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1 Introduction

OptionsMatlab integrates the Options design explmmaand optimization package
[1] into the Matlab environment [2]. The advantagesthis approach include; the
potential to rapidly prototype and debug objectarel constraint functions, and the
ability to directly leverage the functionality alable within the Matlab environment.
Matlab provides data analysis and visualisatiorabdpies. Additional functionality
is available from a variety of toolboxes, includitige Geodise toolboxes for Grid-
enabled computational and data management [3].

OptionsMatlab provides access to all of the desgarch and optimisation algorithms
within the Options package whilst retaining the maxm flexibility. Users define the
objective and constraint functions that describartiproblem as Matlab functions.
These functions can therefore include interpretetldh, compiled MEX functions,
or callbacks to external applications or to thedGrifhe modular structure of
OptionsMatlab is shown by Figure 1.

Matlab environment

OptionsMatlab.m

OptionsMatlab.dll

Ioptjob Hoptfun Hoptcon l

optjob.m

¥ .
optfun.m |
optcon.m

Figure 1 The modular structure of OptionsMatlab.

OptionsMatlab is invoked by calling the Matlab ftinoo OptionsMatlab . An input
structure describes the user's problem, and cord@guhe design search and
optimisation algorithm to be used. Additionallyamge number of optional fields may
be used to adjust the Options control parameteng. rEsults are returned to the
Matlab workspace in an output structure



The usage of OptionsMatlab differs from the orig@ations interface. A programme
of design search and optimisation is based upoagaence of invocations of the
OptionsMatlab function from the Matlab workspacey Bomparison the Options
interface supports a number of operations uponta-skt managed by the internal
Options database. OptionsMatlab can be used tomperperations upon the results
of a previous optimisation, such as building a Rese Surface Model, by passing
the results as a second input argument.

The modular structure of OptionsMatlab also allothe user to customise the
evaluation of the objective and constraint funcitwy replacing the functiodPTJOB
For example, the default implementation @PTJOBsupplied with OptionsMatlab,
optjiob.m , evaluates the objective and constraint functionserial. An alternative
job manager is provided which supports parallelcfiom evaluations (see section
5.10).

This document provides an introduction to the usth® OptionsMatlab package. For
further details of the theory of design search aptimisation, and the use of the
Options package, please consult the Options mahjal

OptionsMatlab has three modes of operation:

1. Direct Search. The specified optimisation algoritisnrun over the user’s
problem, directly invoking the Matlab functions tlaefine the objective and
constraint functions.

2. Search Response Surface Model. A Response SurfadelNRSM) is built
which models the behaviour of the user’s probletre RSM is built from the
results of a previous design search, and is sedrehith the specified
optimisation algorithm.

3. Hyper-parameter tuning. The Stochastic Process Mabgper-parameters
which describe a Stochastic Process Model RSM rhestuned against an
existing data set. The specified optimisation i®dugo tune the hyper-
parameters against a data set describing the usigiestive function (and/or
constraints).

These modes are invoked depending upon the fiéltheonput structure (Figure 2).



Tune
Hyperparameters

Build RSM

Direct
Search

Figure 2 OptionsMatlab’s modes of operation. Hyparameter tuning will be invoked if the input
field TUNEHYPERs set (#1). If the input fieldOBIJMOD(or CONMODis set the specified
optimisation will be run over a RSM (#2). In allhet conditions a direct search over the user's

objective function is used.



2 Installing OptionsMatlab

This section describes the steps needed to il@paikbnsMatlab.

2.1 Obtain a Gendat license file

Gendat licenses are linked to the MAC address (Wars) or hostid (UNIX) of the
machine running OptionsMatlab, and are availaldenfProf. Andy Keane.

OptionsMatlab looks for a Gendat license file aé tlocation specified by the
environment variabl&sENDAT_CODESf this environment variable is not specified
then the UNIX version of OptionsMatlab looks forGendat license in the file

lusr/local/geodise/OptionsMatlab/gendat.cds and if this file does not
exist it will look for gendat.cds in the current directory. The Windows version of
OptionsMatlab ~ will  look for a Gendat license in thefile
C:\fortran\gendat\GENDAT.CDS if the environment variable does not exist.

2.2 Add OptionsMatlab to the Matlab search path

The directory containing the OptionsMatlab functi@hould be added to the Matlab
search path.

If using the Matlab desktop navigate to the 'Seh'Rialog ('File' > 'Set Path’). Click
the 'Add Folder' button and browse to the directooptaining the OptionsMatlab,
select 'OK' to confirm. You may wish to click th®ave' button to preserve the

configuration between sessions. Click 'Close’ soilss the dialog.

If using Matlab via the Unix terminal use tleldpath function at the Matlab
command line.

>> addpath /home/USER/OptionsMatlab
System administrators configuring a multi-user Mhatinstallation may find it
preferable to edit SMATLABROOT/toolbox/local/patida to make changes to the
Matlab search path available to all users.

To confirm that the Matlab search path has beecesstully configured run:

>> str = which( '‘OptionsMatlab )



The variablestr should contain the path of the OptionsMatlab fiomct

2.3 View the documentation

To read the OptionsMatlab documentation tylpelp OptionsMatlab'’ at the
Matlab command prompt. This text contains detailsthe input arguments to
OptionsMatlab and the output structures returnedr Fformation about the
interfaces required by user-defined objective aodstraint functions typéhelp
optjob’
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3 OptionsMatlab Tutorial

3.1 Create a input structure

Use the functiorcreateBeamStruct ~ to create an OptionsMatlab input structure. At
the command line enter:

>> input = createBeamStruct

input =

DNULL: -777
OLEVEL: 2
MAXJOBS: 10
NVRS: 2
VNAM: {BREADTH' 'HEIGHT'}
LVARS: [5 2]
UVARS: [50 25]
VARS: [30 20]
NCONS: 5
CNAM: {'SIGMA-B' 'TAU' 'DEFLN' 'H-ON-B' 'F-CRIT?}
LCONS: [-777 -777 -777 -777 5000]
UCONS: [200 100 5 10 -777]
NPARAMS: 7
PNAM: {LENGTH' 'FORCE' 'FACTOR' 'EE' 'G G' 'NU'
'SIGMAY'}
PARAMS: [1500 5000 2 216620 86650 0.2700 200]
ONAM: 'AREA'
OMETHD: 2.8000
DIRCTN: -1
NITERS: 500
OPTFUN: 'beamobijfun’
OPTCON: 'beamobjcon’
OPTJOB: 'optjob’

The OptionsMatlab input structure describes thdélera to be searched, including the
design variables, constraints and parameters. mpet istructure will also include
details of the optimisation or design search taureover the problem. The function
createBeamStruct is a utility function which creates an input sture specific to

11



theBeam problem

The fields of the structuriput are described in detail by the documentation for
OptionsMatlab . Of particular interest are the field3PTFUNand OPTCONthat
specify the Matlab functions that describe the cibje and constraint functions
respectively. The objective and constraint fundiomsed, beamobjfun.m and

beamobjcon.m , is a Matlab implementation of the Beam problerscdibed in the
Options manual [1].

The fieldOMETHDs a scalar which specifies the search methoctaded (see FAQ
section 5.2 for further details). This example uaeBesign of Experiments study,
OMETHD =2.8.

3.2 Run the search

OptionsMatlab can now be invoked with the inputusture returned by
createBeamStruct . At the command line enter:

>> results = OptionsMatlab(input)

results =

VARS: [2x1 double]
OBJFUN: 2.9455e+003
CONS: [5x1 double]
OBJTRC: [1x1 struct]
CONSTRC: [1x1 struct]

OptionsMatlab will quickly perform a Design of Expaents study, evaluating the
objective and constraint function$ITERS times. The results are returned in the
structureresults . The fieldsOBJFUNand VARS contain the minimum objective
function found and the corresponding design vaeisbThe fieldCONScontains the
values of the constraints at the design varialskgRS

Other fieldsOBJTRCandCONSTR@ontain the search histories over the objective an

constraint functions. This information is valualie examine the history of the
optimisation and build Response Surface Models.

12



3.3 View the search histories

A simple tool is provided to view the search higsrof problems with two design
variables. At the command line enter:

>> plotOptionsSurfaces(results, input)

This will produce plots for the objective functiamd each of the constraints against
the two design variables at each of the designabbes evaluated. The final plot
shows the objective function plotted against the tlesign variables, in which each
point is coloured depending whether it exceedscirestraints (red), or not (blue)
(Figure 3).

=101

File Edit Yiew Insert Tools Window Help

lDsd& A A/ @20
Ohbjective function AREA by design variables BREADTH and HEIGHT

AREA

i
HEIGHT g BREADTH

Figure 3 The results of a 500 point DoE plottechyatotOptionsSurfaces

3.4 Build and search a Response Surface Model

The results returned by the Design of Experimeats lme used to build a Response
Surface Model (RSM) that can be searched very hapithis approach may be
suitable when either the objective or constraimicfions are expensive to evaluate.
To do this we must create another input structwrty the same problem definition.
We will modify this input structure to specify thatRSM is used to evaluate the
objective and constraint functions. At the commbne enter:

>> inputRSM = createBeamStruct;

13



>> inputRSM.OBJMOD = 3.5;
>> inputRSM.CONMOD = 3.5;

By specifyingOBIJMOLandCONMORqual to 3.5 OptionsMatlab will produce a RSM
using a second order polynomial regression modwl.aHist of the alternative RSM
approximation methods available within OptionsMiatize the FAQ section 5.4.

>> inputRSM.OMETHD = 4;
>> inputRSM.NITERS = 1000;

OMETHDequal to 4 specifies a Genetic Algorithm with DdQnction evaluations.

OptionsMatlab will perform the function evaluationequired for the Genetic

Algorithm against the RSM (rather than evaluating tiser's objective or constraint
functions directly).

The input structurénputRSM must be passed into OptionsMatlab together wigh th
results of the Design of Experiments containedhéwariableesults

>> resultsRSM = OptionsMatlab(inputRSM, results)

resultsRSM =

VARS: [2x1 double]
OBJFUN: 2.4824e+003
CONS: [5x1 double]

The results structure returnedsultsRSM , does not contain search histories. This is
because the model used to evaluate the desigrbleswiss an approximation of the
user's model and should not be considered to bava&gut to direct evaluation. It is
good practice to verify the results of a searchr @a/BSM by direct evaluation of the
objective and constraint functions at the returoptimum design.

14



4 Function Reference

Banana problem

An example of the unconstrained Banana problemdoagen Rosenbrock's function.

flx) =100 (z2 — 22)* + (1 — 21)?

Equation 1 Rosenbrock's function

Example
This problem may be extended into multiple dimensjohowever by default the
problem is 2D. This example plots the objectivection surface of the Banana
problem.

>> input = createbananastruct(2.8, 2);
>> input. OMETHD = 2.8;

>> input.MC_TYPE = 4;

>> input.NITERS = 500;

>> input.LVARS = [-1, -1];

>> output = OptionsMatlab(input)

output =

VARS: [2x1 double]
OBJFUN: 0
OBJTRC: [1x1 struct]

>> optimisationTerrain(output,input,3)

15
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Figure 4 The objective function surface of the Bamproblem

Functions

bananafun
bananafun_parallel
bananafun_parallel_parse
createbananastruct
createbananastructparallel

objective function

parallel version of the objective function

parallel version of the objective function

creates an input structure for the banana problem
creates an input structure for the parallel
invocation of the banana problem
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Beam problem

An example of the constrained Beam problem

Example
This example plots the objective function surfatthe Beam problem.

>> input= createBeamStruct;

>> input.MC_TYPE = 4;

>> input.NITERS = 500;

>> output = OptionsMatlab(input)

output =

VARS: [2x1 double]
OBJFUN: 2.9269e+003
CONS: [5x1 double]
OBJTRC: [1x1 struct]
CONSTRC: [1x1 struct]

>> optimisationTerrain(output,input,3)

=101

File Edit Yiew Insert Tools Window Help

Ins"a yar/ 200

Objective function AREA by design variables BREADTH and HEIGHT
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Figure 5 The valid objective function surface o eam problem
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Functions
beamcon_parallel
beamcon_parallel_parse
beamcon_parallel2
beamcon_parallel2_parse2
beamfun_parallel
beamfun_parallel_parse
beamfun_parallel2
beamfun_parallel2_parse
beamobjcon

beamobijfun
createBeamStruct
createBeamStructParallel

createBeamStructParallel2

createBeamStructRSM

parallel version of the constraint function

parallel version of the constraint function

parallel version of the constraint function

parallel version of the constraint function

parallel version of the objective function

parallel version of the objective function

parallel version of the objective function

parallel version of the objective function
constraint function

objective function

creates an input structure for the beam problem
creates an input structure for the parallel
invocation of the beam problem

creates an input structure for the parallel
invocation of the beam problem using
optjobparallel2

creates an input structure for the generation of a
RSM for the beam problem
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Bump problem

An example of the combined objective and constrainttion of the Bump problem.

Example
The Bump problem may be extended into multiple disnens. This example plots
the objective function surface of the Bump problanwo dimensions.

>> input= createbumpstruct(2.8, 2);
>> input.MC_TYPE = 4;

>> input.NITERS = 500;

>> output = OptionsMatlab(input)

output =

VARS: [2x1 double]
OBJFUN: 0.2021

CONS: [2x1 double]
OBJTRC: [1x1 struct]
CONSTRC: [1x1 struct]

>> optimisationTerrain(output,input,3)

=il

File Edit Yiew Insert Tools Window Help

Ins"a yar/ 200

Objective function AREA by design variables %ARDT and YARDZ

AREA

Figure 6 The valid objective function surface af Bump problem in two dimensions
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Functions
bumpfuncombined
bumpfuncombined_parallel

bumpfuncombined_parallel_parse

createbumpstruct
createbumpstructparallel

combined objective and constraint function
parallel version of the combined objective and
constraint function

parallel version of the combined
objective and constraint function
creates an input structure for the bump problem
creates an input structure for the parallel
invocation of the bump problem

20



optimisationAppendDataPoints

Append data points to an output structure

This function appends data points to an Optionsiladiutput structure from a second
OptionsMatlab output structure. The function cathex copy all of the points,
specified points, or the best point returned bydpgmiser, from the second output
structure.

The edited structure is returned as an output aggtim

Syntax

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OUT,
STRUCTOUT?2)

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OuUT,

STRUCTOUTZ2, POINTS)

Description

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OUT,
STRUCTOUT2) where STRUCTOUT is the results structure returned by
OptionsMatlab containing data points in a fiel®dBJTRC (and CONSTRE or
RSMTRQo which the data points are append®@dRUCTOUTZs a results structure
from whichall data points are copieSTRUCTOUTEDITis a copy of STRUCTOUT
to which all of the points are copied.

