab

optum1 is a random sequential optimiser that demonstrates how to define an arbitrary

optimisation strategy to be invoked by OptionsMatlab . This optimiser can be

invoked by specifying the fields OMETHD = 2.1 and OPTUM1 = 'optum1' in the input

structure of OptionsMatlab .

To implement your own optimiser your function should conform to the following

function prototype. User-defined optimisers should minimise the objective function

irrespective of the search direction specified by the input structure.

Syntax

[VARS, STOPOPT] = OPTUM1(VARS, FVAL, CONS, UVARS, L VARS,

UCONS, LCONS, MAXCALLS, CALLNUM, TOL, STEPSIZE, OLE VEL)

Description

[VARS, STOPOPT] = OPTUM1(VARS, FVAL, CONS, UVARS, L VARS,

UCONS, LCONS, MAXCALLS, CALLNUM, TOL, STEPSIZE, OLE VEL) where the

meaning of the input arguments are:

 VARS vector containing the last evaluated value of VARS

 FVAL objective function value at VARS

 CONS vector of constraint values at VARS (empty if unconstrained)

 UVARS vector of upper limits for VARS

 LVARS vector of lower limits for VARS

 UCONS vector of upper limits for CONS (may vary)

 LCONS vector of lower limits for CONS (may vary)

 MAXCALLS maximum number of function evaluations, must be honoured

by your implementation of optum1

 CALLNUM number of iterations performed

 TOL requested tolerance of the optimiser

 STEPSIZE requested step-size of the optimiser

 OLEVEL requested output level of the optimiser

where the meaning of the output arguments are:

VARS vector containing the next value of VARS to be evaluated. If

STOPOPT indicates that the optimiser is complete VARS should

contain the minimum variable values detected by the optimiser

 75

STOPOPT a flag indicating the whether the optimiser has completed. The

optimiser will run whilst STOPOPT = 0, and will complete when

STOPOPT = 1 is returned. If STOPOPT is not set to 1 the

optimiser will run indefinitely.

Example

This example invokes the user-defined optimiser defined by optum1 over the Beam

problem.

input = createBeamStruct;

input.NITERS = 20;

input.OMETHD = 2.1;

input.OPTUM1 = 'optum1';

output = OptionsMatlab(input);

optimisationTrace(output,input,3)

Figure 20 Trace produced by random optimiser optum1

See also

OptionsMatlab

 76

Peaks4d problem

A four dimension problem based upon the Matlab peaks function.

Example

This example plots the objective function surface of the Peaks4D problem.

>> input = createpeaks4dstruct(2.8);

>> input.MC_TYPE = 4;

>> input.NITERS = 500;

>> input.UVARS = [3,3,0.01,0.01]; % hold vars 3 and 4 constant

>> output = OptionsMatlab(input)

output =

 VARS: [4x1 double]

 OBJFUN: 7.4643

 CONS: 0

 OBJTRC: [1x1 struct]

 CONSTRC: [1x1 struct]

>> optimisationTerrain(output,input,3)

Figure 21 The valid objective function surface of the Peaks4d problem

 77

Functions

peaks4d objective function

createpeaks4dstruct creates an input structure for the peaks4d

problem

 78

5 Frequently Asked Questions

5.1 Why does Matlab crash when I call OptionsMatlab ?

When OptionsMatlab is invoked with an invalid Gendat license file the error message

below will be printed:

>> input = createBeamStruct;

>> output = OptionsMatlab(input);

??? Optimization failed. OPTIONS Error code: -2147483648

Gendat license files may be invalid if they have expired, or if they contain incorrect

machine details.

Write statements by some of the third party algorithms available within the Options

have also caused OptionsMatlab to crash. These can be diagnosed by examining the

temporary files generated by OptionsMatlab; .OPTIONS*.opt and

.OPTSDTO*.opt . In some cases this behaviour can be ameliorated by reducing the

output level of OptionsMatlab, OLEVEL = 0 .

When creating a new problem definition conflicts between user-specified design

variable, parameter or constraint names can cause OptionsMatlab to crash. Conflicts

occur when there is an ambiguity between a variable name and the name of an

existing Options variable. For example the variable name FACT would be ambiguous

if the parameter FACTOR had previously been defined. If a variable name conflict has

caused Matlab to crash this may be diagnosed by examining the temporary file

.OPTIONS*.opt .

Please report any reoccurring problems to me by email. Bugs are documented in the

buglists included in the OptionsMatlab distribution.

5.2 How do I specify the search method?

The search method is specified by the field OMETHD of the Options input structure.

The scalar values correspond to the search methods listed below. For more details of

each of the search methods please see the Options manual [1].

 79

0.0 to just evaluate the user’s problem code at the point specified

1.1 for OPTIVAR routine ADRANS

1.2 for OPTIVAR routine DAVID

1.3 for OPTIVAR routine FLETCH

1.4 for OPTIVAR routine JO

1.5 for OPTIVAR routine PDS

1.6 for OPTIVAR routine SEEK

1.7 for OPTIVAR routine SIMPLX

1.8 for OPTIVAR routine APPROX

1.9 for OPTIVAR routine RANDOM

2.1 for user specified routine OPTUM1

2.2 for user specified routine OPTUM2

2.3 for NAG routine E04UCF

2.4 for bit climbing

2.5 for dynamic hill climbing

2.6 for population based incremental learning

2.7 for numerical recipes routines

2.8 for design of experiment based routines

3.11 for Schwefel library Fibonacci search

3.12 for Schwefel library Golden section search

3.13 for Schwefel library Lagrange interval search

3.2 for Schwefel library Hooke and Jeeves search

3.3 for Schwefel library Rosenbrock search

3.41 for Schwefel library DSCG search

3.42 for Schwefel library DSCP search

3.5 for Schwefel library Powell search

3.6 for Schwefel library DFPS search

3.7 for Schwefel library Simplexsearch

3.8 for Schwefel library Complexsearch

3.91 for Schwefel library two-membered evolution strategy

3.92 for Schwefel library multi-membered evolution strategy

4 for genetic algorithm search

5 for simulated annealing

6 for evolutionary programming

 80

7 for evolution strategy

5.3 How do I run a Design of Experiments?

A Design of Experiments search can be used to efficiently sample points across the

multi-dimensional parameter space represented by large numbers of design variables.

A Design of Experiments search can be invoked by setting OMETHD = 2.8. The

number of points to be evaluated can be configured by altering the input structure

field NITERS.

A number of different Design of Experiments search methods are available within the

Options package. These can be configured using the optional input field MC_TYPE,

where;

1 Random (default)

2 LPτ

3 Central composite and LPτ

4 Full factorial and LPτ

5 Latin hypercubes

6 Cell-based latin hypercubes

7 User supplied candidate points

For more details about these Design of Experiments search methods please consult the

Options manual [1].

User supplied candidate points to be evaluated during a Design of Experiments can be

supplied with the optional input field DOE_TRACE when the control parameter

MC_TYPE = 7 . DOE_TRACE requires two mandatory fields:

 DOE_TRACE.NCALLS containing the number of user-supplied DOE points

 DOE_TRACE.VARS the design points to be evaluated during the DOE (size

NVARS by DOE_TRACE.NCALLS)

When using user supplied candidate points NITERS must equal DOE_TRACE.NCALLS

plus one as the Design of Experiments will first evaluate the design point specified by

VARS.

 81

5.4 How do I build a Response Surface Model?

A Response Surface Model is used to approximate the value of objective or constraint

functions based upon the results of direct evaluation of the user’s model. Response

Surface Models can be built independently over the objective and constraints, and are

configured using the optional input fields OBJMOD and CONMOD respectively. If these

fields are not set OptionsMatlab will directly evaluate the user supplied objective

and constraint functions.

A number of Response Surface Model methods are available to be used to

approximate the values of the objective function and constraints. The possible settings

for the optional input fields OBJMOD and CONMOD are:

1.0 for a Shepard response surface model

2.1 for linear Radial Basis Function

2.2 for thin plate Radial Basis Function

2.3 for cubic splines Radial Basis Function

2.4 for cubic splines Radial Basis Function with regression via reduced

bases

3.1 for mean polynomial regression model

3.2 for first order polynomial regression model

3.3 for first order polynomial regression model plus squares

3.4 for first order polynomial regression model plus products (cross-terms)

3.5 for second order polynomial regression model

3.6 for second order polynomial regression model plus cubes

4.1 for a Stochastic Process Model

4.2 for the root mean square error of the Stochastic Process Model

4.3 for the expected improvement of the Stochastic Process Model

4.31 for the expected improvement of the constrained Stochastic Process

Model [requires CONMOD=4.1]

4.32 for the feasibility of improvement of the constrained Stochastic

Process Model [requires CONMOD=4.1]

4.33 for the probability of improvement of the Stochastic Process Model

0.0 if the underlying user supplied function is to be called.

 82

5.5 How do I plot my Response Surface Model?

Following OptionsMatlab version 0.9.0+ search histories are available for

optimisations which are run over a Response Surface Model in the output structure

field RSMTRC. Previously OptionsMatlab would only return a search history when

candidate points were provided.

To evaluate a factorial search of the RSM that is suitable for plotting it may be

appropriate to evaluate a list of candidate points. The candidate points must be

provided in a field DOE_TRACE of the input structure (see section 5.3). In versions of

OptionsMatlab 0.9.0+ it is necessary to specify that the optimisation is a candidate

points Design of Experiments (OMETHD=2.8, MC_TYPE=7).

>> %Create the initial dataset

>> DOEinput = createBeamStruct;

>> DOEoutput = OptionsMatlab(DOEinput);

>> %Define a RSM input structure

>> RSMinput = createBeamStruct;

>> RSMinput.OBJMOD = 3.3;

>> RSMinput.CONMOD = 3.3;

>> %Create a list of candidate points to be evaluated

>> ii = linspace(DOEinput.LVARS(1),DOEinput.UVARS(1),10);

>> jj = linspace(DOEinput.LVARS(2),DOEinput.UVARS(2),10);

>> [x,y] = meshgrid(ii,jj);

>> RSMinput.DOE_TRACE.VARS(1,:)=

reshape(x,1,prod(size(x)));

>> RSMinput.DOE_TRACE.VARS(2,:)=

reshape(y,1,prod(size(y)));

>> RSMinput.DOE_TRACE.NCALLS = prod(size(x));

>> %Define the search a candidate points DoE

>> RSMinput.OMETHD = 2.8;

>> RSMinput.MC_TYPE = 7;

>> RSMoutput = OptionsMatlab(RSMinput, DOEoutput);

>> disp(RSMoutput.RSMTRC)

 83

 OBJFUN: [1x100 double]

 VARS: [2x100 double]

 NCALLS: 100

 CONS: [5x100 double]

 LCONS: [5x100 double]

 UCONS: [5x100 double]

The contents of RSMTRC can then be plotted to show the surface of the Response

Surface Model.

>> optimisationTerrain(RSMoutput, RSMinput);

Figure 22 Plotting approximate values of the Beam objective function generated by a RSM

The utility function optimisationSampleRSM automates the process of sampling a

RSM built over the user's problem.

5.6 How do I generate Design of Experiment update p oints?

It is possible to improve the quality of a Response Surface Model by improving to

original dataset by selectively adding new points. The Genetic Algorithm (OMETHD =

4) and Dynamic Hill Climbing (OMETHD = 2.5) optimisation algorithms, when run

over a Response Surface Model, are capable of returning a list of points that would

 84

improve the dataset.

Update points will be returned if the OptionsMatlab input structure contains the

optional field NUMUPDATE. The value of NUMUPDATE is a scalar which determines the

number of update points to be returned when a search routine is run over a RSM. The

update points will be returned in the field DOE_TRACE of the output structure.

In the following example a Genetic Algorithm is run over a RSM generated from the

search history contained in the structure DOEoutput . NUMUPDATE is set to equal 10,

meaning that the Genetic Algorithm will suggest ten update points at which the

original data set can be improved.

Note that the optimisation algorithm may return less than NUMUPDATE update points,

in this case the remaining elements of DOE_TRACE.VARS will contain zeros.

>> %Create the initial dataset

>> DOEinput = createBeamStruct;

>> DOEoutput = OptionsMatlab(DOEinput);

>> %Define a RSM input structure

>> RSMinput = createBeamStruct;

>> RSMinput.OMETHD = 4;

>> RSMinput.OBJMOD = 3.3;

>> RSMinput.CONMOD = 3.3;

>> RSMinput.NUMUPDATE = 10;

>> RSMoutput = OptionsMatlab(RSMinput, DOEoutput);

>> disp(RSMoutput.DOE_TRACE)

 NCALLS: 10

 VARS: [2x10 double]

The update points contained in the field DOE_TRACE of the structure RSMoutput can

now be used as candidate points for a second Design of Experiments study.

>> DOEinput2 = createBeamStruct;

>> DOEinput2.OMETHD = 2.8;

>> DOEinput2.MC_TYPE = 7;

>> DOEinput2.DOE_TRACE = RSMoutput.DOE_TRACE;

 85

>> DOEinput2.NITERS = RSMoutput.DOE_TRACE.NCALLS+1;

>> DOEoutput2 = OptionsMatlab(DOEinput2);

Note that DOEinput2.NITERS must equal DOEinput2.DOE_TRACE.NCALLS plus

one as the Design of Experiments will first evaluate the design point specified by

DOEinput2.VARS .

5.7 How do I define an unconstrained optimisation?

From version 0.5 of OptionsMatlab onwards users do not have to define a null

constraint function for unconstrained optimisation problems. To indicate that an

optimisation problem is unconstrained the field NCONS should be set to 0. In this case

the fields CNAM, LCONS, UCONS, CONS and OPTCON are not mandatory and will be

ignored.

5.8 How do I write my own objective and constraint functions?

The default implementation of OPTJOB (optjob.m) requires user-defined objective

and constraint functions to conform to well-defined interfaces. These interfaces are

design to be compatible with objective and constraint functions used with the Matlab

Optimization Toolbox [4].

The full function signature for the user-defined objective function is:

[eval,gd,H,PARAMS,CONS,U_CONS,L_CONS]=objfun(VARS,P ARAMS,

U_CONS,L_CONS,DATA)

Where eval is the value of the objective function at the design variables VARS. The

objective function corresponding to this header can return the constraint values for the

design point, CONS, and also alter the values of the parameters, PARAMS, and

constraint limits U_CONS and L_CONS. The argument DATA contains the Matlab

variable contained in the optional USERDATA field of the input structure. The

parameters gd and H are relevant to the Matlab Optimization Toolbox [4] and are not

used by OptionsMatlab.

NOTE: The full function signature for user-defined objective function has changed in

OptionsMatlab version 0.7. In earlier versions the third optional input argument was

CONS, the value of the constraints at VARS. However this feature was unreliable and

 86

has been removed. Please update objective functions that use the earlier form of the

function signature.

The minimum function signature required by optjob.m is:

eval = objfun(VARS)

The full function signature for the user-defined constraint function is:

[CONS,ceq,GC,Gceq,PARAMS,U_CONS,L_CONS]=objcon(VARS ,PARAM

S,U_CONS,L_CONS,DATA)

Where CONS are the constraint values at the design variables VARS. The parameters

ceq , GC and Gceq are relevant to the Matlab Optimization Toolbox [4] and are not

used by OptionsMatlab.

Again the minimum function signature required by optjob.m is a lot smaller:

CONS = objcon(VARS)

Alternative implementations of OPTJOB may require different function signatures

from user-defined objective and constraint functions. Please consult the

documentation of alternative implementations of OPTJOB to confirm that your

objective and constraint functions conform to the requirements.

Note that the OptionsMatlab may ignore altered values of the parameters, PARAMS,

and constraint limits U_CONS and L_CONS if it is not appropriate to change them, for

example during a Design of Experiments.

5.9 How do I evaluate a combined objective and cons traint function?

The default implementation of OPTJOB (optjob.m) supports combined objective and

constraint functions. The combined function must conform to following objective

function signature;

[eval,gd,H,PARAMS,CONS,...] = objfun(VARS,...)

optjob.m will evaluate this function once when evaluating objective and constraint

 87

functions if the input fields OPTFUN and OPTCON specify the same function.

NOTE: The full function signature for user-defined objective function has changed in

OptionsMatlab version 0.7. In earlier versions the third optional input argument was

CONS, the value of the constraints at VARS. However this feature was unreliable and

has been removed. Please update objective functions that use the earlier form of the

function signature.

5.10 Can OptionsMatlab calculate function evaluatio ns in parallel?

The standard OptionsMatlab job manager, optjob.m , will evaluate the objective and

constraint functions sequentially. However a parallel job manager,

optjobparallel2 , is included in the OptionsMatlab distribution (this supersedes

the parallel job manager optjobparallel). When your objective or constraint

function is expensive and you wish to use a search method with inherent parallelism it

may be more considerably efficient to use the parallel job manager.

To run the demo of parallel objective function evaluations enter the following

commands:

>> input = createBeamStructParallel2

>> output = OptionsMatlab(input)

To make your objective and constraint functions available to optjobparallel2

different function signatures are required to those described in section 5.8. To

evaluate the objective function the user must define two functions, the first which

initiates the calculation of the objective function, and a second which determines

whether the calculation has completed, and if so returns the value of the objective

function.

In practice the first function could perform a Globus GRAM job submission [5]

returning a handle which can be used to query the status of the job, and an application

specific job ID. The second function will typically use the application specific job ID

to retrieve the output of the GRAM job and parse the objective function (and

optionally the values of the constraints also). The interaction between these functions

is shown by Figure 23.

 88

Matlab environment

OptionsMatlab.dll

optjobparallel2.m

OptionsMatlab.m

objfun.m
objfun_parse2.m

x10 x10

start job retrieve results

Matlab environment Matlab environment

OptionsMatlab.dll

optjobparallel2.m

OptionsMatlab.m

objfun.m
objfun_parse2.m

x10 x10

start job retrieve results
Figure 23 Parallel objective function evaluation in OptionsMatlab. Objfun.m is called ten times to

begin the objective function evaluation at ten points. When these jobs are complete objfun_parse2.m is

called ten times to retrieve and parse the results

The user-defined objective function called by optjobparallel2 to perform the job

submission should conform to the following function prototype:

[RETRIEVALID] = objfun(VARS,...)

where RETRIEVALID is an identifier used to determine the status of the job, and to

retrieve the results. The only mandatory input argument is VARS, the other input

arguments PARAMS, U_CONS and L_CONS are all optional. This function must be

specified in the OPTFUN field of the OptionsMatlab input structure.

A second retrieval function is be defined to return the value of the objective function.

This function must have the same name as the job submission function appended with

'_parse2' . For example when the objective function submission function is saved

in the file 'objfun.m' the retrieval function must be saved in the file

'objfun_parse2.m' .

The retrieval function should conform to the following function prototype:

 [EVAL,PARAMS,CONS,U_CONS,L_CONS]=objfun_parse2(RE TRIEVALID)

where RETRIEVALID is the identifier returned by the job submission function. EVAL

is the value of the objective function (or empty if the job has not completed). The

 89

other output arguments PARAMS, CONS, U_CONS and L_CONS are all optional. CONS is

the value of the constraints.