Note that RSM results can only be copied from stracture containing RSM results
(RSMTRE Also unconstrained data points cannot be cofweal structure containing
constrained data.

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OUT,
STRUCTOUTZ2, POINTS) as above where POINTS is a string specifyingtiode of
operation, or a vector specifying the points tocbeied. POINTS may be a string
with the following values:

all all points from STRUCTOUT2will be appendé to
STRUCTOUTThis is the default operation HOINTS is
empty (| ).

best the best point returned specified 8 YyRUCTOUTwiIll be

appended t&§ TRUCTOUT

21



If POINTS is a vector it must contain the indices of poinis
STRUCTOUT2.0BJTRC.OBJFUN (or STRUCTOUT2.RSMTRC.OBJFUYN to be
appended t§ TRUCTOUT

Examples
These examples will demonstrate the three modes ogpleration of
optimisationAppendDataPoints

structin = createBeamStruct(2.8);
structin.NITERS = 10; %Do a DoE of ten points

structout = OptionsMatlab(structin);

structin2 = structin;
structin2.OMETHD = 4; %Do a GA of ten points
structout2 = OptionsMatlab(structin2);

In this example all data points from the seconguoustructure will be appended to
the first.

structoutedit = optimisationAppendDataPoints(struct out,
structout2);

structoutedit. OBJTRC

structoutedit. CONSTRC

ans =
OBJFUN: [1x20 double]
VARS: [2x20 double]
NCALLS: 20

ans =
CONS: [5x20 double]
VARS: [2x20 double]
LCONS: [5x20 double]
UCONS: [5x20 double]
NCALLS: 20

In this example the best data point from the seaartgut structure will be appended
to the first.

22



structoutedit2 = optimisationAppendDataPoints(struc tout,
structout?2, '‘best’  );

structoutedit2. OBJTRC

structoutedit2. CONSTRC

ans =
OBJFUN: [1x11 double]
VARS: [2x11 double]
NCALLS: 11

ans =
CONS: [5x11 double]
VARS: [2x11 double]
LCONS: [5x11 double]
UCONS: [5x11 double]
NCALLS: 11

In this example the first, fifth and tenth datarmgsifrom the second output structure
will be appended to the first.

structoutedit3 = optimisationAppendDataPoints(struc tout,
structout2, [1,5,10]);

structoutedit3.0BJTRC

structoutedit3.CONSTRC

ans =
OBJFUN: [1x13 double]
VARS: [2x13 double]
NCALLS: 13

ans =
CONS: [5x13 double]
VARS: [2x13 double]
LCONS: [5x13 double]
UCONS: [5x13 double]
NCALLS: 13

23



Seealso
optimisationCropDataPoints , optimisationReplaceDataPoints
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optimisationCropDataPoints

Crops data points from an output structure

This function crops data points from @ptionsMatlab  output structure. The output
structure can contain data points in a fleBUTRC(andCONSTRor RSMTRC

The points to be cropped are specified by a vetordices for points in the vector of
objective function evaluations. The edited struetigrreturned as an output argument.

Syntax

STRUCTOUTEDIT = optimisationCropDataPoints(STRUCTOU T,
POINTS)
Description

STRUCTOUTEDIT =  optimisationCropDataPoints(STRUCTOU T,

POINTS) where STRUCTOUTs the results structure returned OptionsMatlab
containing data points in a fieldBJTRC(and CONSTREor RSMTRCPOINTS is a
vector of indices to data points INSTRUCTOUT.OBJTRC.OBJFUN (or
STRUCTOUT.RSMTRC.OBJFUYN

STRUCTOUTEDITSs a copy oSTRUCTOUWith the specified points cropped.

Example
In this example the first, fifth and tenth pointe &ropped from an output structure
containing ten points:

structin = createBeamStruct(2.8);
structin.NITERS = 10; %Do a DoE of ten points

structout = OptionsMatlab(structin);

structoutedit = optimisationCropDataPoints(structou t,
[1,5,10]);

structoutedit. OBJTRC

structoutedit. CONSTRC

ans =

OBJFUN: [4.1998e+003 2.5211e+003 2.3857e+003 3. 2492e+003

25



7.9283e+003 708.6411 1.7318e+003]
VARS: [2x7 double]
NCALLS: 7

ans =
CONS: [5x7 double]
VARS: [2x7 double]
LCONS: [5x7 double]
UCONS: [5x7 double]
NCALLS: 7

See also
optimisationAppendDataPoints , optimisationReplaceDataPoints

26



optimisationReplaceDataPoints

Replace data points based upon strategy

This function will replace data points from an @psMatlab output structure with
data points from a second structure selected dapgngbon the specified strategy.
The attribute used to select the data points mayé#tue of the objective function, or
the normalized Euclidian distance from the beshipspecified in STRUCTOUT.

Syntax

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OuUT,
STRUCTOUT2,STRATEGY,STRUCTIN)

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OUT,

STRUCTOUT2,STRATEGY,STRUCTIN,NUMPOINTS)

Description

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OUT,
STRUCTOUT2, STRATEGY, STRUCTIN) whereSTRUCTOUBNd STRUCTOUTZre
results structure returned kYptionsMatlab  containing data points in a field
OBJTRC(andCONSTREor RSMTRCSTRATEGYs a string that specifies the strategy
used to replace data points:

select_best selects data points fron8STRUCTOUTand
STRUCTOUT2lepending upon the value of the
objective function

select_closest selects data points fron8TRUCTOUTand
STRUCTOUTZlepending upon the normalized
Euclidian distance frorSTRUCTOUT.VARS

replace_worst replaces theworst NUMPOINTSdata points
from STRUCTOUTwith the best points from
STRUCTOUT2lepending upon thealue of the
objective function

replace_furthest replaces thdurthest NUMPOINTSdata point:
from STRUCTOUWith theclosest points from
STRUCTOUTZlepending upon the normalized
Euclidian distance frorBSTRUCTOUT.VARS

27



STRUCTINIs theOptionsMatlab  input structure for the problem that was used to
generate the data poin&TRUCTOUTEDITs the edited copy STRUCTOUT

Note that RSM results can only be copied from stracture containing RSM results
(RSMTRE Also unconstrained data points cannot be cofmeal structure containing
constrained data.

Note that duplicate points are not detected and ecayr inSTRUCTOUTEDIT

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OuUT,
STRUCTOUTZ2,STRATEGY,STRUCTIN,NUMPOINTSYhereNUMPOINTSs an integer
value that has alternative meanings depending tipostrategy. Wher8TRATEGY

select * NUMPOINTS is the number of datapoints in
STRUCTOUTEDITIf NUMPOINTSs not specified, or is
empty 1), it will default to
STRUCTOUT.*TRC.NCALLS

replace_*  NUMPOINTSs the number of data points S TRUCTOUT
replaced with points frorSBTRUCTOUT2

Examples
These examples will demonstrate the alternatistegres to replace data points.

structin = createBeamStruct(2.8);
structin.NITERS = 10; %Do a DoE of ten points

structout = OptionsMatlab(structin)

structin2 = structin;
structin2.OMETHD = 4; %Do a GA of ten points
structout2 = OptionsMatlab(structin2)

In this example theébest data points are selected from betwestmictout and
structout2

structoutedit = optimisationReplaceDataPoints(struc tout,
structout2,'select_best',struct in)

structoutedit. OBJTRC.OBJFUN

structoutedit. OBJTRC.VARS
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In this example 15 data points are selected fronwden structout and

structout2 depending upon their normalized Euclidian distané®m
structout.VARS
structoutedit = optimisationReplaceDataPoints(struc tout,
structout2,'select_closest',str uctin,15)

structoutedit. OBJTRC.OBJFUN
structoutedit. OBJTRC.VARS

In this example the @Worst data points fronstructout  are replaced by the laest
data points fronstructout2

structoutedit = optimisationReplaceDataPoints(struc tout, ...
structout2,'replace_worst',stru ctin,5)

structoutedit. OBJTRC.OBJFUN

structoutedit. OBJTRC.VARS

In this example the 5 data points frostructout that are furthest from
structout. VARS  are replaced by thedbosest points fromstructout2

structoutedit = optimisationReplaceDataPoints(struc tout, ...
structout2,'replace_furthest',s tructin,5)

structoutedit. OBJTRC.OBJFUN

structoutedit. OBJTRC.VARS

See also
optimisationCropDataPoints , optimisationAppendDataPoints
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optimisationDigest

Prints the results of an optimisation and retumglity of optimum

Syntax
ISVALID = optimisationDigest(STRUCTOUT,STRUCTIN)
ISVALID = optimisationDigest(STRUCTOUT,STRUCTIN,FIL ENAME)
ISVALID = optimisationDigest(STRUCTOUT,STRUCTIN,[])

Description

ISVALID = optimisationDigest(STRUCTOUT, STRUCTIN) Prints
digest to standard output, whe38RUCTOUTs the output, an@TRUCTINthe input,
from OptionsMatlab . ISVALID is 1 where the optimum point returned by the
optimisation does not violate the constraints @ design variable limits, otherwise
ISVALID is 0.

ISVALID = optimisationDigest(STRUCTOUT,STRUCTIN,FIL ENAME)
Prints direct tdFILENAME

ISVALID = optimisationDigest(STRUCTOUT,STRUCTIN,[])
Suppresses digest output
Example
The output obptimisationDigest is illustrated by the following example:
>> input = createBeamStruct

>> results = OptionsMatlab(input)

>> jsvalid = optimisationDigest(results,input)
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Optinisation of the problem defined by "beanobjfun" and
"beanobj con"

Optinisation nethod: 2.8

Status after 500 eval uations is:-

Trial vector

Lw Bound Vect or Uppr Bound Vari able (units)

5. 00000000 < 19.96577454 > 50.00000000 BREADTH
2. 00000000 < 14.75254536 > 25.00000000 HEI GHT

1
o

No of V. Boundary Viol ations

2945. 4599  AREA

bj ective Function (nin.)
Constraints vector
Lw Bound Vect or Uppr Bound Vari abl e

(units)

< 103. 56009357

\%

200. 00000000 SI GvA-B
2.54629163 100. 00000000 TAU

< 4.86091675 5. 00000000 DEFLN

< 7.38891713 > 10.00000000 H ON-B
5000. 00000000 < 184550. 01793812 F-CRIT

N
\%

\%

No of Constraint Violations = 0

isvalid =

Seealso
OptionsMatlab

31



optimisationHistory

Plots a trace of the optimisation search history

optimisationHistory plots a trace of the objective function over thearsh
history. optimisationHistory provides a convenient way to view the search
history over a number of searches by combiningittic@mation in a single plot.

Syntax
optimisationHistory(RESULTS)
optimisationHistory(RESULTS,LABELS)
optimisationHistory(RESULTS,LABELS,WITHMARKERS)

optimisationHistory(RESULTS,LABELS ,WITHMARKERS,ISLO G)
Description
optimisationHistory(RESULTS) Where RESULTS is a cell array

containing all of the search results to be plotfEae elements of this array may be
either OptionsMatlab ~ output structures or vectors containing objectivection
values.

optimisationHistory(RESULTS,LABELS) WhereLABELS s a cell array
of strings containing the labels for a legend whainotates each of the searches
plotted. LABELS must be the same length RESULTS otherwiseLABELS may be
empty if no legend is required.

optimisationHistory(RESULTS,LABELS,WITHMARKERS) Where
WITHMARKERSpecifies whether markers are to be used on ttelpWITHMARKERS
equals 0 markers will not be used, otherwise marleee generated automatically
(default).

optimisationHistory(RESULTS,LABELS ,WITHMARKERS,ISLO G)
Where ISLOG specifies whether the scale of the Y-axis is lilgaric. If
WITHMARKER®quals 0 a linear scale will be used (default)eotise a logarithmic
scale will be used for the Y-axis.

Example
The following example illustrates the useopfimisationHistory
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>> input = createBeamStruct;

>> input.OMETHD = 1.6;

>> resultscell{1} = OptionsMatlab(input);

>> resultscell{2} = rand(200,1)*3000+1000;
>> |abels = {'Optivar SEEK','Random values'}

>> optimisationHistory(resultscell, labels)
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Figure 7 The plot produced lpptimisationHistory

Seealso
OptionsMatlab , plotOptionsSurfaces
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optimisationSampleRSM

Builds and samples a Response Surface Model.

This function will generate an array of candidateings and then invokes
OptionsMatlab to build a Response Surface ModeMR&hd samples the candidate
points. The structure returned bptimisationSampleRSM can then be plotted.

Syntax
STRUCTOUT = optimisationSampleRSM(STRUCTIN,RESULTS,
NUMPOINTS)
STRUCTOUT = optimisationSampleRSM(...,LVARS,UVARS)
[STRUCTOUT, VECTORS] = optimisationSampleRSM(...)

Description

STRUCTOUT = optimisationSampleRSM(STRUCTIN,RESULTS,
NUMPOINTS) where STRUCTIN is an OptionsMatlab input structure which
specifies the RSM, anBESULTSIs an output structure containing the results over
which the RSM is built. INUMPOINTSs a scalar value, this will specify the total
number of sample points which will be distributecerly acrossNVRSdimensions.
OtherwiseNUMPOINTSMust be a vector of lengttivRSwhich specifies the number
of sample points in each dimension (the total numdfesample points will equal
PROD(NUMPOINTS)). The return argumensTRUCTOUTwiIll contain the output
structure returned b@ptionsMatlab

To hold a design variable constant set the corredipg element of
NUMPOINTS2qual to zero. All design variables for whisdhhMPOINTSs zero will be
sampled at the value specified ByRUCTIN.VARS

STRUCTOUT = optimisationSampleRSM(...,LVARS,UVARS) as above
whereLVARSandUVARSare vectors that specify the upper and lower $irbgtween
which the design variables are sampled. If theséove are not specified the values of
LVARSandUVARSdefined inSTRUCTINare used.

[STRUCTOUT, VECTORS] = optimisationSampleRSM(...) as above

where VECTORSSs a cell array containinyVRSvectors of the points at which the
each of the design variables were sampled.
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Examples
The first example will sample response surface nsdoiglt over the beam problem.