If the value of the constraints and the objective function are returned by the same

function the field OPTCON should be set to equal OPTFUN. Alternatively if the

constraints are evaluated independently of the objective function the user may also

define two separate functions to perform the job submission and to parse the

constraints. In this case the functions indicated by the field OPTCON should conform

to the following function prototypes:

 [JOBHANDLE] = objcon(VARS,PARAMS,U_CONS,L_CONS)

 [CONS,PARAMS,U_CONS,L_CONS] = objcon_parse2(RETRI EVALID)

5.11 How do I tune the hyper-parameters for a stoch astic process model

RSM?

Instead of searching the user’s problem OptionsMatlab can be used to tune the

hyper-parameters for a stochastic process model RSM. This can be done by setting up

the OptionsMatlab input structure as though you are going to build a RSM (see

section 5.4) over an existing search history. Hyper-parameter tuning is specified by

setting the input structure field TUNEHYPER equal to 1.

When TUNEHYPER is set the hyper-parameters are tuned using the search method

specified by the input structure. The output structure will return the structures

OBJHYPER (and/or CONHYPER where appropriate) in addition to the final value of the

concentrated likelihood function which is used as the objective function OBJ_CLF (or

CST_CLF). Note that the user’s problem is not searched, and no optimum for the

user’s problem is returned.

To use the tuned hyper-parameters to build and search a RSM, or to further tune the

hyper-parameters, the structures OBJHYPER and CONHYPER can be passed as fields in

the OptionsMatlab input structure. These structures contain the hyper-parameter

values, and upper and lower limits to these values.

The example below demonstrates hyper-parameter tuning by performing the

following steps:

• training hyper-parameters over a data set

 90

• refining hyper-parameters with further training

• searching a RSM with user supplied hyper-parameters

• searching a RSM with starting at the previous 'best-point'

This example uses the Beam problem.

% Build initial dataset

input1 = createBeamStruct;

input1.OMETHD = 2.8; %Design of Experiments

input1.NITERS = 50; %Number of iterations

input1.OLEVEL = 2;

input1.MC_TYPE = 4; %Full factorial DoE

output1 = OptionsMatlab(input1)

output1 =

 VARS: [2x1 double]

 OBJFUN: 3.6877e+003

 CONS: [5x1 double]

 OBJTRC: [1x1 struct]

 CONSTRC: [1x1 struct]

% Tune hyper-parameters with SA

input2 = createBeamStruct;

input2.OLEVEL = 2;

input2.OBJMOD = 4.1; %Tune Stochastic Process Model

%hyper-parameters over the objective

%function

input2.CONMOD = 4.1; %Tune Stochastic Process Model

 %hyper-parameters over the constraints

input2.TUNEHYPER = 1; %Tune the hyper-parameters

 %(do not search the user's problem)

input2.OMETHD = 5; %Simulated Annealing

output2 = OptionsMatlab(input2, output1)

 91

output2 =

 OBJHYPER: [1x1 struct]

 OBJ_CLF: 712.6938

 CONHYPER: [1x1 struct]

 CST_CLF: 824.2750

% Further train user-supplied hyper-parameters with GA

input3 = input2;

% Note that if OBJHYPER or CONHYPER are provided th ese

% hyper-parameters will be used in preference to th ose

% generated by OPTRSS

input3.OBJHYPER = output2.OBJHYPER;

input3.CONHYPER = output2.CONHYPER;

input3.OMETHD = 4;

output3 = OptionsMatlab(input3, output1)

output3 =

 OBJHYPER: [1x1 struct]

 OBJ_CLF: 842.2571

 CONHYPER: [1x1 struct]

 CST_CLF: 892.1499

% Search RSM using user-supplied hyper-parameters

input4 = input1;

input4.OBJMOD = 4.1;

input4.CONMOD = 4.1;

input4.OBJHYPER = output3.OBJHYPER;

input4.CONHYPER = output3.CONHYPER;

input4.OMETHD = 5;

input4.NITERS = 5000;

input4.OLEVEL = 2;

output4 = OptionsMatlab(input4, output1)

 92

output4 =

 VARS: [2x1 double]

 OBJFUN: 2.1522e+003

 CONS: [5x1 double]

 OBJHYPER: [1x1 struct]

 CONHYPER: [1x1 struct]

% Search RSM using user-supplied hyper-parameters a t the

% previous best point

input5 = input4;

input5.OMETHD = 4;

input5.NITERS = 50;

% Reset starting point to previous best

input5.VARS = output4.VARS';

output5 = OptionsMatlab(input5, output1)

output5 =

 VARS: [2x1 double]

 OBJFUN: 2.4426e+003

 CONS: [5x1 double]

 OBJHYPER: [1x1 struct]

 CONHYPER: [1x1 struct]

For more details on the stochastic process model and hyper-parameter tuning see

chapter 10 of the Options manual [1].

5.12 Can I checkpoint the progress of an optimisati on?

During a lengthy optimisation it can be reassuring to checkpoint its progress.

OptionsMatlab can write the current objective function and constraint search histories

to file following a call to OPTJOB. Checkpointing can be switched on by setting the

checkpoint interval in the field CHKPT_INTV of the input structure (CHKPT_INTV

should be a multiple of MAXJOBS).

 93

When checkpointing is used the search histories for the objective function and

constraint search histories are written to file. The file format used is the binary Matlab

.MAT format. The file name can be specified with the optional field CHKPT_FILE of

the input structure.

5.13 How do I pass Matlab variables to my objective function?

OptionsMatlab supports the optional input structure field USERDATA. This field can

be used to pass any Matlab variable (including structures or cell arrays) to the user-

defined objective and constraint functions. To use the information contained within

USERDATA in your objective function you must you must accept a sixth input

argument DATA (see section 5.8). To access the variable from a separate constraint

function the constraint function must accept a fifth input argument DATA.

Please note that the USERDATA field is supported by the OPTJOB functions supplied

with OptionsMatlab (optjob.m and optjobparallel.m), however the USERDATA

field may not be supported by older OPTJOB functions.

5.14 How do I define discrete design variables?

By default design variables in OptionsMatlab are contiguous between upper and

lower limits; however it is possible to specify discrete values for one or more of the

design variables. To use discrete variables the fields NDVRS and DVARS of the input

structure must be configured appropriately.

The field NDVRS must be set equal to the maximum number of discrete design

variable values for any single design variable. In the example below one of the design

variables has three possible discrete states, whilst the second is contiguous; therefore

we set NDVRS equal to 3.

The field DVARS is a matrix of size NVRS by NDVRS which contains the discrete

design variable values for each of the design variables. Therefore in the example

below the three possible discrete states of the first design variable are place in the first

row of DVARS. Because the second design variable is contiguous all values of the

second row are set equal to DNULL. If a design variable has fewer possible discrete

values fewer than NDVRS, the remaining elements of DVARS should be set to DNULL.

 94

The example below illustrates the use of discrete design variable values with the

Banana problem.

>> % Create an unconstrained input structure

>> input = createbananastruct;

>> % Set the maximum number of discrete variable state s

(between all design variables)

>> input.NDVRS = 3;

>> % Resize the matrix of discrete design variable val ues (set

to DNULL for contiguous design variables)

>> input.DVARS = ones(input.NVRS, input.NDVRS) * in put.DNULL;

>> % Set discrete values for the first design variable (the

second design variable will remain contiguous)

>> input.DVARS(1,:) = [0, 0.5, 1]

>> disp(input.DVARS)

 0 0.5000 1.0000

 -777.0000 -777.0000 -777.0000

>> % Run the optimisation

>> results = OptionsMatlab(input);

>> % Plot the output of the optimisation to demonstrat e

discrete variables

>> optimisationTrace(results, input, 1, 1, [-37.5, 30], [], 1)

 95

Figure 24 Example of a problem with one discrete variable and one contiguous variable

5.15 How do I restart a Genetic Algorithm?

The structure GA_VARS, which is contained in the OptionsMatlab output and

checkpoint structures when a Genetic Algorithm is used (OMETHD = 4), allows the

user to restart a Genetic Algorithm from its previous state. The following example

demonstrates a Genetic Algorithm restarted from the output of an earlier calculation:

>> %Run a Genetic Algorithm

>> input1 = createBeamStruct;

>> input1.NITERS = 500;

>> input1.OMETHD = 4;

>> input1.GA_NPOP = 50;

>> output1 = OptionsMatlab(input1)

 96

output1 =

 VARS: [2x1 double]

 OBJFUN: 2.6884e+003

 CONS: [5x1 double]

 OBJTRC: [1x1 struct]

 CONSTRC: [1x1 struct]

 GA_VARS: [1x1 struct]

>> %Restart a Genetic Algorithm

>> input2 = input1;

>> input2.GA_VARS = output1.GA_VARS;

>> input2.NITERS = 50;

>> output2 = OptionsMatlab(input2)

output2 =

 VARS: [2x1 double]

 OBJFUN: 2.6884e+003

 CONS: [5x1 double]

 OBJTRC: [1x1 struct]

 CONSTRC: [1x1 struct]

 GA_VARS: [1x1 struct]

>> %Plot the history of the two optimisations

>> optimisationHistory({output1, output2}, {'First run',

'Second run'})

 97

Figure 25 A Genetic Algorithm restarted following 500 iterations is already adapted to the objective

function surface

5.16 What is the meaning of the optional control pa rameters?

Table 1 contains the meaning and default value of the optional control parameters.

Since the meaning of the control parameters may differ depending upon the

optimisation method in use the control parameters are organised with respect to the

optimisation method.