%Run a DOE in OptionsMatlab
inputl = createBeamStruct;
inputl.NITERS = 50;

outputl = OptionsMatlab(inputl);

%Create an input structure to search a RSM
input2 = createBeamStruct;
input2.0BJMOD = 3.3;

input2.CONMOD = 3.3;

%Sample 100 evenly spaced points

output2 = optimisationSampleRSM(input2, outputl, 10 0)

output2 =

VARS: [2x1 double]
OBJFUN: 2.3606e+003
CONS: [5x1 double]

RSMTRC: [1x1 struct]

%Plot an interpolated surface over the sampled poin ts
fig = optimisationTerrain(output2, input2);
%Plot the original points

optimisationTrace(outputl, inputl, 1, fig);
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Figure 8 First plot of the output optimisationSampleRSM

%Sample 5 points in the first dimension and 20 poin ts in the

%second dimension

output3 = optimisationSampleRSM(input2, outputl, [5 , 20])

optimisationTerrain(output3, input2);

output3 =

VARS: [2x1 double]
OBJFUN: 2.3606e+003
CONS: [5x1 double]
RSMTRC: [1x1 struct]
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Figure 9 Second plot of the outputaptimisationSampleRSM

The second example samples the bump problem owerdimensions of a five
dimensional problem. The values of the design Wéegwhich are held constant are

specified byinput5.VARS

%Run a DOE over the bump function in 5 dimensions
input4 = createbumpstruct(2.8, 5);

input4.NITERS = 50;

output4 = OptionsMatlab(input4);

%Build a RSM over the DOE and sample in the second and third
%dimensions

input5 = createbumpstruct(2.8, 5);

input5.0BJMOD = 3.3;

input5.CONMOD = 3.3;

output5 = optimisationSampleRSM(input5,output4,[0,2 0,20,0,0));
%Plot the sampled points in the second and third di mensions
optimisationTerrain(output5, input5, 1, [], [-37.5, 30], [2,3]);
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Figure 10 Third plot of the output aptimisationSampleRSM

See also

optimisationTerrain , OptionsMatlab
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optimisationSearchTrace

Search trace history for values at optimuaARS

This function searches the optimisation trace hy$tes) in OBJTRC(and CONSTRE

or RSMTRCfields of anOptionsMatlab ~ output structure for the values of the
objective and constraint functions at the optimuecter in theVARS field. The
function will only operate on structures for whittte values o©BJFUNand/orCONS
are zero. This function is intended for use whesearch has been performed at
OLEVEL<2and the values at the optimum point have not beiemned.

The edited structure is returned as an output aggtim

Syntax
STRUCTOUTEDIT = optimisationSearchTrace(STRUCTOUT)

Description

STRUCTOUTEDIT = optimisationSearchTrace(STRUCTOUT) where
STRUCTOUTis the results structure returned DptionsMatlab ~ containing data
points in a fieldOBJTRC(andCONSTRLor RSMTRC

Example
This example demonstrates how the values of thectbes and constraints are
retrieved from the trace history when the searchideeen performed a&tLEVEL=Q

structin = createBeamStruct(2.8);
structin.OLEVEL = 0; %Validation call not made
structin.NITERS = 10; %Do a DoE of ten points

structout = OptionsMatlab(structin)

structout. OBJFUN
structout. CONS
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structout =

VARS: [2x1 double]
OBJFUN: 0

CONS: [5x1 double]
OBJTRC: [1x1 struct]
CONSTRC: [1x1 struct]

ans =

ans =

O O O o o

This searches the problemG@itEVEL=0and consequently the values of the objective
and constraints aftructout.VARS are returned as zeros structout. OBJFUN

and structout. CONS . The values of the objective and constraints atdptimum
point are assigned to these variables by sear¢chentyace history:

structout? = optimisationSearchTrace(structout)

structout2.OBJFUN
structout2.CONS
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structout2 =

VARS: [2x1 double]
OBJFUN: 5.0853e+003
CONS: [5x1 double]
OBJTRC: [1x1 struct]
CONSTRC: [1x1 struct]

ans =

5.0853e+003

ans =

1.0e+005 *

0.0004
0.0000
0.0000
0.0001
5.4913

Seealso
OptionsMatlab
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optimisationTerrain

Mesh, surface & contour plots of optimisation résul

This function plots surfaces produced by interpotabetween the points at which the
objective function was evaluated. The optimisatierain may be represented as a
mesh, surface or contour plot. The points which @ meet the optimisation
constraints will be cropped from the surface.

Syntax
optimisationTerrain(STRUCTOUT,STRUCTIN)
optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE)

optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG )
optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG ,VIEW)
optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG ,VIEW,DIMS)

FIG = optimisationTerrain(...)

Description

optimisationTerrain(STRUCTOUT,STRUCTIN) where STRUCTOUTIs
the results structure returned b@ptionsMatlab and STRUCTIN is the
OptionsMatlab  input structure.

optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE) as above

where PLOTTYPEIs a scalar which indicates the type of plot. Madid values of
PLOTTYPEare:

1 = Mesh of valid points [default]

2 = Mesh of valid points in a single colour

3 = Surface of valid points

4 = 3D contour plot of valid points

5 = 3D contour plot of valid points with a mesh

6 = Mesh of all points

7 = Mesh of all points in a single colour

8 = Surface of all points

9 = 3d contour plot of all points

10 = 3d contour plot of all points with a mesh

optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG ) as
above wheré=IG is the figure in which to plot the optimisatiorrran. If FIG is not
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provide a new figure will be generated. FIG camw &s empty [].

optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG VIEW)
as above wher¥IEW is a two element vector that sets the view of3Beplot. For
exampleVIEW = [0 90] for overhead plots. The default view-87.5, 30]. VIEW can
also be empty [].

optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG WVIEW,
DIMS) as above wher®IMS is a two element vector specifying the two design
variables to be plotted. By default the first tdesign variables are plotted.

FIG = optimisationTerrain(...) as above wherelG is a the number
of figure in which the terrain was plotted.

Example
input = createBeamStruct;
results = OptionsMatlab(input)

optimisationTerrain(results, input)
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Figure 11 Plot produced lgptimisationTerrain

See also
view , mesh, griddata
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optimisationTestSuite

A script which demonstrates the functionality @ftionsMatlab ~ with the Beam
problem

See also

beamcon_parallel , beamcon_parallel_parse , beamfun_parallel \
beamfun_parallel_parse , beamobjcon , beamaobjfun , createBeamStruct
createBeamStructParallel , createBeamStructRSM

optimisationTestSuiteComb

A script which demonstrates the functionalityQytionsMatlab ~ with the combined
objective and constraint function of tBemp problem

See also

bumpfuncombined , bumpfuncombined_parallel ,
bumpfuncombined_parallel_parse \
createbumpstruct , Createbumpstructparallel

optimisationTestSuiteUncon

A script which demonstrates the functionality ddptionsMatlab with
unconstraine®anana problerbased upon Rosenbrock's function.

Seealso
bananafun , bananafun_parallel , bananafun_parallel_parse ,
createbananastruct , Createbananastructparallel
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optimisationTestSuiteSPM

A script which demonstrates the stochastic processdel functionality of
OptionsMatlab  with constrained or unconstrained problems.

This function is intended as an extension to tls¢ selites and performs additional
tests that search and sample stochastic processl R8#1s using quick tuned hyper-
parameters. These tests can be invoked on coredrand unconstrained design
problems and demonstrate how to build and invegtigmchastic process models.

Syntax

optimisationTestSuiteSPM(STRUCTIN, STRUCTOUT_DOE,
STRUCTOUT_HP)
optimisationTestSuiteSPM(..., PLOTTYPE)

Description

optimisationTestSuiteSPM(STRUCTIN, STRUCTOUT_DOE,
STRUCTOUT_HPWhereSTRUCTINIs the default input data structure for the design
problem, STRUCTOUT_DOKs the trace history of a previous design seartichy
contains the information required to generate ti8MRand STRUCTOUT_H#s the
results of tuning the hyperparameters of a stochpsbcess model over the points in
the DoE.

optimisationTestSuiteSPM(..., PLOTTYPE) where PLOTTYPEIs a
scalar which indicates the type of plot used itscia optimisationTerrain . The
valid values oPLOTTYPEare:

0 = No plotting

1 = Mesh of valid points [default]

2 = Mesh of valid points in a single colour

3 = Surface of valid points

4 = 3D contour plot of valid points

5 = 3D contour plot of valid points with a mesh
6 = Mesh of all points

7 = Mesh of all points in a single colour

8 = Surface of all points

9 = 3d contour plot of all points

10 = 3d contour plot of all points with a mesh
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Example
This example demonstrates how the SPM tests carvbked on the Banana problem

>> inputStruct = createbananastruct;

Perform a 50 point DoE over the problem

>> inputl = inputStruct;
>> inputl.OLEVEL = 0;

>> inputl. OMETHD = 2.8; %Design of Experiments
>> inputl.NITERS = 50; %Number of iterations
>> inputl.MC_TYPE = 4; %Full factorial DoE

>> outputl = OptionsMatlab(inputl);

Perform a quick tuning of the hyperparameters efdiochastic process model RSM

>> inputl0 = inputStruct;
>> inputl0.OLEVEL = 0;

>> inputl0.0BIJMOD = 4.1; %Stochastic process model
>> inputl0.CONMOD = 4.1; %Stochastic process model
>> inputl0.RSM_QCK_HP = 1; %Quick hyperparameter tuning

>> outputl0 = OptionsMatlab(input10, outputl);

Invoke the stochastic process model test suitd@mptoblem

>> optimisationTestSuiteSPM(inputStruct, outputl, o utputl0, 5)
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Figure 12 Sampled stochastic process model RSMaidnd result of the search for the optimum
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Figure 13 Sampled Root Mean Square Error of thehsistic process model RSM and the result of the

search for the maximum in the surface.
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Figure 14 Sampled Expected Improvement of the stst@hprocess model RSM and the result of the
search for the maximum in the surface. NB. Wherdihection of the underlying search is negative
(minimisation) Options automatically inverts thefage to seek the numerical minimum in the El
surface which will be the point of maximum El irettrue problem — the test suite plots the raw

minimisation search in figure 1 and plots the itedrsurface in figure 2.
BEE

<) |Figure 2
Eile Edit Wiew Insert Tools Deskrop Window Help

Deds b QNS |« 0B 80
Approximate values of the ohjective function [KY-P1 by design variables YAR1 and WAR2

[WW-P| (approx)

WARZ

Figure 15 Sampled Probability of Improvement of skechastic process model RSM and the result of
the search for the maximum in the surface. NB. Wtherdirection of the underlying search is negative

(minimisation) Options automatically inverts thefage to seek the numerical minimum in the Pl
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surface which will be the point of maximum Pl irettiue problem — the test suite plots the raw

minimisation search in figure 1 and plots the itedrsurface in figure 2.

See also
optimisationTestSuite, optimisationTestSuiteComb,
optimisationTestSuiteUncon
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optimisationTilePlot

Tile plot of four dimensions of a problem

This plots the behaviour of the objective functmrer four dimensions of a problem.
The first two of the design variables (A and B) pl@tted across rows and columns of
tiles. The third and fourth design variables (1 @pavill be plotted across the x and y
axes of each tile.

Each design variable will be sampled at the spatifiumber of points between the
limits defined within the fieldd.VARS and UVARSof STRUCTIN For example a
problem in which the variables A and B are eachpdadhat two points the resulting
tile plot will have four tiles.

The value of the objective function is plotted asuaface within each 2D tile. The
surface colormap is consistent between the tilbe file plot is interactive, and by
clicking on a tile it is visible as a 3D plot irsaparate figure window.

Syntax
optimisationTilePlot(STRUCTOUT,STRUCTIN,DESIGNVARS,
NUMPOINTS, TILETYPE)
optimisationTilePlot(...,PLOTPOINTS)
optimisationTilePlot(...,FIG)
FIG = optimisationTilePlot(...)
[FIG, TILESOUT,TILESIN] = optimisationTilePlot(...)
optimisationTilePlot(TILESOUT,TILESIN)

Description

optimisationTilePlot(STRUCTOUT,STRUCTIN,DESIGNVARS,
NUMPOINTS,TILETYPE) where STRUCTOUTIs the results structure returned by
OptionsMatlab andTRUCTINIs the corresponding OptionsMatlab input structifre

50



the TILETYPE is direct searcBTRUCTOUTan be emptjj .

DESIGNVARSMust be a four element vector that defines thégdegriables
to be plotted [A,B,1,2] based upon their indeXSIFRUCTIN.VARS NUMPOINTSnust
also be a four element vector that defines the munob points to be evaluated for
each of theDESIGNVARS

TILETYPE is an integer that defines how the tile is to bal@ated. The valid
values OfTILETYPE are:
1 = Evaluation of the RSM defined by the fiel@B8IJMODand
CONMODf STRUCTIN
2 = Direct search df thbjective function

optimisationTilePlot(...,PLOTPOINTS) as above when
PLOTPOINTSIs a flag that indicates whether to plot the qetits. For a RSM if
PLOTPOINTS= 1 the original data points containedSMRUCTOUWiIll be plotted in
each tile, otherwise for a direct search the evatlipoints will be plotted. If
PLOTPOINTS= 0 the points will not be plotted. Default valReEOTPOINTS= 0.

optimisationTilePlot(...,FIG) as above wher€lIG is the figure in
which to plot the tile plot. IFIG is not provide a new figure will be generatets
can also be empty .

FIG = optimisationTilePlot(...) as above wheré&IG is a the
number of figure in which the tiles were plotted.

[FIG, TILESOUT,TILESIN] = optimisationTilePlot(...) as above
whereTILESOUT andTILESIN are cell arrays containing the OptionsMatlab otutpu
and input structures that were used to generatsutiaces for each of the tiles.

optimisationTilePlot(TILESOUT,TILESIN) replots the tile plot with
data returned in the cell array ESOUT andTILEIN . All other input arguments are
optional. ThePLOTPOINTSargument can be supplied to indicate that the plaitats
should be plotted.

Examples

The following example demonstrates a tile plotle peaks4d problem using direct
search:
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>> structin = createpeaks4dstruct(2.8);

>> optimisationTilePlot([],structin,[3,4,1,2],[2,3, 15,15],2)
1o/
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Figure 16 Tile plot of the peaks4d problem producgdiirect search

By clicking on the tiles of the tile plot with theouse that tile will be displayed in

3D. For example by clicking on the tile in the teft of the figure the following plot
will be displayed:
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Figure 17 Tiles may be viewed in 3D by clickingtbe tile plot

The second example demonstrates a tile plot gb¢laés4d problem produced using a
Shepard RSM. Using the PLOTPOINTS argument thetpahthe original data set
are also plotted:

>> structin = createpeaks4dstruct(2.8);
>> structin.NITERS = 25;

>> structout = OptionsMatlab(structin);

>> structin.OBJMOD = 1; %Shepard RSM

>> structin.CONMOD = 1,

>> optimisationTilePlot(structout,structin,[3,4,1,2 1,
[2,3,15,15],1,1)
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Figure 18 Tile plot of the peaks4d problem produe#ti a Shepard RSM and the original data set

See also

optimisationTerrain , optimisationTrace
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optimisationTrace

Plots the objective function against two designaldes

This function plots points at which the objectivenétion was evaluated. The
objective function points may be plotted in coloublack and white. The points may
also be joined to represent the sequence of funetiraluations.

Syntax
optimisationTrace(STRUCTOUT,STRUCTIN)
optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE)
optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG)
optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,V IEW)
optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,V IEW,
DIMS)
optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,
VIEW,DIMS,LABELS)
FIG = optimisationTrace(...)

Description

optimisationTrace(STRUCTOUT,STRUCTIN) where STRUCTOUTis the
results structure returned byOptionsMatlab and STRUCTIN is the
OptionsMatlab  input structure.

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE) as above
where PLOTTYPEIs a scalar which indicates the type of plot. Madid values of
PLOTTYPEare:
1 = Coloured point plot [default]
2 = Black and white point plot
3 = Coloured joined point plot
4 = Back and white joined point plot

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG) as above
whereFIG is the figure in which to plot the optimisationran. If FIG is not provide

a new figure will be generated. FIG can also betgifjp

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,V IEW) as
above whereVIEW is a two element vector that sets the view of 3Beplot. For
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exampleVIEW = [0 90] for overhead plots. The default view-87.5, 30]. VIEW can
also be empty [].

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,V IEW,
DIMS) as above wher®IMS is a two element vector specifying the two design
variables to be plotted. By default the first tdesign variables are plotted.

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,V IEW,
DIMS,LABELS) as above whereABELS s a flag specifying whether the plot should
be labelled. By default labelling is switched dfABELS = 0).

FIG = optimisationTrace(...) as above wherelG is a the number of
figure in which the terrain was plotted.

Example
input = createBeamStruct;
results = OptionsMatlab(input)

optimisationTrace(results, input)

-} Figure No. 1 i =]

File Edit Yiew Insert Tools ‘Window Help

DeEa/ xAa s 2o

Figure 19 Plot produced lgptimisationTrace

See also
view , mesh, griddata
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OptionsMatlab

Options optimisation and design search package

OptionsMatlab makes the Options optimisation and design searatkage
available to Matlab, calling user-defined constraind objective functions defined as
Matlab functions.OptionsMatlab ~ also supports a number of Response Surface
Model algorithms that allow optimisation to be oadr out cheaply using
approximations of the values of the objective fiotand/or constraints.

Syntax
STRUCTOUT = OptionsMatlab(STRUCTIN)
STRUCTOUT = OptionsMatlab(STRUCTIN,STRUCTOUT)

Description

STRUCTOUT = OptionsMatlab(STRUCTIN)  whereSTRUCTINIis a Matlab
structure containing the problem definition and tooin parameters for the
optimisation algorithms, an8TRUCTOUTS a structure containing optimum design
variables and the objective function and constraahiies at this point.

STRUCTOUT2 =  OptionsMatlab(STRUCTIN,STRUCTOUT) where
STRUCTIN is a Matlab structure containing the problem dgéin and control
parameters for an optimisation over a Responsea&urModel (RSM), and where
STRUCTOUTis the trace history of a previous design seardtichv contains the
information required to generate the RSMRUCTINshould contain values for either
of the parameter&BIMODor CONMOMWhich specify the RSM used, if any, for the
objective function and constraints. The design dearsed to generate data points
from which the RSM is produced should ideally bspace-filling search such as a
Genetic Algorithm (GA) or Design of Experiments @o

I nput argument

The structureSTRUCTIN must contain a number of mandatory fields, and alag

contain a number of optional control parameterg Mandatory fields required are:
DNULL A number that corresponds to a NULL value inphablem setup
OLEVEL [optional] The output level of th@ptionsMatlab  package [0-10].
Default valueOLEVEL= 1.
MAXJOBS [optional] Allows the user to limit the number phrallel jobs.
Default valueMAXJOBS= 1.
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NVRS The number of design variables

VARS A vector of NVRSdesign variables corresponding to the initial gesi
variables to be evaluated

VNAM A cell array of lengthNVRS containing the names of the design
variables for the internal GENDAT database (vagaithmes must not exceed
10 chars)

LVARS A vector of lengthNVRSrepresenting the lower limits to the design
variable values.

UVARS A vector of lengthNVRSrepresenting the upper limits to the design
variable values.

NDVRS [optional] The maximum number of discrete desigmiable values
for any single design variable. Default valN®VRS = 0, where all design
variables are contiguous.

DVARS [required if NDVRS> 0] A matrix of sizeNVRSby NDVRSof the
discrete design variable values (seDMULLIf contiguous)

NCONS [optional] The number of design constraintsNiEONSs set to zero

the problem will be unconstrained, a@®TCONill not be invoked. Default

valueNCONS= 0.

CNAM [required ifNCONS> 0] A cell array of lengttNCONScontaining the

names of the design constraints for the interndNBAT database (constraint
names must not exceed 10 chars)

LCONS [required ifNCONS> 0] A vector of lengttNCONSrepresenting the
lower limits to the design constraints (seDOULLIf no lower limit)

UCONS [required ifNCONS> 0] A vector of lengttNCONSrepresenting the
upper limits to the design constraints (seDMULLIf no upper limit)

NPARAMS[optional] The number of user-defined parametdrsSlPARAMSre
set to zero an empty parameter array will be pagdgeethe user-defined
functions. Default valuBlIPARAMS= 0.

PARAMS [required if NPARAMS> 0] A vector of NPARAMSuser-defined
parameter values

PNAM [required ifNPARAMS> 0] A cell array of lengtiNPARAMSontaining
the names of the user-defined parameters for tieeniad GENDAT database
(parameter names must not exceed 10 chars)

ONAMA char array (max length 10 chars) containingrthme of the objective
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function in the internal GENDAT database.

OMETHDThe number of the optimisation or design seargordhm to be
used. The available search methods are:

0.0 to just evaluate the user's problem codeegptint specified

1.1 for OPTIVAR routine ADRANS

1.2 for OPTIVAR routine DAVID

1.3 for OPTIVAR routine FLETCH

1.4 for OPTIVAR routine JO

1.5 for OPTIVAR routine PDS

1.6 for OPTIVAR routine SEEK

1.7 for OPTIVAR routine SIMPLX

1.8 for OPTIVAR routine APPROX

1.9 for OPTIVAR routine RANDOM

2.1 for user specified routine OPTUM1

2.2 for user specified routine OPTUM2

2.3 for NAG routine EO4UCF

2.4  for bit climbing

2.5 for dynamic hill climbing

2.6 for population based incremental learning

2.7 for numerical recipes routines

2.8  for design of experiment based routines

3.11 for Schwefel library Fibonacci search

3.12 for Schwefel library Golden section search

3.13 for Schwefel library Lagrange interval search

3.2 for Schwefel library Hooke and Jeeves search

3.3 for Schwefel library Rosenbrock search

3.41 for Schwefel library DSCG search

3.42 for Schwefel library DSCP search

3.5 for Schwefel library Powell search

3.6 for Schwefel library DFPS search

3.7 for Schwefel library Simplexsearch

3.8 for Schwefel library Complexsearch

3.91 for Schwefel library two-membered evolutibrategy

3.92 for Schwefel library multi-membered evolutstrategy

4 for genetic algorithm search
5 for simulated annealing
6 for evolutionary programming
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7 for evolution strategy
DIRCTN The search direction (in the range +/-2). Theinogers try to
minimize the objective function if this argument-I5 maximize it if is +1,
minimize the log of the function if it is -2 or miaxize the log if it is +2
NITERS: The maximum number of iterations to be used

OPTJOB The name of the Matlab function responsible fallieg the user-
defined objective and constraint functions (maximangth 255 chars)
OPTFUN A string describing the user-defined objectivadiion routine to be
called by thedDPTJOB(maximum length 255 chars)

OPTCON [required if NCONS> 0] A string describing the user-defined
constraint function routine to be called by theTJOB(maximum length 255
chars)

OBJMOD[optional] The RSM method to be used to approxartae value of
objective function. The available methods are:

1.0 for a Shepard response surface model should

2.1 for linear Radial Basis Function

2.2 for thin plate Radial Basis Function

2.3 for cubic splines Radial Basis Function

2.4  for cubic splines Radial Basis Function witdgnession via
reduced bases

3.1  for mean polynomial regression model

3.2 for first order polynomial regression model

3.3 for first order polynomial regression modelgpsquares

3.4  for first order polynomial regression modelugplproducts
(cross-terms)

3.5 for second order polynomial regression model

3.6 for second order polynomial regression motled pubes

4.1  for a Stochastic Process Model

4.2  for the root mean square error of the Stoch&sbcess Model

4.3  for the expected improvement of the Stoch&&ticess Model

4.31 for the expected improvement of the constchBchastic
Process Model [requires CONMOD=4.1]

4.32 for the feasibility of improvement of the ctragmed Stochastic
Process Model [requires CONMOD=4.1]

4.33 for the probability of improvement of the Stastic Process

Model
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0.0 if the underlying user supplied function idoecalled.
CONMQOoptional] The RSM method to be used to approxarihe values of
the constraints. The available methods are:

1.0 for a Shepard response surface model should

2.1 for linear Radial Basis Function

2.2 for thin plate Radial Basis Function

2.3 for cubic splines Radial Basis Function

2.4  for cubic splines Radial Basis Function witdgnession via

reduced bases

3.1  for mean polynomial regression model

3.2 for first order polynomial regression model

3.3 for first order polynomial regression modelgpsquares

3.4  for first order polynomial regression modelugplproducts

(cross-terms)

3.5 for second order polynomial regression model

3.6 for second order polynomial regression motled pubes

4.1  for a Stochastic Process Model

4.2  for the root mean square error of the Stoch&sbcess Model

4.3  for the expected improvement of the Stoch&&ticess Model

0.0 if the underlying user supplied function idoecalled.

NUMUPDATE[optional] is a scalar which determines the numbfk update
points to be returned when a search routine isoman a RSM. Update points
can be used to improve the accuracy of the dathaetvas used to generate
the RSM. The update points are return in a sulcitre DOE_TRACEHN the
output structure. INUMUPDATES not specified then update points are not
returned byOptionsMatlab

DOE_TRACE[optional] is a structure containing the usergigd DOE points
to be used when the control paramekC TYPEequals 7.DOE_TRACE
requires two mandatory fields:
DOE_TRACE.NCALLSthe number of user-supplied DOE points. Note
that DOE_TRACE.NCALLSnust equaNITERS-1 as the DOE will first
evaluate the design variab8RS
DOE_TRACE.VARSthe design points to be evaluated during the DOE
(sizeNVARSby DOE_TRACE.NCALLB

OBJHYPER [optional] is a structure containing Stochastimdess Model
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hyper-parameters used to approximate the valuéh@fobjective function.
OBJHYPERhas three recognised fields:
OBJHYPER.OBJ_LAMBDAhe value of hyper-parameter LAMBDA
OBJHYPER.OBJ_THETA the values of hyper-parameter THETA
(lengthNVARS seeRSM_QCK_HP
OBJHYPER.OBJ_EXP the values of hyper-parameter EXP (length
NVARS seeRSM_QCK_HP
CONHYPER][optional] is a structure containing Stochastimdess Model
hyper-parameters used to approximate the valuleeo€dnstraintsSCONHYPER
has three recognised fields:
CONHYPER.CST_LAMBD#he value of hyper-parameter LAMBDA
CONHYPER.CST_THETAthe values of hyper-parameter THETA
(lengthNVARS seeRSM_QCK_HP
CONHYPER.CST_EXPthe values of hyper-parameter EXP (length
NVARS seeRSM_QCK_HP

RSM_QCK_HP [optional] is a flag that indicates whether quitkper-
parameter tuning should be used when building @aiching a Stochastic
Process Model RSM. Quick tuning will be used whsM_QCK_HRs true
(e.g. 1). In this condition single values of theplgparametergHETA and
EXP will be tuned across all design variables, ratifiamn NVARSvalues of
THETAandEXP corresponding to each design variable. This ampraafaster
but less accurate, and may be appropriate for gooldems. If true the values
of OBJ_EXP and OBJ_THETA and of CST_EXP and CST_THETA (in the
structuresOBJHYPERand CONHYPERwill be scalar, rather than a vector of
lengthNVARS Quick hyper-parameter tuning is not available evheanually
tuning the hyper-parameters (i.e. WAH&MNEHYPEROQ).

USERDATA [optional] is an optional field which can contaamy type of
Matlab variable. This variable will be passed te tiser-defined objective and
constraint functions via thePTJOBfunction.

TUNEHYPER[optional] is a flag that indicates whether Stastic Process
Model hyper-parameters should be tuned over theclsdastory contained in
the second input argument. Hyper-parameters wiliuped if TUNEHYPERS
true (e.g. 1). WhemUNEHYPERs called the hyper-parameters are tuned using
the search method specified by the input structivete that the user's
problem is not searched, and the output structuller@urn the structures
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OBJHYPER(and CONHYPERvhere appropriate) in addition to the objective
functionOBJ_CLF(andCST_CLBR.

It is possible to tune the values of specific hyparameters with following
values ofTUNEHYPER

0 No tuning

1 Tune THETA, EXP and LAMBDA

2 Tune THETA and EXP

3 Tune THETA and LAMBDA

4 Tune THETA
If a value of TUNEHYPERyreater than 1 is specified, and no user-defined
hyper-parameters are supplied (WBJHYPERor CSTHYPER then initial
values for all hyper-parameters will be generatedadnly the specified hyper-
parameters will be tuned with the designated seauetnod.

CHKPT_INTV: [optional] is an integer value that specifies theerval with
which the search history is checkpointed to a MA4. if parallel optimiser is
used OMETHI2.8 or 4)CHKPT_INTV should be a multiple ofIAXJOBS If
CHKPT_INTV equals 0 there will be no checkpointing (default)OMETHD
equals 4CHKPT_INTV will contain the structuré&sA_VARS(once available)
that will allow the genetic algorithm to be restart

CHKPT_FILE: [optional] specifies the file name that the chmmkt file is
written (maximum length 20 characters). The defabickpoint file name is
'OptionsCHKPNT.mat'.

OPTUM1 |[optional] A string describing the user-definedegsential
optimisation routine to be called wh@PTUM1= 2.1 (maximum length 255
chars). The default value'optuml’ corresponds to the example
implementation of a random optimiser ($efp optuml for more details).