Optimisation
Method

Control
Parameter

Meaning Default
value

Response
Surface
Modelling

FUSION_TYP Flag to indicate RSM fusion type
(differences=0, ratios=1)

0

 CST_BAD_PT The outer limit of acceptable constraint
function values in RSMs

None

 OBJ_BAD_PT The outer limit of acceptable objective
function values in RSMs

None

 RSM_EIF_W The weighting between exploitation and
exploration used when applying
expected improvement methods in RSM

None

 RSM_NCSKIP Number of radial basis functions
skipped for constraints

0

 RSM_NSKIP Number of radial basis functions
skipped for objective function

0

 RSM_NULL_T Percentage worsening required in RBF
regression to halt fitting

10%

1.1 OPTIVAR
routine ADRANS

OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

0.001

 98

 OPT_STEP The step size used 0.02
 OVR_MAND Turns on mandatory design constraints 0 (off)
 OVR_PENAL Selects the kind of penalty function used

by a number of the OPTIVAR routines:
 1 = one pass external
 2 = Fiacco-McCormick
 3 = Powell
 4 = Schuldt

1

 OVR_SEED Sets the seed for random number
sequences

128

1.2 OPTIVAR
routine DAVID

OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

0.001

 OPT_STEP The step size used 1.00E-06
 OVR_MAND Turns on mandatory design constraints 0 (off)
 OVR_PENAL Selects the kind of penalty function used

by a number of the OPTIVAR routines:
 1 = one pass external
 2 = Fiacco-McCormick
 3 = Powell
 4 = Schuldt

1

 OVR_CONV Sets the convergence criterion 1D-4/1D-5
1.3 OPTIVAR
routine FLETCH

OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

0.001

 OPT_STEP The step size used 1.00E-06
 OVR_MAND Turns on mandatory design constraints 0 (off)
 OVR_PENAL Selects the kind of penalty function used

by a number of the OPTIVAR routines:
 1 = one pass external
 2 = Fiacco-McCormick
 3 = Powell
 4 = Schuldt

1

 OVR_CONV Sets the convergence criterion 1D-4/1D-5
1.4 OPTIVAR
routine JO

OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 1.00E-06
 OVR_MAND Turns on mandatory design constraints 0 (off)
 OVR_PENAL Selects the kind of penalty function used

by a number of the OPTIVAR routines:
 1 = one pass external
 2 = Fiacco-McCormick
 3 = Powell
 4 = Schuldt

1

 OVR_CONV Sets the convergence criterion 1D-4/1D-5
1.5 OPTIVAR
routine PDS

OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 0.1
 OVR_MAND Turns on mandatory design constraints 0 (off)
 OVR_PENAL Selects the kind of penalty function used

by a number of the OPTIVAR routines:
 1 = one pass external
 2 = Fiacco-McCormick

1

 99

 3 = Powell
 4 = Schuldt

 OVR_CONV Sets the convergence criterion 1D-4/1D-5
1.6 OPTIVAR
routine SEEK

OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 0.01
 OVR_MAND Turns on mandatory design constraints 0 (off)
 OVR_PENAL Selects the kind of penalty function used

by a number of the OPTIVAR routines:
 1 = one pass external
 2 = Fiacco-McCormick
 3 = Powell
 4 = Schuldt

1

 OVR_STOP sets the minimum step length stopping
criterion

0.01

1.7 OPTIVAR
routine SIMPLX

OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 0.1
 OVR_MAND Turns on mandatory design constraints 0 (off)
 OVR_PENAL Selects the kind of penalty function used

by a number of the OPTIVAR routines:
 1 = one pass external
 2 = Fiacco-McCormick
 3 = Powell
 4 = Schuldt

1

 OVR_CONV Sets the convergence criterion 1D-4/1D-5
1.8 OPTIVAR
routine APPROX

OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 0.001
 OVR_MAND Turns on mandatory design constraints 0 (off)
 OVR_PENAL Selects the kind of penalty function used

by a number of the OPTIVAR routines:
 1 = one pass external
 2 = Fiacco-McCormick
 3 = Powell
 4 = Schuldt

1

 OVR_STEP Sets the fraction of range limiting step
lengths

0.1

 OVR_SIMP Sets the maximum number of simplex
iterations

46

1.9 OPTIVAR
routine
RANDOM

OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 0.02
 OVR_MAND Turns on mandatory design constraints 0 (off)
 OVR_PENAL Selects the kind of penalty function used

by a number of the OPTIVAR routines:
 1 = one pass external
 2 = Fiacco-McCormick
 3 = Powell
 4 = Schuldt

1

 100

 OVR_NPTS Sets the number of points retained per
iteration

5

 OVR_SHRK Sets the shrinkage factor 4
2.3 NAG routine
E04UCF

NAG_BIGBND Sets the size of non-existent upper
bounds.

1.00E+10

 NAG_ETA Sets the accuracy of the linear
minimizations

0.5

 NAG_RHO Used in the definition of the augmented
Lagrangian function

1

 OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 5.0N
 MC_MAND Turns on mandatory design constraints 0 (off)

2.4 bit climbing BC_NBIN The number of bits used per variable in
binary discretisation

12

 BC_PENAL Set the penalty function control
parameter, r, with values less than one
invoking the modified Fiacco and
McCormick function (OPTIM2)
otherwise the one pass method is used
(OPTIM1)

1.00E+20

 BC_NRANDM The number of random numbers drawn
and discarded before starting the
optimiser

0

 OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 1.00E-05
 MC_MAND Turns on mandatory design constraints 0 (off)

2.5 dynamic hill
climbing

DHC_INITSZ Sets the non-dimensional size of the
initial steps in the hill climbing search

0.5

 DHC_THRESH The hill climbing searches proceed with
reducing step sizes until they are less
than the value set by this parameter

0.01

 DHC_PENAL Sets the penalty function control
parameter, r, with values less than one
invoking the modified Fiacco and
McCormick function (OPTIM2)
otherwise the one pass method is used
(OPTIM1)

1.00E+20

 DHC_NRANDM The number of random numbers drawn
and discarded before starting the
optimiser

0

 OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 1.00E-05
 MC_MAND Turns on mandatory design constraints 0 (off)

2.6 population
based
incremental
learning

PL_NBIN The number of bits used per variable in
binary discretisation

12

 PL_NPOP The number of random guesses 100
 PL_PENAL Sets the penalty function control

parameter, r, with values less than one
1.00E+20

 101

invoking the modified Fiacco and
McCormick function (OPTIM2)
otherwise the one pass method is used
(OPTIM1)

 PL_LRATE The learning rate controls how rapidly
the probability vector changes towards
the successful solutions at the end of
each generation

0.05

 PL_PMUTNT mutation is applied to the probability
vector randomly at the end of each
generation with this probability per
element

0.02

 PL_NRANDM The number of random numbers drawn
and discarded before starting the
optimiser

0

 OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 1.00E-05
 MC_MAND Turns on mandatory design constraints 0 (off)

2.7 numerical
recipes routines

OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 1.00E-05
 MC_MAND Turns on mandatory design constraints 0 (off)
 MC_TYPE Selects the kind of optimizer used by the

numerical recipes routines:
 1 = Powell
 2 = Polak-Ribiere
 3 = Fletcher-Reeves
 4 = Broyden-Fletcher

1

 MC_PENAL Selects the kind of penalty function used
by the numerical recipes routines:
 1 = one pass external
 2 = Fiacco-McCormick

1

2.8 design of
experiment
based routines

DOE_NRANDM DoE sequence random number seed

 MC_TYPE DoE search methods:
 1 = Random
 2 = Lptau
 3 = Central composite + Lptau
 4 = Full factorial + Lptau
 5 = Latin hypercubes
 6 = Cell-based latin hypercubes
 7 = User supplied candidate points

1

 MC_MAND Turns on mandatory design constraints 0 (off)
2.9 design of
experiment
based routines
(without function
calls)

DOE_NRANDM Six Design of Experiment search
methods

0

 MC_MAND Turns on mandatory design constraints 0 (off)
3.11 Schwefel
library Fibonacci
search

OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints 1.00E-03

 102

must be met to be considered satisfied
 OPT_STEP The step size used 1.00E-05
 SC_PENAL Selects the kind of penalty function used

by unconstrained search methods in the
Schwefel library routines:
 1 = one pass external
 2 = Fiacco-McCormick

1

3.12 Schwefel
library Golden
section search

OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 1.00E-05
 SC_PENAL Selects the kind of penalty function used

by unconstrained search methods in the
Schwefel library routines:
 1 = one pass external
 2 = Fiacco-McCormick

1

3.13 Schwefel
library Lagrange
interval search

OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 1.00E-05
 SC_PENAL Selects the kind of penalty function used

by unconstrained search methods in the
Schwefel library routines:
 1 = one pass external
 2 = Fiacco-McCormick

1

3.2 Schwefel
library Hooke
and Jeeves
search

OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 1.00E-05
 SC_PENAL Selects the kind of penalty function used

by unconstrained search methods in the
Schwefel library routines:
 1 = one pass external
 2 = Fiacco-McCormick

1

3.3 Schwefel
library
Rosenbrock
search

OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 1.00E-05
3.41 Schwefel
library DSCG
search

OPT_TOL The accuracy with which solutions are
found

1.00E-03

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 1.00E-05
 SC_PENAL Selects the kind of penalty function used

by unconstrained search methods in the
Schwefel library routines:
 1 = one pass external
 2 = Fiacco-McCormick

1

 103

3.42 Schwefel
library DSCP
search

OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 1.00E-05
 SC_PENAL Selects the kind of penalty function used

by unconstrained search methods in the
Schwefel library routines:
 1 = one pass external
 2 = Fiacco-McCormick

1

3.5 Schwefel
library Powell
search

OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 1.00E-05
 SC_PENAL selects the kind of penalty function used

by unconstrained search methods in the
Schwefel library routines :
 1 = one pass external
 2 = Fiacco-McCormick

1

 SC_TYPE Selects the default convergence
criterion or an alternate criterion:
 1 = default convergence
 2 = alternate convergence

1

3.6 Schwefel
library DFPS
search

OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 1.00E-05
 SC_PENAL Selects the kind of penalty function used

by unconstrained search methods in the
Schwefel library routines:
 1 = one pass external
 2 = Fiacco-McCormick

1

 SC_CONV Defines the expected solution value of
the objective function at the optimum,
default zero (50% improvement)

0

3.7 Schwefel
library Simplex
search

OPT_TOL The accuracy with which solutions are
found

1.00E-03

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 1.00E-05
 SC_PENAL Selects the kind of penalty function used

by unconstrained search methods in the
Schwefel library routines:
 1 = one pass external
 2 = Fiacco-McCormick

1

 SC_NITERS The number of iterations before
convergence testing is applied, default
zero (the total number of function calls
to be used divided by 25 times the
number of design variables)

0

3.8 Schwefel
library Complex
search

OPT_TOL The accuracy with which solutions are
found

0

 104

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 1.00E-05
 SC_PENAL Selects the kind of penalty function used

by unconstrained search methods in the
Schwefel library routines:
 1 = one pass external
 2 = Fiacco-McCormick

1

3.91 Schwefel
library two-
membered
evolution
strategy (EVOL)

SC_LS How severe convergence testing is, with
bigger values requiring the objective
function to remain essentially stationary
for longer before convergence is
considered complete

2

 SC_NRANDM The number of random numbers drawn
and discarded before starting the
optimiser

0

 OPT_TOL The accuracy with which solutions are
found

1.00E-03

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 1.00E-05
 SC_LR Controls step size management, with

bigger values giving a slower but more
accurate search

1

 SC_SN Controls step size adjustment, which
can be kept constant using a value of
unity

0.85

3.92 Schwefel
library multi-
membered
evolution
strategy (KORR)

SC_IELTER The number of parents in a generation 10

 SC_NACHKO The number of descendants of a
generation

100

 SC_NS The number of different step size
parameters

N

 SC_DELS The global random step sizes 1/sqtr(2N)
 SC_DELI The local random step sizes 1/sqtr(2N)/

sqtr(NS)
 SC_DELP The correlation ellipsoid angles 5 × 0.

01745 = 5°
 SC_BKORRL Switches on the rotation of the

correlation ellipsoid if non-zero
1

 SC_KONVKR Number of generations used when
applying convergence tests

1

 SC_NRANDM The number of random numbers drawn
and discarded before starting the
optimiser

0

 OPT_TOL The accuracy with which solutions are
found

0

 OPT_CTOL The accuracy with which constraints
must be met to be considered satisfied

1.00E-03

 OPT_STEP The step size used 1.00E-05
 SC_TYPE Controls whether the "comma" or "plus"

version of the code is used:
 1 = comma
 2 = plus

1

 SC_IREKOM Controls the recombination type (n.b.,
each digit in this variable must lie
between 1 and 5)

333

 105

4 genetic
algorithm search

GA_NBIN The number of bits used per variable in
binary discretisation

12

 GA_NPOP Population size each generation 50
 GA_PENAL Set the penalty function control

parameter, r, with values less than one
invoking the modified Fiacco and
McCormick function (OPTIM2)
otherwise the one pass method is used
(OPTIM1)

1.00E+20

 GA_PBEST The proportion of the solutions that are
used to form the parents of the next
generation

0.8

 GA_PCROSS The proportion of the solutions in the
population that are crossed to form new
solutions

0.8

 GA_PINVRT The proportion of the solutions in the
population that have their ordering
codes inverted to form new solutions

0.2

 GA_PMUTNT Mutation is allowed at a level set by this
parameter, i.e., this fraction of the total
number of binary digits are reversed at
each pass (n.b. greater than 0.5 results
in randomisation)

0.005

 GA_PRPTNL If .TRUE. the make-up of the following
generation is then biased in favour of
the most successful according to their
objective function values, otherwise
survival is proportional to ranking but
scaled to prevent dominance and
stagnation

1 (.TRUE.)

 GA_ALPHA The cluster penalising function. Small
values giving less severe penalties than
those nearer one, and a value less than
zero turning the mechanism off

0.2

 GA_DMIN The minimum distance between cluster
centroids

0.05

 GA_DMAX The furthest distance a new solution can
be from an existing cluster centroid
without a new cluster being formed

0.2

 GA_NCLUST The initial number of clusters, either in
absolute terms or, if it is <1. 0, as a
fraction of the population size

0.1

 GA_NBREED Breeding is restricted to be between
members of the same cluster if there are
at least this many members in the
cluster

0.1

 GA_PSEED Seeding of the initial, randomly
generated members of the population is
allowed at a level set by this parameter
(0 = random, 1.0 clones of initial point)

0

 GA_NRANDM The number of random numbers drawn
and discarded before starting the
optimiser

0

5 simulated
annealing

SA_NBIN The number of bits used per variable in
binary discretisation

12

 SA_PTEMP The power to which the number of
iterations must be raised to calculate the
number of annealing temperatures

1/3

 SA_PWIDTH The range of temperatures in the
annealing schedule, with large values

5

 106

giving a wide range of temperatures,
which carries the risk of rapid freezing
but gives a wider ranging search

 SA_PCOLD The bottom temperature in the
annealing schedule, with values over
two giving lower temperatures and thus
more accurate results at the expense of
perhaps missing the global optimum

2

 SA_SCHED If this parameter exists and contains an
array of variables it is taken to be a
cooling schedule which is to be used in
place of the preceding three parameters

 SA_PENAL Sets the penalty function control
parameter, r, with values less than one
invoking the modified Fiacco and
McCormick function (OPTIM2)
otherwise the one pass method is used
(OPTIM1)

1.00E+20

 SA_PMUTNT Mutation is allowed at a level set by this
parameter, i.e., this fraction of the total
number of binary digits are reversed at
each evaluation (setting SA_PMUTNT
negative causes the mutations to be
made to the actual variables rather than
the binary digits)

0.1

 SA_NRANDM The number of random numbers drawn
and discarded before starting the
optimiser

0

6 evolutionary
programming

EP_NBIN The number of bits used per variable in
binary discretisation

12

 EP_NPOP Population size each generation 50
 EP_PENAL Set the penalty function control

parameter, r, with values less than one
invoking the modified Fiacco and
McCormick function (OPTIM2)
otherwise the one pass method is used
(OPTIM1)

1.00E+20

 EP_IMUTNT Mutation is controlled so that the best
members are mutated least and the
worst, most, this parameter governs the
order of the mutation with ranking, a
value of one thus gives a linear change,
two a quadratic one and so on (only
positive values being allowed), default
two;

2

 EP_TOURN The number of members in the ranking
tournament, either in absolute terms or,
if it is <1. 0, as a fraction of the
population size

0.5

 EP_NRANDM The number of random numbers drawn
and discarded before starting the
optimiser

0

7 evolution
strategy

ES_NPPOP The population size 100

 ES_NCPOP The parent populations size, a fraction
of the total population size

1

 ES_PENAL Sets the penalty function control
parameter, r, with values less than one
invoking the modified Fiacco and
McCormick function (OPTIM2)

1.00E+20

 107

otherwise the one pass method is used
(OPTIM1)

 ES_DELSIG Used to set the standard deviation of a
random number whose exponential is
then used to scale the previous mutation
control parameter.

0.1

 ES_UCHILD When selecting the next generation all
the children may be used or a mixture of
the best children and parents used; if
this parameter is non-zero it is taken to
be .TRUE. and the children are used in
preference to parents.

0 (false)

 ES_VDSCRT Controls the crossover type between
parents for design variables. Either
discrete crossover (.TRUE.) or
intermediate crossover (.FALSE.).

1 (true)

 ES_MDSCRT Controls the crossover type between
parents for mutation control parameters.
Either discrete crossover (.TRUE.) or
intermediate crossover (.FALSE.).

0 (false)

 ES_NRANDM The number of random numbers drawn
and discarded before starting the
optimiser

0

Table 1 OptionsMatlab optional control parameters

5.17 How do I deal with failed calculations when co nstructing a

response surface model?

Failures may occur when calculating the value of an objective function during a direct

search. These failures may be stochastic (perhaps due to the unexpected failure of a

Grid resource), or they may be indicative of a problematic area of the parameter space

(perhaps representing an unfeasible geometry). There are a couple of possible

strategies to ensure that failed calculations are correctly handled by OptionsMatlab

when constructing and searching a Response Surface Model.

The optional control parameter OBJ_BAD_PT may be used to define an outer bound

for acceptable values of an objective function. When OptionsMatlab encounters

objective function values exceeding OBJ_BAD_PT during the construction of a

Response Surface Model these values will be ignored. During minimisation

OptionsMatlab will ignore any objective function values greater than

OBJ_BAD_PT, whereas during maximisation values less than OBJ_BAD_PT will be

ignored.

It is possible to use OBJ_BAD_PT to filter stochastic failures that occur during the

evaluation of the objective function. For a minimisation problem the Matlab function

defining the user's objective function should return a very large value for the objective

 108

function (which exceeds expected values) upon failure. When building and searching

a Response Surface Model of the objective function the OptionsMatlab input

structure should contain the field OBJ_BAD_PT with a value less than that of the failed

calculations. The bad points will therefore not influence the Response Surface Model

of the objective function.