Other valid STRUCTIN fields correspond to scalar Options control patense
documented in the Options manulattp://www.soton.ac.uk/~ajk/options)psections
8.8 and 8.9. See also FAQ section 5.16. Thesealgdrameters include:

BC_NBIN, BC_NRANDM, BC_PENAL, CST _BAD PT, DHC_INITS Z,
DHC_NRANDM, DHC_PENAL, DHC_THRESH, DOE_NRANDM, EPMUTNT,
EP_NBIN, EP_NPOP, EP_NRANDM, EP_PENAL, EP_TOURN, ES _DELSIG,
ES_MDSCRT, ES_NCPOP, ES_NPPOP, ES_NRANDM, ES_PENAL,ES_UCHILD,
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ES_VDSCRT, FUSION_TYP, GA_ALPHA, GA DMAX, GA_DMIN, GA_NBIN,
GA_NBREED, GA_NCLUST, GA_NPOP, GA_NRANDM, GA_PBESTGA_PCROSS,
GA_PENAL, GA_PINVRT, GA_PMUTNT, GA_PRPTNL, GA_PSEED, MC_MAND,
MC_P1, MC_P2, MC_PENAL, MC_TYPE, NAG_BIGBND, NAG_ET A, NAG_RHO,

OBJ_BAD_PT, OPT_CTOL, OPT_STEP, OPT_TOL, OPT_TSIZE, OVR_CONV,
OVR_MAND, OVR_NPTS, OVR_PENAL, OVR_SEED, OVR_SHRK, OVR_SIMP,
OVR_STEP, OVR_STOP, PL_LRATE, PL_NBIN, PL_NPOP, PL_ NRANDM,
PL_PENAL, PL_PMUTNT, RSM_EIF. W, RSM_NCSKIP, RSM_NSKIP,

RSM_NULL_T, SA_NBIN, SA_NRANDM, SA_PCOLD, SA_PENAL, SA_PMUTNT,
SA_PTEMP, SA_PWIDTH, SA SCHED, SC_BKORRL, SC_CONV, SC_DELI,

SC_DELP, SC_DELS, SC_IELTER, SC_IREKOM, SC_KONVKR, SC_LR,
SC_LS, SC_NACHKO, SC_NITERS, SC_NRANDM, SC_NS, SC_P ENAL,
SC_SN, SC_TYPE

Output argument

The structureSsTRUCTOUTonNtains the following fields:
VARS The optimum design variables
OBJFUN The objective function value ¥ARS
CONS The constraint values ¥ARS

Following a direct search over the user's codeottjective function and constraint
search histories are returned to the user in testuicturesOBJTRCand CONSTRC
(respectively). Following evaluation of a RSM séatustories are returned in the
field RSMTRC
OBJTRC The history of evaluations of the objective fuont
OBJTRC.NCALLS The number of objective function evaluations
OBJTRC.OBJFUN The values of the objective function (a vectorlafigth
OBJTRC.NCALLY
OBJTRC.VARS The variables at which the objective function veasluated
(sizeNVARSby OBJTRC.NCALLS

CONSTRCThe history of evaluations of the constraints
CONSTRC.NCALLSThe number of constraint evaluations
CONSTRC.CONS The values of the constraints (siz8lCONS by
CONSTRC.NCALLB

CONSTRC.VARSThe variables at which the constraints were etalll (size
NVARSby CONSTRC.NCALLB

CONSTRC.UCONS he upper limits to the constraints at each eatédua (size
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NCONSyY CONSTRC.NCALLB
CONSTRC.LCONSThe lower limits to the constraints at each eatatin (size
NCONSyY CONSTRC.NCALLB

If the field NUMUPDATIES specified in the input structure for a searechraa RSM a
sub-structur®OE_TRACEHS returned containing suggested points that woujgrove
the initial dataset.

DOE_TRACESuggested points that would improve the dataset
DOE_TRACE.NCALLSThe number of suggested update points
DOE_TRACE.VARSThe design variables

Following an optimisation over a RSM OptionsMatlalll return the search history
in the following field of the output structure (QgtsMatlab 0.9.0+):

RSMTRCSearch history of points evaluated over a RSM
RSMTRC.NCALLSThe number of user specified points used
RSMTRC.VARSThe user-specified design points used

RSMTRC.OBJFUN The value of the objective function RSM at theerus
specified design points.

RSMTRC.CONSThe value of the problem constraint RSM at ther«specified
design points.

RSMTRC.UCONSThe upper limits of the problem constraint at tiger-
specified design points.

RSMTRC.LCONSThe upper limits of the problem constraint at tiser-
specified design points.

If a genetic algorithm@METHB4) is used OptionsMatlab will return the valueshod
GA variables that may be used to restart the gerdgorithm. This information is
contained in the following field of the output stture:

GA_VARSThe GA restart variables

GA_VARS.GA_POPThe GA population design variable and fithessigal
GA_VARS.GA_CODEThe final GA code string values
GA_VARS.GA_NRANDMhe random number sequence used by the genetic
algorithm.

Following an optimisation over approximate valudsthee objective and constraint
functions using a Stochastic Process Mod@#JMODand CONMODRespectively) the
values and limits of the hyper-parameters will ®imed. The hyper-parameters used
to approximate values of the objective functionlvié returned in the structure
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OBJHYPER and the constraint hyper-parameters will be retgy in the structure
CONHYPER The structure®BJHYPERand CONHYPERure identical to the optional
fields of the input structure described above.

Notes
OptionsMatlab requires a valid Options licence.file

See also
optjob , createBeamStruct
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optjob

Multiple objective function and constraint evaleatifor OptionsMatlab

Optjob.m provides an example implementation of a brokerrfaitiple objective
function and constraint evaluations foptionsMatlab . These evaluations are done
in serial, other implementations @ftjob  support concurrent evaluations.

Theoptjob function to be used byptionsMatlab  must be set in thePTJOBfield

of the structure passed tOptionsMatlab . The function name of user-defined
objective function and constraint functions sholokdset in th@©PTFUNandOPTCON
fields for the structure passed@ptionsMatlab . If the OPTFUNandOPTCONields
are equal it is assumed that the objective funatbarine will return constraint values
as the fifth output argument (see below).

The user-defined objective function called bptjob should conform to the
following function prototype:

[eval,gd,H,PARAMS,CONS,U_CONS,L_CONS]=opfun(VARS,PA  RAMS,
U_CONS,L_CONS,DATA)

The user-defined constraint function called bgtiob  should conform to the
following function prototype:

[CONS,ceq,GC,Gceq,PARAMS,U_CONS,L_CONS]=objcon(VARS
PARAMS,U_CONS,L_CONS,DATA)

Reimplementing optjob

OPTJOBtakes a matrix of siz&lJOBS by NVARSand returns a vector of function
evaluations of lengthNJOBS Other arguments include the names of the uséneatef
OPTFUNand OPTCONunctions, as well as user defined parametersstcaints and
upper and lower constraint limits.

The minimum required function prototype of ihy@job function is:

[evals,cons] = optjob(optfunname,optconname,vars)

where the input arguments are:
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optfunname : the name of the user defined objective function
optconname : the name of the user defined constraint functions
vars : the matrix of design variables sikK8OBSby NVARS(whereNJOBSis
the number of design points to be evaluated MvitlRSthe number of design
variables)
where the output arguments are:
evals : a vector oNJOBSfunction evaluations
cons : a matrix ofiNJOBSby NCONSonstraints

The complete function prototype of thptjob  function is:

[evals,cons,params,u_cons,|_cons]=optjob(optfunnam,
optconnam,vars,params,cons,u_cons,l_cons,data)

as above where additional input arguments are
params : a vector of siz&dlPARAM®f user-defined parameters
cons : a vector ofNCONSconstraints at the design variables to be evaluate
(applies only to a single function evaluation fOPTFUNonNly otherwise
empty)
u_cons : a vector of sizeN\CONSof the upper limits for the user defined
constraints (where there is no limit setrtb )
| cons : a vector of sizeNCONSof the lower limits for the user defined
constraints (where there is no limit setitd -)
data : the user-supplied data passed unaltered frorfiglleUSERDATAf the
input structure

and as above where additional output arguments are:
params : a revised vector of siZ¢PARAMST user defined parameters
u_cons : a revised vector of sizBICONSof the upper limits for the user
defined constraints
| cons : a revised vector of sizBICONSof the lower limits for the user
defined constraints

The optiob  Matlab function is invoked from three places widptionsMatlab
OPTJOB OPTFUNand OPTCONeach of these FORTRAN subroutines will use the

optjob  function in a different fashion.

OPTJOB Calls the optiob  Matlab function for NJOBS function (and
constraint) evaluations. Passes all of the avalaigut parameters, apart from
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the vectorcons for which is substituted an empty array. The wefrned
routineoptfun must be called for each of thdOBSdesigns supplied. If the
problem is constrained the constraints will be barevaluated by a combined
objective/constraint function (wheoptfunname == optconname ), or by a
separate constraint function (defined bgtconname ). For unconstrained
optimisations the argumenptconname will be empty.OPTJOBrequires the
output argumentsvals andcons to be returned, all other output arguments
will be ignored.

OPTFUN Calls theoptjob  Matlab function for a single function evaluation.
Passes all of the available input parameters, &mart the stringoptconnam

for which is substituted an empty string. The udefined routine
optfunname is called once. Requires the output argumerdls to be
returned, theons output argument will be ignored, and tieams , u_cons
andl_cons output arguments will be used to update the cpomding values
in the internal GENDAT database if returned.

OPTCONCa lls theoptjob  Matlab function for a single constraint evaluation
Passes all of the available input parameters, &mart the stringoptfunnam

for which is substituted an empty string and theteecons for which is
substituted an empty array. The user-defined reuipiconname is called
once. Requires the output argumeobs to be returned, thevals output
argument will be ignored, and thgarams, u_cons and | _cons output
arguments will be used to update the correspondaiges in the internal
GENDAT database if returned.

Seealso
OptionsMatlab , createBeamStruct
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optjobparallel

Multiple objective function and constraint evalwatifor OptionsMatlab

Optjobparallel evaluates user defined objective and constrainctions in
parallel. To evaluate the objective function therusiwust define two functions, the
first which initiates the calculation of the objeet function, and the second which
returns the values of the objective function.

In practice the first function will typically penfm a Globus GRAM job submission
returning a handle which can be polled and an egtptin specific job ID. The second
function will typically use the application specifiob ID to retrieve the output of the
GRAM job and parse the objective function (and amily the values of the
constraints also).

The user-defined objective function called dptjobparallel to perform the job
submission should conform to the following functjgmototype:

[JOBHANDLE,RETRIEVALID]=objfun(VARS,PARAMS,U_CONS,L _CONS,
DATA) where JOBHANDLEis a GRAM job handle which can be polled by
gd_jobpoll , and RETRIEVALID is an identifier used by retrieve the results. If
JOBHANDLEs empty it will not be polled. The only mandatdnput argument is
VARS the other input argumentBARAMS U_CONS L_CONS and DATA are all
optional.

This function must be specified in ti@PTFUNfield of the OptionsMatlab  input
structure.

A second retrieval function is be defined to rettihva value of the objective function.
This function must have the same name as the joimission function appended with

' parse'’ . For example when the objective function submissimction is saved in
the file ‘'objfun.m’ the retrieval function must be saved in the file
‘objfun_parse.m'

The retrieval function should conform to the foliogy function prototype:

[EVAL,PARAMS,CONS,U_CONS,L_CONS]=objfun_parse(RETRI EVALID
) where RETRIEVALID is the identifier returned by the job submissiamdtion.

70



EVAL is the value of the objective function. The otloettput argument®ARAMS
CONSU_CONSandL_CONSare all optionalCONSs the value of the constraints.

If the value of the constraints and the objectivaction are return by the same
function the field OPTCONshould be set to equ@PTFUN Alternatively if the
constraints are evaluated independently of thectibge function the user may also
define two separate functions to perform the jolbnsigsion and to parse the
constraints. In this case the functions indicdigdhe fieldOPTCONshould conform
to the following function prototypes:

[JOBHANDLE,RETRIEVALID]=0bjcon(VARS,PARAMS,U_CONS,L _CONS,DATA)
[CONS,PARAMS,U_CONS,L_CONS] = objcon_parse(RETRIEVA LID)

Seealso
optjob , OptionsMatlab , optjobparallel2
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optjobparallel2

Multiple objective function and constraint evaleatifor OptionsMatlab

optjobparallel2 evaluates user defined objective and constrainttions in
parallel. To evaluate the objective function therusiwust define two functions, the
first which initiates the calculation of the objeet function, and the second which
determines the state of the job and, if completyrn the value of the objective or
constraint functions.

The user-defined objective function calleddpyjobparallel2 to perform the job
submission should conform to the following functjgmototype:

RETRIEVALID = objfun(VARS,PARAMS,U_CONS,L_CONS,DATA ) where
RETRIEVALID is an identifier used by retrieve the results,drample this may be a
structure containing a number of fields. The ongnalatory input argument VARS
the other input argumenBARAMSU_CONSL_CONSandDATAare all optional.

This function must be specified in ti@PTFUNfield of the OptionsMatlab  input
structure.

A second retrieval function is be defined to detemwhether the job has completed,
and if so return the value of the objective funetidhis function must have the same
name as the job submission function appended ‘'witlirse2' . For example, when
the objective function submission function is savedthe file 'objfun.m’ the
retrieval function must be saved in the fdbjfun_parse2.m'’

The retrieval function should conform to the foliogy function prototype:

[EVAL,PARAMS,CONS,U_CONS,L_CONS]J=objfun_parse2(
RETRIEVALID) whereRETRIEVALID is the identifier returned by the job submission
function. EVAL is the value of the objective function (or emptythe job has not
completed). The other output argumePESRAMSCONSU_CONSandL_CONSare all
optional.CONSs the value of the constraints.

This function should determine whether the job lcasmpleted. If the job has

completed the value &VAL (and that ofCON$ should be returned. If the job is still
running the function should return an empty valoeHEVAL (i.e. EVAL =[] ), in
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which case the status of other jobs will be deteedlibefore the parse2'  function
is invoked again for this job. If the job has fdila suitable bad point indicator should
be returned.

If the value of the constraints and the objectivaction are return by the same
function the fieldOPTCON' should be set to eqU&@PTFUN' . Alternatively if the
constraints are evaluated independently of thectibge function the user may also
define two separate functions to perform the jolbnsigsion and to parse the
constraints. In this case the functions indicatgdtibe field 'OPTCON' should
conform to the following function prototypes:

RETRIEVALID = objcon(VARS,PARAMS,U_CONS,L_CONS,DATA )
[CONS,PARAMS,U_CONS,L_CONS] = objcon_parse2(RETRIEV  ALID)

Seealso
optjob , OptionsMatlab
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optuml

Example user-defined sequential optimiserdptionsMatlab

optuml is a random sequential optimiser that demonstradesto define an arbitrary
optimisation strategy to be invoked MptionsMatlab . This optimiser can be
invoked by specifying the fieldSMETHD= 2.1 andOPTUMZ= 'optum1’ in the input
structure ofOptionsMatlab

To implement your own optimiser your function shibwonform to the following
function prototype. User-defined optimisers shomishimise the objective function
irrespective of the search direction specifiedh®yihput structure.