When a failed calculation represents a problematic area of the parameter space it is

sometimes desirable to steer a design search away from these areas. To do this it is

possible to define an extra constraint to indicate bad points. In this case when a

calculation fails this constraint should be set to indicate an invalid point. As the

design search proceeds the constraint may steer the optimiser away from these

problematic areas. When searching over a Response Surface Model this strategy may

be used in conjunction with OBJ_BAD_PT.

5.18 How do I build and evaluate a RSM faster?

There are a number of ways to make OptionsMatlab run faster when building and

evaluating a Response Surface Model.

If additional output information is requested from OptionsMatlab (OLEVEL>0) further

calculations may be performed. This may significantly increase the time taken to

build and evaluate a RSM, in particular for large datasets. Therefore to perform faster

searches of a RSM it may be advantageous to set OLEVEL=0 in the OptionsMatlab

input structure.

When performing multiple searches of a Stochastic Process Model (SPM), i.e. when

OBJMOD or CONMOD equal to 4.1, 4.2 or 4.3, it is possible to avoid rebuilding the SPM

by passing the hyper-parameters for the model in the input structure. When a SPM is

first built and searched (or when the hyper-parameters are explicitly tuned, see section

5.11) the hyper-parameters are returned in the output structure fields OBJHYPER

(and/or CONHYPER). By adding these fields to the OptionsMatlab input structure when

subsequently searching the SPM the hyper-parameters will not be rebuilt. However,

please note that it is important to rebuild the hyper-parameters following changes to

dataset otherwise they may become ill-defined for your dataset.

 109

6 OptionsMatlab Examples

6.1 DoE Direct search

Perform a DoE over the problem defined by the input structure, and then plot the

results of the DoE. The results of this DoE are used to build RSM in many of the

subsequent examples.

input1 = createBeamStruct;

input1.OMETHD = 2.8; %Design of Experiments

input1.NITERS = 50; %Number of iterations

input1.OLEVEL = 2;

input1.MC_TYPE = 4; %Full factorial DoE

output1 = OptionsMatlab(input1)

output1 =

 VARS: [2x1 double]

 OBJFUN: 3.6877e+003

 CONS: [5x1 double]

 OBJTRC: [1x1 struct]

 CONSTRC: [1x1 struct]

%Print a digest of the optimisation and determine i f

%optimum returned is valid

isvalid = optimisationDigest(output1, input1)

 110

=== =========

 Optimisation of the problem defined by "beamobjfun " and

"beamobjcon"

 Optimisation method: 2.8

 Status after 50 evaluations is :-

 Trial vector

 Lwr Bound Vector Uppr Bound Variabl e (units)

 5.00000000 < 24.68750000 > 50.00000000 BREADT H

 2.00000000 < 14.93750000 > 25.00000000 HEIGHT

 No of V. Boundary Violations = 0

 Objective Function (min.) = 3687.6953 AREA

 Constraints vector

 Lwr Bound Vector Uppr Bound Variabl e (units)

 < 81.69200669 > 200.00000000 SIGMA- B

 < 2.03379058 > 100.00000000 TAU

 < 3.78699170 > 5.00000000 DEFLN

 < 6.05063291 > 10.00000000 H-ON-B

 5000.00000000 < 290554.98816615 F-CRIT

 No of Constraint Violations = 0

=== =========

%Plot the results of the optimisation

plotOptionsSurfaces(output1, input1)

optimisationTerrain(output1, input1)

optimisationTrace(output1, input1)

 111

optimisationHistory({output1}, { 'Design of Experiments' })

isvalid =

 1

6.2 RSM returning update points

Build and search a Response Surface Model using the results of example 6.1. This

search will return up to 10 update points where the quality of the DoE would be best

improved.

input2 = createBeamStruct;

input2.OMETHD = 4; %Genetic Algorithm

input2.NITERS = 50;

input2.OLEVEL = 2;

input2.OBJMOD = 3.3; %First order polynomial regression

 %model plus squares

input2.CONMOD = 3.3; %First order polynomial regression

 %model plus squares

input2.NUMUPDATE = 10; %10 update points

output2 = OptionsMatlab(input2, output1)

output2 =

 VARS: [2x1 double]

 OBJFUN: 2.5149e+003

 CONS: [5x1 double]

 DOE_TRACE: [1x1 struct]

6.3 DoE evaluating candidate points

Perform a candidate point DoE search to evaluate the update points suggested by

example 6.2.

input3 = createBeamStruct;

input3.OLEVEL = 2;

 112

input3.OMETHD = 2.8; %Design of Experiments

 %Specify update points as candidate

 %points

input3.DOE_TRACE = output2.DOE_TRACE;

 %Set the number of iterations

input3.NITERS = output2.DOE_TRACE.NCALLS+1;

input3.MC_TYPE = 7; %Specify that the DOE uses

 %candidate points

 %Note that the meaning of MC_TYPE

 %has changed sinc e version 0.6.5

output3 = OptionsMatlab(input3)

output3 =

 VARS: [2x1 double]

 OBJFUN: 6000

 CONS: [5x1 double]

 OBJTRC: [1x1 struct]

 CONSTRC: [1x1 struct]

%Concatenate the output structures from examples 6. 1 and 6.3

output3_cat = optimisationAppendDataPoints(output1, output3)

output3_cat =

 VARS: [2x1 double]

 OBJFUN: 3.6877e+003

 CONS: [5x1 double]

 OBJTRC: [1x1 struct]

 CONSTRC: [1x1 struct]

6.4 RSM using candidate points

Build and evaluate an RSM at specified points. The utility function

optimisationSampleRSM can assist you to do this (see example 6.9).

input4 = createBeamStruct;

 113

input4.OLEVEL = 2;

input4.OMETHD = 2.8; %Design of Experiments

 %Specify the candidat e points to

 %be evaluated

input4.DOE_TRACE.NCALLS = output1.OBJTRC.NCALLS;

input4.DOE_TRACE.VARS = output1.OBJTRC.VARS;

input4.NITERS = input4.DOE_TRACE.NCALLS +1;

input4.MC_TYPE = 7; %DoE using candidate points

input4.OBJMOD = 3.3; %First order polynomial

 %regression model plu s squares

input4.CONMOD = 3.3; %First order polynomial

 %regression model plu s squares

output4 = OptionsMatlab(input4, output3_cat)

output4 =

 VARS: [2x1 double]

 OBJFUN: 2.6319e+003

 CONS: [5x1 double]

 RSMTRC: [1x1 struct]

%Plot the RSM

fig = optimisationTerrain(output4, input4, 2);

optimisationTrace(output4, input4, 2, fig);

6.5 Direct search with checkpointing

Checkpoint the search history of a direct search every 300 generations in a file

'optimTest5.mat'.

input5 = createBeamStruct;

input5.OLEVEL = 2;

input5.OMETHD = 2.8;

input5.NITERS = 500; %500 iterations

input5.MAXJOBS = 100; %Submit jobs in groups of 100

input5.CHKPT_INTV = 300; %Checkpoint every 300 generations

input5.CHKPT_FILE = 'optimTest5.mat'; %Checkpoint file name

delete('optimTest5.mat') %Remove existing checkpoint file

 114

output5 = OptionsMatlab(input5)

output5 =

 VARS: [2x1 double]

 OBJFUN: 2.9455e+003

 CONS: [5x1 double]

 OBJTRC: [1x1 struct]

 CONSTRC: [1x1 struct]

load('optimTest5.mat') %Load checkpoint file

whos CHKPOINT

 Name Size Bytes Cla ss

 CHKPOINT 1x1 49256 str uct array

Grand total is 6012 elements using 49256 bytes

6.6 Parallel job submission with userdata

This example uses the Geodise compute toolbox [3] that provides client functionality

to Globus Grid resources that may be used to evaluate computational jobs. The jobs

will be submitted to the Globus resource to run concurrently. When the jobs are

complete the results will be retrieved and parsed to determine the objective function

values. Note that you must have the Geodise compute toolbox installed, and have

valid credentials with permissions to submit jobs to the specified compute resource.

%Define the Globus server to which to submit the jo bs

GLOBUSSERVER = 'escience-dept2.sesnet.soton.ac.uk' ;

gd_createproxy

Paused: Press any key...

input6 = createBeamStructParallel;

input6.OLEVEL = 0;

 115

input6.MAXJOBS = 10; %The number of the jobs to be run

 %concurrently

input6.NITERS = 20; %The number of iterations

 %USERDATA field is used to pass the

 %host name upon which to ru n the

 %objective function to the Matlab

 %function

input6.USERDATA.hostname = GLOBUSSERVER;

output6 = OptionsMatlab(input6)

[...]

ohandle =

https://escience-

dept2.sesnet.soton.ac.uk:30040/10303/1134728028/

uniquedir =

20051216T101347_57891/

EVAL =

 3.9666e+003

output6 =

 VARS: [2x1 double]

 OBJFUN: 3.9666e+003

 CONS: [5x1 double]

 OBJTRC: [1x1 struct]

 CONSTRC: [1x1 struct]

 116

6.7 Hyper-parameter tuning

This example will tune hyper-parameters for a Stochastic Process Model over the

results of the DoE produced in example 6.1. The hyper-parameters will be tuned using

the optimisation algorithm specified by OMETHD. The tuned hyper-parameters will be

returned in fields of the output structure OBJHYPER (or CONHYPER) that be supplied in

the input structure when building a Stochastic Process Model RSM.

input7 = createBeamStruct;

input7.OLEVEL = 0;

input7.OBJMOD = 4.1; %Tune stochastic Process Model

 %hyper-parameters over the

 %objective function

input7.CONMOD = 4.1; %Tune stochastic Process Model

 %hyper-parameters over the

 %constraints

input7.TUNEHYPER = 1; %Tune the hyper-parameters (do not

 %search the user's problem)

input7.OMETHD = 5; %Simulated Annealing

 %Note that if OBJHYPER or CONHYPER are

 %provided these hyper-para meters will

 %be used in preference to those

 %generated by OPTRSS

output7 = OptionsMatlab(input7, output1)

output7 =

 OBJHYPER: [1x1 struct]

 OBJ_CLF: 712.6938

 CONHYPER: [1x1 struct]

 CST_CLF: 824.2750

6.8 User-defined sequential optimiser

This example invokes the sequential optimiser defined by the Matlab function

'optum1.m' , which randomly generates searches points within the parameters space.