Syntax
[VARS, STOPOPT] = OPTUM1(VARS, FVAL, CONS, UVARS, L VARS,

UCONS, LCONS, MAXCALLS, CALLNUM, TOL, STEPSIZE, OLE VEL)

Description

[VARS, STOPOPT] = OPTUML(VARS, FVAL, CONS, UVARS, L VARS,
UCONS, LCONS, MAXCALLS, CALLNUM, TOL, STEPSIZE, OLE VEL) where the
meaning of the input arguments are:

VARS vector containing the last evaluated valug RS

FVAL objective function value &fARS

CONS vector of constraint values @aRS(empty if unconstrained)
UVARS vector of upper limits fovARS

LVARS vector of lower limits foVARS

UCONS vector of upper limits foCONgmay vary)

LCONS vector of lower limits foCONSmay vary)

MAXCALLS maximum number of function evaluations, must bedused
by your implementation ajptum1

CALLNUM number of iterations performed
TOL requested tolerance of the optimiser
STEPSIZE requested step-size of the optimiser
OLEVEL requested output level of the optimiser
where the meaning of the output arguments are:
VARS vector containing the next value WARSto be evaluated. If

STOPOPTindicates that the optimiser is compl®&RSshould
contain the minimum variable values detected byottteniser
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STOPOPT a flag indicating the whether the optimiser hampleted. The
optimiser will run whilstSTOPOPT 0, and will complete when
STOPOPT= 1 is returned. IfSTOPOPTIis not set to 1 the
optimiser will run indefinitely.

Example
This example invokes the user-defined optimisemeef byoptuml over the Beam
problem.

input = createBeamStruct;
input.NITERS = 20;

input. OMETHD = 2.1;

input. OPTUM1 = 'optum1’;
output = OptionsMatlab(input);

optimisationTrace(output,input,3)

-} Figure No. 1 i =]

File Edit Yiew Insert Tools ‘Window Help

DeEa/ xAa s 2o

Figure 20 Trace produced by random optim@etum1

Seealso
OptionsMatlab
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Peaks4d problem

A four dimension problem based upon the Matlabks function.

Example
This example plots the objective function surfatthe Peaks4D problem.

>> input = createpeaks4dstruct(2.8);

>> input.MC_TYPE = 4;

>> input.NITERS = 500;

>> input.UVARS =[3,3,0.01,0.01]; % hold vars 3 and 4 constant
>> output = OptionsMatlab(input)

output =

VARS: [4x1 double]
OBJFUN: 7.4643
CONS: 0
OBJTRC: [1x1 struct]
CONSTRC: [1x1 struct]

>> optimisationTerrain(output,input,3)

=il

Eile Edit Yew Insert Tools Window Help

Ded&s "Ar/ /| @220
Objective function OBJFUN by design variables VAR, and VAR,

OBJFUN

Figure 21 The valid objective function surfacelwd Peaks4d problem

76



Functions

peaks4d objective function
createpeaks4dstruct creates an input structure for the peaks4d
problem
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5 Frequently Asked Questions

5.1 Why does Matlab crash when | call OptionsMatlab  ?

When OptionsMatlab is invoked with an invalid Genlitzense file the error message
below will be printed:

>> input = createBeamStruct;

>> output = OptionsMatlab(input);

??? Optimzation failed. OPTIONS Error code: -2147483648

Gendat license files may be invalid if they haveieed, or if they contain incorrect
machine details.

Write statements by some of the third party algong available within the Options
have also caused OptionsMatlab to crash. Thesdeahagnosed by examining the
temporary files generated by OptionsMatlab;OPTIONS*.opt and
.OPTSDTO*.opt . In some cases this behaviour can be ameliorate@ducing the
output level of OptionsMatlalQLEVEL =0 .

When creating a new problem definition conflictstvien user-specified design
variable, parameter or constraint names can capsier@Matlab to crash. Conflicts
occur when there is an ambiguity between a varial@lme and the name of an
existing Options variable. For example the variatdeneFACT would be ambiguous
if the parameteFACTORhad previously been defined. If a variable nam@lu has
caused Matlab to crash this may be diagnosed byniexzg the temporary file
.OPTIONS*.opt

Please report any reoccurring problems to me hyileBiags are documented in the
buglists included in the OptionsMatlab distribution

5.2 How do I specify the search method?

The search method is specified by the fieldETHDf the Options input structure.
The scalar values correspond to the search metlsteld below. For more details of
each of the search methods please see the Optamsai{1].
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0.0
11
1.2
1.3
1.4
15
1.6
1.7
1.8
1.9
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
3.11
3.12
3.13
3.2
3.3
3.41
3.42
3.5
3.6
3.7
3.8
3.91
3.92

to just evaluate the user’s problem codeeapthint specified
for OPTIVAR routine ADRANS

for OPTIVAR routine DAVID

for OPTIVAR routine FLETCH

for OPTIVAR routine JO

for OPTIVAR routine PDS

for OPTIVAR routine SEEK

for OPTIVAR routine SIMPLX

for OPTIVAR routine APPROX

for OPTIVAR routine RANDOM

for user specified routine OPTUM1

for user specified routine OPTUM2

for NAG routine EO4UCF

for bit climbing

for dynamic hill climbing

for population based incremental learning

for numerical recipes routines

for design of experiment based routines

for Schwefel library Fibonacci search

for Schwefel library Golden section search

for Schwefel library Lagrange interval search
for Schwefel library Hooke and Jeeves search
for Schwefel library Rosenbrock search

for Schwefel library DSCG search

for Schwefel library DSCP search

for Schwefel library Powell search

for Schwefel library DFPS search

for Schwefel library Simplexsearch

for Schwefel library Complexsearch

for Schwefel library two-membered evolutitrategy
for Schwefel library multi-membered evolutsinategy
for genetic algorithm search

for simulated annealing

for evolutionary programming
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7 for evolution strategy

5.3 How do | run a Design of Experiments?

A Design of Experiments search can be used toieffiy sample points across the
multi-dimensional parameter space representedrigg laumbers of design variables.
A Design of Experiments search can be invoked HyingeOMETHD= 2.8. The
number of points to be evaluated can be configimgdltering the input structure
field NITERS.

A number of different Design of Experiments searetthods are available within the
Options package. These can be configured usingpkienal input fieldMC_TYPE
where;

Random (default)

LPT

Central composite and’r
Full factorial and-Pr

Latin hypercubes
Cell-based latin hypercubes

~N o o~ WN Rk

User supplied candidate points

For more details about these Design of Experimsgsisch methods please consult the
Options manual [1].

User supplied candidate points to be evaluatechdwriDesign of Experiments can be
supplied with the optional input field®OE_TRACEwhen the control parameter
MC_TYPE = 7. DOE_TRACEequires two mandatory fields:

DOE_TRACE.NCALL&ontaining the number of user-supplied DOE points

DOE_TRACE.VARShe design points to be evaluated during the D8iEe(
NVARSby DOE_TRACE.NCALL}P

When using user supplied candidate poMiEERS must equaDOE_TRACE.NCALLS
plus one as the Design of Experiments will firshlemate the design point specified by
VARS
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5.4 How do | build a Response Surface Model?

A Response Surface Model is used to approximatedhe of objective or constraint
functions based upon the results of direct evalnatif the user's model. Response
Surface Models can be built independently overathjective and constraints, and are
configured using the optional input fiel@BIMOCand CONMORespectively. If these
fields are not seDptionsMatlab  will directly evaluate the user supplied objective
and constraint functions.

A number of Response Surface Model methods arelablaito be used to
approximate the values of the objective functiod eonstraints. The possible settings
for the optional input field®BIMORNdCONMOAre:

1.0 for a Shepard response surface model
2.1  for linear Radial Basis Function

2.2 for thin plate Radial Basis Function
2.3  for cubic splines Radial Basis Function

2.4  for cubic splines Radial Basis Function witlgression via reduced
bases

3.1  for mean polynomial regression model

3.2  for first order polynomial regression model

3.3  for first order polynomial regression modelpquares

3.4  for first order polynomial regression modelgpproducts (cross-terms)
3.5  for second order polynomial regression model

3.6  for second order polynomial regression modes$ plubes

4.1  for a Stochastic Process Model

4.2  for the root mean square error of the Stoah&stcess Model

4.3  for the expected improvement of the Stoch&&ticess Model

4.31 for the expected improvement of the constdhiS&ochastic Process
Model [requires CONMOD=4.1]

4.32 for the feasibility of improvement of the ctmasmed Stochastic
Process Model [requires CONMOD=4.1]

4.33 for the probability of improvement of the Stastic Process Model
0.0 if the underlying user supplied function idtcalled.
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5.5 How do I plot my Response Surface Model?

Following OptionsMatlab version 0.9.0+ search his® are available for
optimisations which are run over a Response Suiffdadel in the output structure
field RSMTRCPreviously OptionsMatlab would only return a sbkahistory when
candidate points were provided.

To evaluate a factorial search of the RSM thatusable for plotting it may be
appropriate to evaluate a list of candidate poifitse candidate points must be
provided in a fieldDOE_TRACHf the input structure (see section 5.3). In wersiof
OptionsMatlab 0.9.0+ it is necessary to specifit the optimisation is a candidate
points Design of Experiment®{ETHD=2.8 MC_TYPE=J.

>> %Create the initial dataset

>> DOEinput = createBeamStruct;

>> DOEoutput = OptionsMatlab(DOEinput);

>> 9%Define a RSM input structure

>> RSMinput = createBeamStruct;

>> RSMinput.OBJMOD = 3.3;

>> RSMinput. CONMOD = 3.3;

>> %Create a list of candidate points to be evaluated
>> ji = linspace(DOEinput.LVARS(1),DOEinput. UVARS(1 ),10);
>> jj = linspace(DOEinput.LVARS(2),DOEinput. UVARS(2 ),10);
>> [x,y] = meshgrid(ii,jj);

>> RSMinput.DOE_TRACE.VARS(1,:)=
reshape(x,1,prod(size(x)));

>> RSMinput.DOE_TRACE.VARS(2,:)=
reshape(y,1,prod(size(y)));

>> RSMinput.DOE_TRACE.NCALLS = prod(size(x));
>> 9%Define the search a candidate points DoE

>> RSMinput. OMETHD = 2.8;

>> RSMinput.MC_TYPE =7,

>> RSMoutput = OptionsMatlab(RSMinput, DOEoutput);
>> disp(RSMoutput. RSMTRC)
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OBJFUN: [1x100 double]
VARS: [2x100 double]
NCALLS: 100
CONS: [5x100 double]
LCONS: [5x100 double]
UCONS: [5x100 double]

The contents oRSMTRCcan then be plotted to show the surface of thep&ese

Surface Model.

>> optimisationTerrain(RSMoutput, RSMinput);

SE=IE

File Edit Yiew Insert Tools ‘Window Help
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Approximate values of the objective function AREA by design variables BREADTH and HEIGHT
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Figure 22 Plotting approximate values of the Bedjecive function generated by a RSM

The utility functionoptimisationSampleRSM automates the process of sampling a

RSM built over the user's problem.

5.6 How do | generate Design of Experiment update p  oints?

It is possible to improve the quality of a Respofseface Model by improving to

original dataset by selectively adding new poifitse Genetic Algorithm@METHD=

4) and Dynamic Hill Climbing @METHD= 2.5) optimisation algorithms, when run
over a Response Surface Model, are capable ofretua list of points that would
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improve the dataset.

Update points will be returned if the OptionsMatladput structure contains the
optional fieldNUMUPDATEThe value oNUMUPDATIS a scalar which determines the
number of update points to be returned when a Beartdine is run over a RSM. The
update points will be returned in the fi@dE_TRACBf the output structure.

In the following example a Genetic Algorithm is ramer a RSM generated from the
search history contained in the structd@Eoutput . NUMUPDATIS set to equal 10,

meaning that the Genetic Algorithm will suggest tgpdate points at which the
original data set can be improved.

Note that the optimisation algorithm may returrslé&sanNUMUPDATHEpdate points,
in this case the remaining element®afE_ TRACE.VARIll contain zeros.

>> %Create the initial dataset

>> DOEinput = createBeamStruct;

>> DOEoutput = OptionsMatlab(DOEinput);
>> %Define a RSM input structure

>> RSMinput = createBeamStruct;

>> RSMinput. OMETHD = 4;

>> RSMinput.OBJMOD = 3.3;

>> RSMinput. CONMOD = 3.3;

>> RSMinput. NUMUPDATE = 10;

>> RSMoutput = OptionsMatlab(RSMinput, DOEoutput);
>> disp(RSMoutput. DOE_TRACE)

NCALLS: 10
VARS: [2x10 double]

The update points contained in the fiBIBE_TRACHf the structurékSMoutput can
now be used as candidate points for a second De§igrperiments study.

>> DOEinput2 = createBeamStruct;

>> DOEinput2.OMETHD = 2.8;

>> DOEinput2.MC_TYPE =7;

>> DOEinput2.DOE_TRACE = RSMoutput.DOE_TRACE;
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>> DOEIinput2.NITERS = RSMoutput. DOE_TRACE.NCALLS+1;
>> DOEoutput2 = OptionsMatlab(DOEinput2);

Note thatDOEinput2.NITERS must equaDOEinput2.DOE_TRACE.NCALLS plus
one as the Design of Experiments will first evadutite design point specified by
DOEinput2.VARS .

5.7 How do | define an unconstrained optimisation?

From version 0.5 of OptionsMatlab onwards usersndb have to define a null

constraint function for unconstrained optimisatiproblems. To indicate that an
optimisation problem is unconstrained the filldONShould be set to 0. In this case
the fieldsCNAMLCONS UCONSCONSand OPTCONare not mandatory and will be
ignored.

5.8 How do | write my own objective and constraint functions?

The default implementation @PTJOB(optjob.m ) requires user-defined objective
and constraint functions to conform to well-defineterfaces. These interfaces are
design to be compatible with objective and constrhinctions used with the Matlab

Optimization Toolbox [4].

The full function signature for the user-definedgeaive function is:

[eval,gd,H,PARAMS,CONS,U_CONS,L_CONS]=objfun(VARS,P  ARAMS,
U_CONS,L_CONS,DATA)

Whereeval is the value of the objective function at the dasrariables/ARS The
objective function corresponding to this headermedarn the constraint values for the
design point,CONS and also alter the values of the parametBASRAMS and
constraint limitsU_CONSand L_CONS The argumenDATA contains the Matlab
variable contained in the option&dlSERDATAfield of the input structure. The
parametergd andH are relevant to the Matlab Optimization Toolbok §d are not
used by OptionsMatlab.

NOTE: The full function signature for user-defined olijee function has changed |n
OptionsMatlab version 0.7. In earlier versions thied optional input argument was
CONS the value of the constraints \8ARS However this feature was unreliable gnd
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has been removed. Please update objective fundihansise the earlier form of the
function signature.

The minimum function signature required dptjob.m is:

eval = objfun(VARS)

The full function signature for the user-definechstaint function is:

[CONS,ceq,GC,Gceq,PARAMS,U_CONS,L_CONS]=objcon(VARS ,PARAM
S,U_CONS,L_CONS,DATA)

Where CONSare the constraint values at the design varialhd®S The parameters
ceq, GCandGceq are relevant to the Matlab Optimization Toolbok §d are not
used by OptionsMatlab.

Again the minimum function signature requireddpgjob.m is a lot smaller:

CONS = objcon(VARS)
Alternative implementations oOPTJOBmay require different function signatures
from user-defined objective and constraint fundionPlease consult the
documentation of alternative implementations @PTJOB to confirm that your
objective and constraint functions conform to thguirements.
Note that the OptionsMatlab may ignore altered eslof the parameterBARAMS

and constraint limit¥) CONSandL_CONSiIf it is not appropriate to change them, for
example during a Design of Experiments.

5.9 How do | evaluate a combined objective and cons traint function?

The default implementation @PTJOB(optjob.m ) supports combined objective and
constraint functions. The combined function mushfoom to following objective
function signature;

[eval,gd,H,PARAMS,CONS,...] = objfun(VARS,...)

optjiob.m  will evaluate this function once when evaluatirigeative and constraint
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functions if the input field©PTFUNaNdOPTCONMNpecify the same function.

NOTE: The full function signature for user-defined olbjee function has changed |n
OptionsMatlab version 0.7. In earlier versions tihied optional input argument was
CONS the value of the constraints \&ARS However this feature was unreliable gnd
has been removed. Please update objective fundiansise the earlier form of the
function signature.

5.10 Can OptionsMatlab calculate function evaluatio  ns in parallel?

The standard OptionsMatlab job managgtjob.m , will evaluate the objective and
constraint  functions sequentially. However a patall job  manager,
optjobparallel2 , IS included in the OptionsMatlab distributionigtlsupersedes
the parallel job managesptjobparallel ). When your objective or constraint
function is expensive and you wish to use a searethod with inherent parallelism it
may be more considerably efficient to use the pelrjglb manager.

To run the demo of parallel objective function ewsions enter the following
commands:

>> input = createBeamStructParallel2
>> output = OptionsMatlab(input)

To make your objective and constraint functionsilalaée to optjobparallel2
different function signatures are required to thaescribed in section 5.8. To
evaluate the objective function the user must @efimo functions, the first which
initiates the calculation of the objective functicemd a second which determines
whether the calculation has completed, and if sorme the value of the objective
function.

In practice the first function could perform a GlGbGRAM job submission [5]
returning a handle which can be used to querytttesof the job, and an application
specific job ID. The second function will typicallyse the application specific job ID
to retrieve the output of the GRAM job and parse thbjective function (and
optionally the values of the constraints also). irteraction between these functions
is shown by Figure 23.
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Matlab environment

OptionsMatlab.m

OptionsMatlab.dll

optjobparallel2.m

/ LA
x10,” . x10

[
objfun_parse2.m

objfun.m

start job  retrieve results
Figure 23 Parallel objective function evaluationOptionsMatlab. Objfun.m is called ten times to
begin the objective function evaluation at ten fmilWhen these jobs are complete objfun_parse2.m is

called ten times to retrieve and parse the results

The user-defined objective function calleddpyjobparallel2 to perform the job
submission should conform to the following functjmmototype:

[RETRIEVALID] = objfun(VARS,...)

whereRETRIEVALID is an identifier used to determine the statushefjbb, and to
retrieve the results. The only mandatory input argot is VARS the other input
argumentsPARAMS U_CONSand L_CONSare all optional. This function must be
specified in th@OPTFUNfield of the OptionsMatlab input structure.

A second retrieval function is be defined to rettiva value of the objective function.
This function must have the same name as the joimission function appended with

" parse2' . For example when the objective function submisdioction is saved
in the file ‘objfun.m’ the retrieval function must be saved in the file
‘objfun_parse2.m'

The retrieval function should conform to the foliag function prototype:

[EVAL,PARAMS,CONS,U_CONS,L_CONS]=objfun_parse2(RE  TRIEVALID)

whereRETRIEVALID is the identifier returned by the job submissiandtion.EVAL
is the value of the objective function (or emptythe job has not completed). The
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other output argumenBARAMSCONSU_CONSandL_CONSare all optionalCONSs
the value of the constraints.

If the value of the constraints and the objectivaction are returned by the same
function the field OPTCONshould be set to equ&@PTFUN Alternatively if the
constraints are evaluated independently of thectibge function the user may also
define two separate functions to perform the jolbnsigsion and to parse the
constraints. In this case the functions indicatedhe field OPTCONshould conform
to the following function prototypes:

[JOBHANDLE] = objcon(VARS,PARAMS,U_CONS,L_CONS)
[CONS,PARAMS,U_CONS,L_CONS] = objcon_parse2(RETRI EVALID)

5.11 How do I tune the hyper-parameters for a stoch  astic process model
RSM?

Instead of searching the user’s probl@ptionsMatlab  can be used to tune the

hyper-parameters for a stochastic process model.R8M can be done by setting up

the OptionsMatlab  input structure as though you are going to builBSM (see

section 5.4) over an existing search history. Hyggameter tuning is specified by

setting the input structure fieUNEHYPERqual to 1.

When TUNEHYPERS set the hyper-parameters are tuned using taeclsanethod
specified by the input structure. The output streestwill return the structures
OBJHYPERand/orCONHYPERvhere appropriate) in addition to the final vabighe
concentrated likelihood function which is used las dbjective functio®BJ_CLF (or
CST_CLBP. Note that the user’s problem is not searched, ram optimum for the
user’s problem is returned.

To use the tuned hyper-parameters to build andlseaRSM, or to further tune the
hyper-parameters, the structu@BIHYPERAaNdCONHYPERan be passed as fields in
the OptionsMatlab  input structure. These structures contain the hppeameter
values, and upper and lower limits to these values.

The example below demonstrates hyper-parametemguitity performing the
following steps:

» training hyper-parameters over a data set
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* refining hyper-parameters with further training

» searching a RSM with user supplied hyper-parameters

» searching a RSM with starting at the previous “pestt'
This example uses tligeam problem

% Build initial dataset

inputl = createBeamStruct;

inputl.OMETHD = 2.8; %Design of Experiments
inputl.NITERS = 50; %Number of iterations
inputl.OLEVEL = 2;

inputl.MC_TYPE = 4; %Full factorial DoE

outputl = OptionsMatlab(inputl)

outputl =

VARS: [2x1 double]
OBJFUN: 3.6877e+003
CONS: [5x1 double]
OBJTRC: [1x1 struct]
CONSTRC: [1x1 struct]

% Tune hyper-parameters with SA

input2 = createBeamStruct;

input2.OLEVEL = 2;

input2.0BJMOD =4.1; %Tune Stochastic Process Model
%hyper-parameters over the objective

%function

input2.CONMOD =4.1; %Tune Stochastic Process Model
%hyper-parameters over the constraints
input2. TUNEHYPER = 1; %Tune the hyper-parameters
%(do not search the user's problem)
input2.OMETHD = 5; %Simulated Annealing

output2 = OptionsMatlab(input2, outputl)
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output2 =

OBJHYPER: [1x1 struct]
OBJ_CLF: 712.6938
CONHYPER: [1x1 struct]
CST_CLF: 824.2750

% Further train user-supplied hyper-parameters with
input3 = input2;

% Note that if OBJHYPER or CONHYPER are provided th
% hyper-parameters will be used in preference to th

% generated by OPTRSS

input3.OBJHYPER = output2.OBJHYPER,;
input3.CONHYPER = output2. CONHYPER,;
input3.OMETHD = 4;

output3 = OptionsMatlab(input3, outputl)

GA

ese

ose

output3 =

OBJHYPER: [1x1 struct]
OBJ_CLF: 842.2571
CONHYPER: [1x1 struct]
CST_CLF: 892.1499

% Search RSM using user-supplied hyper-parameters
input4 = inputl;

input4.0BJMOD = 4.1;

input4. CONMOD = 4.1;

input4.OBJHYPER = output3.0BJHYPER,;
input4.CONHYPER = output3.CONHYPER,;
input4.OMETHD = 5;

input4.NITERS = 5000;

input4d.OLEVEL = 2;

output4 = OptionsMatlab(input4, outputl)
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output4 =

VARS: [2x1 double]
OBJFUN: 2.1522e+003
CONS: [5x1 double]
OBJHYPER: [1x1 struct]
CONHYPER: [1x1 struct]

% Search RSM using user-supplied hyper-parameters a t the
% previous best point

input5 = input4;

input5.OMETHD = 4;

input5.NITERS = 50;

% Reset starting point to previous best

input5.VARS = output4.VARS';

output5 = OptionsMatlab(input5, outputl)

outputb =

VARS: [2x1 double]
OBJFUN: 2.4426e+003
CONS: [5x1 double]
OBJHYPER: [1x1 struct]
CONHYPER: [1x1 struct]

For more details on the stochastic process modelrgmper-parameter tuning see
chapter 10 of the Options manual [1].

5.12 Can | checkpoint the progress of an optimisati  on?

During a lengthy optimisation it can be reassuriog checkpoint its progress.
OptionsMatlab can write the current objective fumttand constraint search histories
to file following a call toOPTJOB Checkpointing can be switched on by setting the
checkpoint interval in the fielHKPT_INTV of the input structureQHKPT_INTV
should be a multiple d1AXJOB%
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When checkpointing is used the search historiesther objective function and
constraint search histories are written to filee Tite format used is the binary Matlab
.MAT format. The file name can be specified with théamal field CHKPT_FILE of
the input structure.

5.13 How do | pass Matlab variables to my objective  function?

OptionsMatlab supports the optional input structiieéd USERDATAThis field can
be used to pass any Matlab variable (includingcttnes or cell arrays) to the user-
defined objective and constraint functions. To tise information contained within
USERDATAINn your objective function you must you must adcep sixth input
argumentDATA (see section 5.8). To access the variable fromparate constraint
function the constraint function must accept afiftput argumenDATA

Please note that tHe¢SERDATAield is supported by the@PTJOBfunctions supplied
with OptionsMatlab ¢ptjob.m andoptjobparallel.m ), however theJSERDATA
field may not be supported by oldePTJOBfunctions.

5.14 How do | define discrete design variables?

By default design variables in OptionsMatlab aretiguous between upper and
lower limits; however it is possible to specify chiste values for one or more of the
design variables. To use discrete variables tHdsfieDVRSand DVARSof the input
structure must be configured appropriately.

The field NDVRSmust be set equal to the maximum number of discdetsign
variable values for any single design variablethim example below one of the design
variables has three possible discrete states, whéssecond is contiguous; therefore
we setNDVRSequal to 3.

The field DVARSIis a matrix of sizeNVRSby NDVRSwhich contains the discrete
design variable values for each of the design bbeta Therefore in the example
below the three possible discrete states of tisediesign variable are place in the first
row of DVARS Because the second design variable is contigabugalues of the
second row are set equal INULL If a design variable has fewer possible discrete
values fewer thaNDVRS$ the remaining elements DiVARSshould be set tDNULL
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The example below illustrates the use of discregsigh variable
Banana problem

>> 9% Create an unconstrained input structure

>> input = createbananastruct;

>> 9% Set the maximum number of discrete variable state
(between all design variables)

>> input.NDVRS = 3;

>> 9% Resize the matrix of discrete design variable val
to DNULL for contiguous design variables)

>> input.DVARS = ones(input.NVRS, input. NDVRS) * in
>> 9% Set discrete values for the first design variable
second design variable will remain contiguous)

>> input. DVARS(1,)) = [0, 0.5, 1]

>> disp(input.DVARS)

values with the

ues (set

put.DNULL,;
(the

0 0.5000 1.0000
-777.0000 -777.0000 -777.0000

>> % Run the optimisation

>> results = OptionsMatlab(input);

>> % Plot the output of the optimisation to demonstrat
discrete variables

>> optimisationTrace(results, input, 1, 1, [-37.5,
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Figure 24 Example of a problem with one discretéaide and one contiguous variable

5.15 How do | restart a Genetic Algorithm?

The structureGA_VARS which is contained in th®ptionsMatlab output and
checkpoint structures when a Genetic Algorithm seduOMETHD= 4), allows the
user to restart a Genetic Algorithm from its prescstate. The following example
demonstrates a Genetic Algorithm restarted fronotitput of an earlier calculation:

>> %Run a Genetic Algorithm

>> inputl = createBeamStruct;

>> inputl.NITERS = 500;

>> inputl.OMETHD = 4;

>> inputl.GA_NPOP = 50;

>> outputl = OptionsMatlab(inputl)
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outputl =

VARS: [2x1 double]
OBJFUN: 2.6884e+003
CONS: [5x1 double]
OBJTRC: [1x1 struct]
CONSTRC: [1x1 struct]
GA_VARS: [1x1 struct]

>> %Restart a Genetic Algorithm

>> input2 = inputl;

>> input2.GA_VARS = outputl.GA_VARS;
>> input2.NITERS = 50;

>> output2 = OptionsMatlab(input2)

output2 =

VARS: [2x1 double]
OBJFUN: 2.6884e+003
CONS: [5x1 double]
OBJTRC: [1x1 struct]
CONSTRC: [1x1 struct]
GA_VARS: [1x1 struct]

>> %Plot the history of the two optimisations
>> optimisationHistory({outputl, output2}, {'First

'Second run'})
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Figure 25 A Genetic Algorithm restarted followin@Giterations is already adapted to the objective

function surface

5.16 What is the meaning of the optional control pa  rameters?

Table 1 contains the meaning and default valuehefdptional control parameters.
Since the meaning of the control parameters majferdiflepending upon the
optimisation method in use the control parametegsoaganised with respect to the
optimisation method.