It is possible to write a Matlab function that provides alternative behaviour for a

sequential optimiser.

 117

input8 = createBeamStruct;

input8.OLEVEL = 2;

input8.OMETHD = 2.1; %User-defined optimiser 1

input8.OPTUM1 = 'optum1' ; %Specifies function 'optum1.m' as

 %user-defined optimiser

output8 = OptionsMatlab(input8)

output8 =

 VARS: [2x1 double]

 OBJFUN: 2.6409e+003

 CONS: [5x1 double]

 OBJTRC: [1x1 struct]

 CONSTRC: [1x1 struct]

6.9 Sample a Response Surface Model

This example uses the utility function optimisationSampleRSM to build an RSM

and sample the RSM at 100 evenly spaced points within the parameter space.

Compare this method to example 6.4.

%Create an input structure to search an RSM

input9 = createBeamStruct;

input9.OLEVEL = 2;

input9.OBJMOD = 3.3;

input9.CONMOD = 3.3;

%Sample 100 evenly spaced points

output9 = optimisationSampleRSM(input9, output1, 10 0)

%Plot the points sampled from the RSM

optimisationTerrain(output9, input9)

 118

output9 =

 VARS: [2x1 double]

 OBJFUN: 2.4349e+003

 CONS: [5x1 double]

 RSMTRC: [1x1 struct]

6.10 Build a stochastic process model RSM with quic k tuning

This example builds a stochastic process model RSM using quick hyper-parameter

tuning (by setting the flag RSM_QCK_HP). Here the hyper-parameters THETA and EXP

will be tuned across all design variables, rather than NVARS values of THETA and EXP

corresponding to each design variable. The values of OBJ_EXP and OBJ_THETA, and

of CST_EXP and CST_THETA (in the structures OBJHYPER and CONHYPER) will be

scalar, rather than a vector of length NVARS.

%Create an input structure to search an SPM RSM wit h quick

tuning

input10 = createBeamStruct;

input10.OLEVEL = 0;

input10.OBJMOD = 4.1;

input10.CONMOD = 4.1;

input10.RSM_QCK_HP = 1;

output10 = OptionsMatlab(input10, output1);

output10.OBJHYPER

output10.CONHYPER

 119

ans =

 OBJ_LAMBDA: -6

 U_OBJ_LAMBDA: 3

 L_OBJ_LAMBDA: -20

 OBJ_THETA: 0.1548

 U_OBJ_THETA: 3

 L_OBJ_THETA: -10

 OBJ_EXP: 2

 U_OBJ_EXP: 2

 L_OBJ_EXP: 1

ans =

 CST_LAMBDA: -6

 U_CST_LAMBDA: 3

 L_CST_LAMBDA: -20

 CST_THETA: 0.1563

 U_CST_THETA: 3

 L_CST_THETA: -10

 CST_EXP: 2

 U_CST_EXP: 2

 L_CST_EXP: 1

6.11 Search a tuned stochastic process model RSM

This example samples and then searches the stochastic process model RSM built

using the quick tuned hyper-parameters. The scalar hyper-parameter values

OBJ_THETA and OBJ_EXP are duplicated across the design variables of the problem

and assigned to the field OBJHYPER of the input structure.

% Duplicate the scalar hyperpameter values across t he design

variables

inputStruct = createBeamStruct;

inputStruct.OBJHYPER.OBJ_THETA =

output10.OBJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1);

inputStruct.OBJHYPER.OBJ_EXP =

output10.OBJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);

inputStruct.OBJHYPER.OBJ_LAMBDA = output10.OBJHYPER .OBJ_LAMBDA;

 120

%Sample the RSM surface

input11a = inputStruct;

input11a.OLEVEL = 0;

input11a.OBJMOD = 4.1; %Evaluate SPM RSM objective function

input11a.CONMOD = 0.0; %Evaluate constraint function directly

output11a = optimisationSampleRSM(input11a, output1 , 400);

%Create an input structure to search the SPM RSM us ing a GA

input11b = input11a; %Copy the sampling input structure

input11b.OMETHD = 4; %Genetic Algorithm

input11b.NITERS = 500 %10 generations

output11b = OptionsMatlab(input11b, output1);

output11b = optimisationSearchTrace(output11b) %Retrieve

optimum from the trace history

output11b =

 VARS: [2x1 double]

 OBJFUN: 2.6948e+003

 CONS: [5x1 double]

 RSMTRC: [1x1 struct]

 OBJHYPER: [1x1 struct]

%Plot the RSM and optimum point

optimisationTerrain(output11a, input11a, 5)

hold on;

plot3(output11b.VARS(1,1), output11b.VARS(2,1), ...

 output11b.OBJFUN, 'ko' , 'MarkerFaceColor' , 'k')

6.12 Search the root mean square error of a tuned s tochastic process

model RSM

This example samples and then searches the Root Mean Square Error of the stochastic

process model RSM built using the quick tuned hyper-parameters. The scalar hyper-

parameter values OBJ_THETA and OBJ_EXP are duplicated across the design

variables of the problem and assigned to the field OBJHYPER of the input structure.

The RMSE surface is invariant to a change in the direction of search for the

 121

underlying problem. This means that the surface can be searched in either direction

for points of maximum or minimum error. The test first verifies that the RSM is

identical when the direction of search is reversed.

The reader will be aware that the root mean square error of the SPM falls to zero at all

sampled points (since the values of the objective and constraints are known at these

points) so searching for the minimum of the surface is of little value. To find the

maximum error in the stochastic process model RSM the direction of search in the

input field DIRCTN is always set to +1 regardless of the direction of search of the

underlying problem. This is worth highlighting because this differs from the searches

of the other stochastic process model properties. In the cases of expected

improvement (OBJMOD=4.3), constrained expected improvement (OBJMOD=4.31),

constrained feasibility of improvement (OBJMOD=4.32) and probability of

improvement (OBJMOD=4.33) the RSM surface that is built is critically dependent on

the direction of search of the underlying problem. Any searches of these surfaces are

hard-coded within OPTIONS to build the surface according to the direction of search

for the underlying problem and seek the maximum in that surface accordingly. Only

in the case of RMSE must the direction of search be explicitly set to +1 to find the

maximum in the root mean square error of the RSM.

% Duplicate the scalar hyperpameter values across t he design

variables

inputStruct = createBeamStruct;

inputStruct.OBJHYPER.OBJ_THETA =

output10.OBJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1);

inputStruct.OBJHYPER.OBJ_EXP =

output10.OBJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);

inputStruct.OBJHYPER.OBJ_LAMBDA = output10.OBJHYPER .OBJ_LAMBDA;

%Sample the RSM surface

input12a = inputStruct;

input12a.OLEVEL = 0;

input12a.OBJMOD = 4.2; %Evaluate RMSE of SPM RSM over

objective function

input12a.CONMOD = 0.0; %Evaluate constraint function directly

input12a.ONAM = 'RMSE' ; %Label objective

input12a.DIRCTN = +1; %The error surface should not change

with DIRCTN

 122

output12a = optimisationSampleRSM(input12a, output1 , 400);

 %Sample RSM

input12b = input12a; %Copy the sampling input structure

input12b.DIRCTN = -1; %The error surface should not change

with DIRCTN

output12b = optimisationSampleRSM(input12b, output1 , 400);

%Check that the RMSE surface is invariant under cha nge of

DIRCTN

if (sum(abs(output12a.RSMTRC.OBJFUN - output12b.RSMTR C.OBJFUN))

> 0)

 error('*** RMSE of Stochastic Process Model is not

invariant under change of DIRCTN ***')

end

input12c = input12b; %Copy the sampling input structure

input12c.DIRCTN = +1; %Search for maximum in RMSE of the SPM

 %(NB. This value is set to +1

regardless of the

 % direction of the underlying problem)

input12c.OMETHD = 4; %Genetic Algorithm

input12c.NITERS = 500 %10 generations

output12c = OptionsMatlab(input12c, output1);

output12c = optimisationSearchTrace(output12c) % Search the

trace history for optimum

output12c =

 VARS: [2x1 double]

 OBJFUN: 746.8510

 CONS: [5x1 double]

 RSMTRC: [1x1 struct]

 OBJHYPER: [1x1 struct]

%Plot the RSM and optimum point

optimisationTerrain(output12a, input12a, 5)

hold on;

 123

plot3(output12c.VARS(1,1), output12c.VARS(2,1), ...

 output12c.OBJFUN, 'ko' , 'MarkerFaceColor' , 'k')

6.13 Search the expected improvement of a tuned sto chastic process

model RSM

This example samples and then searches the Expected Improvement of the stochastic

process model RSM built using the quick tuned hyper-parameters. The scalar hyper-

parameter values OBJ_THETA and OBJ_EXP are duplicated across the design

variables of the problem and assigned to the field OBJHYPER of the input structure.

Note that for a minimisation problem OPTIONS inverts the Expected Improvement

calculation, returning a minimum value of the inverted problem, at the point of

maximum expected improvement of the RSM.

% Duplicate the scalar hyperpameter values across t he design

variables

inputStruct = createBeamStruct;

inputStruct.OBJHYPER.OBJ_THETA =

output10.OBJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1);

inputStruct.OBJHYPER.OBJ_EXP =

output10.OBJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);

inputStruct.OBJHYPER.OBJ_LAMBDA = output10.OBJHYPER .OBJ_LAMBDA;

%Sample the RSM surface

input13a = inputStruct;

input13a.OLEVEL = 0;

input13a.OBJMOD = 4.3; %Evaluate EI of SPM RSM over objective

function

input13a.CONMOD = 0.0; %Evaluate constraint function directly

input13a.ONAM = 'EI' ; %Label objective

output13a = optimisationSampleRSM(input13a, output1 , 400);

 %Sample RSM

%Create an input structure to search the SPM RSM us ing a GA

input13b = input13a; %Copy the sampling input structure

input13b.OMETHD = 4; %Genetic Algorithm

input13b.NITERS = 500 %10 generations

output13b = OptionsMatlab(input13b, output1);

 124

output13b = optimisationSearchTrace(output13b) %Search the

trace history for optimum

output13b =

 VARS: [2x1 double]

 OBJFUN: 115.1293

 CONS: [5x1 double]

 RSMTRC: [1x1 struct]

 OBJHYPER: [1x1 struct]

%Plot the RSM and optimum point

optimisationTerrain(output13a, input13a, 5)

hold on;

plot3(output13b.VARS(1,1), output13b.VARS(2,1), ...

 output13b.OBJFUN, 'ko' , 'MarkerFaceColor' , 'k')

6.14 Search the probability of improvement of a tun ed stochastic

process model RSM

This example samples and then searches the Probability of Improvement of the

stochastic process model RSM built using the quick tuned hyper-parameters. The

scalar hyper-parameter values OBJ_THETA and OBJ_EXP are duplicated across the

design variables of the problem and assigned to the field OBJHYPER of the input

structure. Note that for a minimisation problem OPTIONS inverts the Probability of

Improvement calculation, returning a minimum value of the inverted problem, at the

point of maximum probability of improvement of the RSM (this is why this

calculation may return negative value for the probability when searching a

minimisation problem).

% Duplicate the scalar hyperpameter values across t he design

variables

inputStruct = createBeamStruct;

inputStruct.OBJHYPER.OBJ_THETA =

output10.OBJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1);

inputStruct.OBJHYPER.OBJ_EXP =

output10.OBJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);

inputStruct.OBJHYPER.OBJ_LAMBDA = output10.OBJHYPER .OBJ_LAMBDA;

 125

%Sample the RSM surface

input14a = inputStruct;

input14a.OLEVEL = 0;

input14a.OBJMOD = 4.33; %Evaluate PI of SPM RSM over objective

function

input14a.CONMOD = 0.0; %Evaluate constraint function directly

input14a.ONAM = 'PI' ; %Label objective

output14a = optimisationSampleRSM(input14a, output1 , 400);

 %Sample RSM

%Create an input structure to search the SPM RSM us ing a GA

input14b = input14a; %Copy the sampling input structure

input14b.OMETHD = 4; %Genetic Algorithm

input14b.NITERS = 500 %10 generations

output14b = OptionsMatlab(input14b, output1);

output14b = optimisationSearchTrace(output14b) %Search the

trace history for optimum

output14b =

 VARS: [2x1 double]

 OBJFUN: -1.0776e-042

 CONS: [5x1 double]

 RSMTRC: [1x1 struct]

 OBJHYPER: [1x1 struct]

%Plot the RSM and optimum point

optimisationTerrain(output14a, input14a, 5)

hold on;

plot3(output14b.VARS(1,1), output14b.VARS(2,1), ...

 output14b.OBJFUN, 'ko' , 'MarkerFaceColor' , 'k')

6.15 Search the constrained expected improvement of a tuned

stochastic process model RSM

This example samples and then searches the constrained Expected Improvement of

the stochastic process model RSM built using the quick tuned hyper-parameters. The

 126

scalar hyper-parameter values OBJ_THETA, OBJ_EXP, CST_THETA and CST_EXP

are duplicated across the design variables of the problem and assigned to the fields

OBJHYPER and CONHYPER of the input structure. Note that for a minimisation

problem OPTIONS inverts the constrained Expected Improvement calculation,

returning a minimum value of the inverted problem, at the point of maximum

expected improvement of the constrained RSM.

% Duplicate the scalar hyperpameter values across t he design

variables

inputStruct = createBeamStruct;

inputStruct.OBJHYPER.OBJ_THETA =

output10.OBJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1);

inputStruct.OBJHYPER.OBJ_EXP =

output10.OBJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);

inputStruct.OBJHYPER.OBJ_LAMBDA = output10.OBJHYPER .OBJ_LAMBDA;

inputStruct.CONHYPER.CST_THETA =

output10.CONHYPER.CST_THETA*ones(inputStruct.NVRS,1);

inputStruct.CONHYPER.CST_EXP =

output10.CONHYPER.CST_EXP*ones(inputStruct.NVRS,1);

inputStruct.CONHYPER.CST_LAMBDA = output10.CONHYPER .CST_LAMBDA;

%Sample the RSM surface

input15a = inputStruct;

input15a.OLEVEL = 0;

input15a.OBJMOD = 4.31; %Evaluate constrained EI of SPM

RSM over objective function

input15a.CONMOD = 4.1; %Evaluate constraint function

using SPM RSM

input15a.ONAM = 'CST-EI' ; %Label objective

output15a = optimisationSampleRSM(input15a, output1 , 400);

 %Sample RSM

%Create an input structure to search the SPM RSM us ing a GA

input15b = input15a; %Copy the sampling input structure

input15b.OMETHD = 4; %Genetic Algorithm

input15b.NITERS = 500 %10 generations

output15b = OptionsMatlab(input15b, output1);

output15b = optimisationSearchTrace(output15b) %Search the

 127

trace history for optimum

output15b =

 VARS: [2x1 double]

 OBJFUN: -7.5469

 CONS: [5x1 double]

 RSMTRC: [1x1 struct]

 OBJHYPER: [1x1 struct]

 CONHYPER: [1x1 struct]

%Plot the RSM and optimum point

optimisationTerrain(output15a, input15a, 5)

hold on;

plot3(output15b.VARS(1,1), output15b.VARS(2,1), ...

 output15b.OBJFUN, 'ko' , 'MarkerFaceColor' , 'k')

6.16 Search the constrained feasibility of improvem ent of a tuned

stochastic process model RSM

This example samples and then searches the constrained Feasibility of Improvement

of the stochastic process model RSM built using the quick tuned hyper-parameters.

The scalar hyper-parameter values OBJ_THETA, OBJ_EXP, CST_THETA and

CST_EXP are duplicated across the design variables of the problem and assigned to

the fields OBJHYPER and CONHYPER of the input structure. Note that for a

minimisation problem OPTIONS inverts the constrained Feasibility of Improvement

calculation, returning a minimum value of the inverted problem, at the point of

maximum feasibility of improvement of the constrained RSM.

% Duplicate the scalar hyperpameter values across t he design

variables

inputStruct = createBeamStruct;

inputStruct.OBJHYPER.OBJ_THETA =

output10.OBJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1);

inputStruct.OBJHYPER.OBJ_EXP =

output10.OBJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);

inputStruct.OBJHYPER.OBJ_LAMBDA = output10.OBJHYPER .OBJ_LAMBDA;

inputStruct.CONHYPER.CST_THETA =

 128

output10.CONHYPER.CST_THETA*ones(inputStruct.NVRS,1);

inputStruct.CONHYPER.CST_EXP =

output10.CONHYPER.CST_EXP*ones(inputStruct.NVRS,1);

inputStruct.CONHYPER.CST_LAMBDA = output10.CONHYPER .CST_LAMBDA;

%Sample the RSM surface

input16a = inputStruct;

input16a.OLEVEL = 0;

input16a.OBJMOD = 4.32; %Evaluate constrained FI of SPM

RSM over objective function

input16a.CONMOD = 4.1; %Evaluate constraint function

using SPM RSM

input16a.ONAM = 'CST-FI' ; %Label objective

output16a = optimisationSampleRSM(input16a, output1 , 400);

 %Sample RSM

%Create an input structure to search the SPM RSM us ing a GA

input16b = input16a; %Copy the sampling input structure

input16b.OMETHD = 4; %Genetic Algorithm

input16b.NITERS = 500 %10 generations

output16b = OptionsMatlab(input16b, output1);

output16b = optimisationSearchTrace(output16b) %Search the

trace history for optimum

output16b =

 VARS: [2x1 double]

 OBJFUN: 0

 CONS: [5x1 double]

 RSMTRC: [1x1 struct]

 OBJHYPER: [1x1 struct]

 CONHYPER: [1x1 struct]

%Plot the RSM and optimum point

optimisationTerrain(output16a, input16a, 5)

hold on;

plot3(output16b.VARS(1,1), output16b.VARS(2,1), ...

 output16b.OBJFUN, 'ko' , 'MarkerFaceColor' , 'k')

 129

 130

7 References
[1] OPTIONS Design Exploration System: http://www.soton.ac.uk/~ajk/

[2] Matlab 6.5: http://www.mathworks.com/

[3] Geodise Project: http://www.geodise.org/

[4] Matlab Optimization Toolbox:

http://www.mathworks.com/products/optimization/

[5] Globus Project; GRAM: http://www.globus.org/gram/