Optimisation Control Meaning Default
Method Parameter value
Response FUSION_TYP Flag to indicate RSM fusion type 0
Surface (differences=0, ratios=1)
Modelling
CST_BAD_PT The outer limit of acceptable constraint None
function values in RSMs
OBJ_BAD_PT The outer limit of acceptable objective None
function values in RSMs
RSM_EIF_ W  The weighting between exploitation and None

exploration used when applying
expected improvement methods in RSM

RSM_NCSKIP  Number of radial basis functions 0
skipped for constraints
RSM_NSKIP  Number of radial basis functions 0
skipped for objective function
RSM_NULL T Percentage worsening required in RBF 10%
regression to halt fitting
1.1 OPTIVAR OPT_TOL The accuracy with which solutions are 0
routine ADRANS found
OPT_CTOL The accuracy with which constraints 0.001

must be met to be considered satisfied
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OPT_STEP The step size used 0.02
OVR_MAND Turns on mandatory design constraints 0 (off)
OVR_PENAL  Selects the kind of penalty function used 1
by a number of the OPTIVAR routines:
1 = one pass external
2 = Fiacco-McCormick
3 = Powell
4 = Schuldt
OVR_SEED Sets the seed for random number 128
seqguences
1.2 OPTIVAR OPT_TOL The accuracy with which solutions are 0
routine DAVID found
OPT_CTOL The accuracy with which constraints 0.001
must be met to be considered satisfied
OPT_STEP The step size used 1.00E-06
OVR_MAND Turns on mandatory design constraints 0 (off)
OVR_PENAL  Selects the kind of penalty function used 1
by a number of the OPTIVAR routines:
1 = one pass external
2 = Fiacco-McCormick
3 = Powell
4 = Schuldt
OVR_CONV Sets the convergence criterion 1D-4/1D-5
1.3 OPTIVAR OPT _TOL The accuracy with which solutions are 0
routine FLETCH found
OPT_CTOL The accuracy with which constraints 0.001
must be met to be considered satisfied
OPT_STEP The step size used 1.00E-06
OVR_MAND Turns on mandatory design constraints 0 (off)
OVR_PENAL  Selects the kind of penalty function used 1
by a number of the OPTIVAR routines:
1 = one pass external
2 = Fiacco-McCormick
3 = Powell
4 = Schuldt
OVR_CONV Sets the convergence criterion 1D-4/1D-5
1.4 OPTIVAR OPT_TOL The accuracy with which solutions are 0
routine JO found
OPT_CTOL The accuracy with which constraints 1.00E-03
must be met to be considered satisfied
OPT_STEP The step size used 1.00E-06
OVR_MAND Turns on mandatory design constraints 0 (off)
OVR_PENAL  Selects the kind of penalty function used 1
by a number of the OPTIVAR routines:
1 = one pass external
2 = Fiacco-McCormick
3 = Powell
4 = Schuldt
OVR_CONV Sets the convergence criterion 1D-4/1D-5
1.5 OPTIVAR OPT_TOL The accuracy with which solutions are 0
routine PDS found
OPT_CTOL The accuracy with which constraints 1.00E-03
must be met to be considered satisfied
OPT_STEP The step size used 0.1
OVR_MAND Turns on mandatory design constraints 0 (off)
OVR_PENAL  Selects the kind of penalty function used 1

by a number of the OPTIVAR routines:
1 = one pass external
2 = Fiacco-McCormick
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3 = Powell
4 = Schuldt

OVR_CONV Sets the convergence criterion 1D-4/1D-5
1.6 OPTIVAR OPT_TOL The accuracy with which solutions are 0
routine SEEK found
OPT_CTOL The accuracy with which constraints 1.00E-03
must be met to be considered satisfied
OPT_STEP The step size used 0.01
OVR_MAND Turns on mandatory design constraints 0 (off)
OVR_PENAL  Selects the kind of penalty function used 1
by a number of the OPTIVAR routines:
1 = one pass external
2 = Fiacco-McCormick
3 = Powell
4 = Schuldt
OVR_STOP sets the minimum step length stopping 0.01
criterion
1.7 OPTIVAR OPT_TOL The accuracy with which solutions are 0
routine SIMPLX found
OPT_CTOL The accuracy with which constraints 1.00E-03
must be met to be considered satisfied
OPT_STEP The step size used 0.1
OVR_MAND Turns on mandatory design constraints 0 (off)
OVR_PENAL  Selects the kind of penalty function used 1
by a number of the OPTIVAR routines:
1 = one pass external
2 = Fiacco-McCormick
3 = Powell
4 = Schuldt
OVR_CONV Sets the convergence criterion 1D-4/1D-5
1.8 OPTIVAR OPT_TOL The accuracy with which solutions are 0
routine APPROX found
OPT_CTOL The accuracy with which constraints 1.00E-03
must be met to be considered satisfied
OPT_STEP The step size used 0.001
OVR_MAND Turns on mandatory design constraints 0 (off)
OVR_PENAL  Selects the kind of penalty function used 1
by a number of the OPTIVAR routines:
1 = one pass external
2 = Fiacco-McCormick
3 = Powell
4 = Schuldt
OVR_STEP Sets the fraction of range limiting step 0.1
lengths
OVR_SIMP Sets the maximum number of simplex 46
iterations
1.9 OPTIVAR OPT_TOL The accuracy with which solutions are 0
routine found
RANDOM
OPT_CTOL The accuracy with which constraints 1.00E-03
must be met to be considered satisfied
OPT_STEP The step size used 0.02
OVR_MAND Turns on mandatory design constraints 0 (off)
OVR_PENAL  Selects the kind of penalty function used 1

by a number of the OPTIVAR routines:
1 = one pass external
2 = Fiacco-McCormick
3 = Powell
4 = Schuldt
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OVR_NPTS Sets the number of points retained per 5
iteration
OVR_SHRK Sets the shrinkage factor 4
2.3 NAG routine  NAG_BIGBND Sets the size of non-existent upper 1.00E+10
EO4UCF bounds.
NAG_ETA Sets the accuracy of the linear 0.5
minimizations
NAG_RHO Used in the definition of the augmented 1
Lagrangian function
OPT_TOL The accuracy with which solutions are 0
found
OPT_CTOL The accuracy with which constraints 1.00E-03
must be met to be considered satisfied
OPT_STEP The step size used 5.0"
MC_MAND Turns on mandatory design constraints 0 (off)
2.4 bit climbing BC_NBIN The number of bits used per variable in 12
binary discretisation
BC PENAL Set the penalty function control 1.00E+20
parameter, r, with values less than one
invoking the modified Fiacco and
McCormick function (OPTIM2)
otherwise the one pass method is used
(OPTIM1)
BC_NRANDM  The number of random numbers drawn 0
and discarded before starting the
optimiser
OPT _TOL The accuracy with which solutions are 0
found
OPT_CTOL The accuracy with which constraints 1.00E-03
must be met to be considered satisfied
OPT_STEP The step size used 1.00E-05
MC_MAND Turns on mandatory design constraints 0 (off)
2.5 dynamic hill DHC_INITSZ  Sets the non-dimensional size of the 0.5
climbing initial steps in the hill climbing search
DHC_THRESH The hill climbing searches proceed with 0.01
reducing step sizes until they are less
than the value set by this parameter
DHC_PENAL  Sets the penalty function control 1.00E+20
parameter, r, with values less than one
invoking the modified Fiacco and
McCormick function (OPTIMZ2)
otherwise the one pass method is used
(OPTIM1)
DHC_NRANDM The number of random numbers drawn 0
and discarded before starting the
optimiser
OPT_TOL The accuracy with which solutions are 0
found
OPT_CTOL The accuracy with which constraints 1.00E-03
must be met to be considered satisfied
OPT_STEP The step size used 1.00E-05
MC_MAND Turns on mandatory design constraints 0 (off)
2.6 population PL_NBIN The number of bits used per variable in 12
based binary discretisation
incremental
learning
PL_NPOP The number of random guesses 100
PL_PENAL Sets the penalty function control 1.00E+20

parameter, r, with values less than one
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PL_LRATE

PL_PMUTNT

PL_NRANDM

OPT_TOL
OPT_CTOL

OPT_STEP
MC_MAND

invoking the modified Fiacco and
McCormick function (OPTIMZ2)
otherwise the one pass method is used
(OPTIM1)

The learning rate controls how rapidly
the probability vector changes towards
the successful solutions at the end of
each generation

mutation is applied to the probability
vector randomly at the end of each
generation with this probability per
element

The number of random numbers drawn
and discarded before starting the
optimiser

The accuracy with which solutions are
found

The accuracy with which constraints
must be met to be considered satisfied
The step size used

Turns on mandatory design constraints

0.05

0.02

0
1.00E-03

1.00E-05
0 (off)

2.7 numerical
recipes routines

OPT_TOL
OPT_CTOL

OPT_STEP
MC_MAND
MC_TYPE

MC_PENAL

The accuracy with which solutions are
found
The accuracy with which constraints
must be met to be considered satisfied
The step size used
Turns on mandatory design constraints
Selects the kind of optimizer used by the
numerical recipes routines:

1 = Powell

2 = Polak-Ribiere

3 = Fletcher-Reeves

4 = Broyden-Fletcher
Selects the kind of penalty function used
by the numerical recipes routines:

1 = one pass external

2 = Fiacco-McCormick

0
1.00E-03
1.00E-05

0 (off)
1

2.8 design of
experiment
based routines

DOE_NRANDM

MC_TYPE

MC_MAND

DoE sequence random number seed

DoE search methods:

1 = Random

2 = Lptau

3 = Central composite + Lptau

4 = Full factorial + Lptau

5 = Latin hypercubes

6 = Cell-based latin hypercubes

7 = User supplied candidate points
Turns on mandatory design constraints

0 (off)

2.9 design of
experiment
based routines
(without function
calls)

DOE_NRANDM

MC_MAND

Six Design of Experiment search
methods

Turns on mandatory design constraints

0 (off)

3.11 Schwefel
library Fibonacci
search

OPT_TOL

OPT_CTOL

The accuracy with which solutions are
found

The accuracy with which constraints
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OPT_STEP
SC_PENAL

must be met to be considered satisfied
The step size used
Selects the kind of penalty function used
by unconstrained search methods in the
Schwefel library routines:

1 = one pass external

2 = Fiacco-McCormick

1.00E-05
1

3.12 Schwefel
library Golden
section search

OPT_TOL

OPT_CTOL

OPT_STEP
SC_PENAL

The accuracy with which solutions are
found

The accuracy with which constraints
must be met to be considered satisfied
The step size used
Selects the kind of penalty function used
by unconstrained search methods in the
Schwefel library routines:

1 = one pass external

2 = Fiacco-McCormick

1.00E-03

1.00E-05
1

3.13 Schwefel

library Lagrange

interval search

OPT_TOL

OPT_CTOL

OPT_STEP
SC_PENAL

The accuracy with which solutions are
found

The accuracy with which constraints
must be met to be considered satisfied
The step size used
Selects the kind of penalty function used
by unconstrained search methods in the
Schwefel library routines:

1 = one pass external

2 = Fiacco-McCormick

1.00E-03

1.00E-05
1

3.2 Schwefel
library Hooke
and Jeeves
search

OPT_TOL

OPT_CTOL

OPT_STEP
SC_PENAL

The accuracy with which solutions are
found

The accuracy with which constraints
must be met to be considered satisfied
The step size used
Selects the kind of penalty function used
by unconstrained search methods in the
Schwefel library routines:

1 = one pass external

2 = Fiacco-McCormick

1.00E-03

1.00E-05
1

3.3 Schwefel
library
Rosenbrock
search

OPT_TOL

OPT_CTOL
OPT_STEP

The accuracy with which solutions are
found

The accuracy with which constraints
must be met to be considered satisfied
The step size used

1.00E-03

1.00E-05

3.41 Schwefel
library DSCG
search

OPT_TOL

OPT_CTOL

OPT_STEP
SC_PENAL

The accuracy with which solutions are
found

The accuracy with which constraints
must be met to be considered satisfied
The step size used
Selects the kind of penalty function used
by unconstrained search methods in the
Schwefel library routines:

1 = one pass external

2 = Fiacco-McCormick

1.00E-03

1.00E-03

1.00E-05
1
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3.42 Schwefel
library DSCP
search

OPT_TOL

OPT_CTOL

OPT_STEP
SC_PENAL

The accuracy with which solutions are
found

The accuracy with which constraints
must be met to be considered satisfied
The step size used
Selects the kind of penalty function used
by unconstrained search methods in the
Schwefel library routines:

1 = one pass external

2 = Fiacco-McCormick

1.00E-03

1.00E-05
1

3.5 Schwefel
library Powell
search

OPT_TOL
OPT_CTOL

OPT_STEP
SC_PENAL

SC_TYPE

The accuracy with which solutions are
found

The accuracy with which constraints
must be met to be considered satisfied
The step size used
selects the kind of penalty function used
by unconstrained search methods in the
Schwefel library routines :

1 = one pass external

2 = Fiacco-McCormick
Selects the default convergence
criterion or an alternate criterion:

1 = default convergence

2 = alternate convergence

1.00E-03

1.00E-05
1

3.6 Schwefel
library DFPS
search

OPT_TOL
OPT_CTOL

OPT_STEP
SC_PENAL

SC_CONV

The accuracy with which solutions are
found

The accuracy with which constraints
must be met to be considered satisfied
The step size used
Selects the kind of penalty function used
by unconstrained search methods in the
Schwefel library routines:

1 = one pass external

2 = Fiacco-McCormick
Defines the expected solution value of
the objective function at the optimum,
default zero (50% improvement)

1.00E-03

1.00E-05
1

3.7 Schwefel

library Simplex

search

OPT_TOL
OPT_CTOL

OPT_STEP
SC_PENAL

SC_NITERS

The accuracy with which solutions are
found

The accuracy with which constraints
must be met to be considered satisfied
The step size used
Selects the kind of penalty function used
by unconstrained search methods in the
Schwefel library routines:

1 = one pass external

2 = Fiacco-McCormick
The number of iterations before
convergence testing is applied, default
zero (the total number of function calls
to be used divided by 25 times the
number of design variables)

1.00E-03

1.00E-03

1.00E-05
1

3.8 Schwefel

library Complex

search

OPT_TOL

The accuracy with which solutions are
found
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OPT_CTOL The accuracy with which constraints 1.00E-03
must be met to be considered satisfied
OPT_STEP The step size used 1.00E-05
SC_PENAL Selects the kind of penalty function used 1
by unconstrained search methods in the
Schwefel library routines:
1 = one pass external
2 = Fiacco-McCormick
3.91 Schwefel SC LS How severe convergence testing is, with 2
library two- bigger values requiring the objective
membered function to remain essentially stationary
evolution for longer before convergence is
strategy (EVOL) considered complete
SC_NRANDM  The number of random numbers drawn 0
and discarded before starting the
optimiser
OPT_TOL The accuracy with which solutions are 1.00E-03
found
OPT_CTOL The accuracy with which constraints 1.00E-03
must be met to be considered satisfied
OPT_STEP The step size used 1.00E-05
SC LR Controls step size management, with 1
bigger values giving a slower but more
accurate search
SC_SN Controls step size adjustment, which 0.85
can be kept constant using a value of
unity
3.92 Schwefel SC_IELTER The number of parents in a generation 10
library multi-
membered
evolution
strategy (KORR)
SC_NACHKO The number of descendants of a 100
generation
SC_NS The number of different step size N
parameters
SC_DELS The global random step sizes 1/sqtr(2N)
SC_DELI The local random step sizes 1/sqtr(2N)/
sqtr(NS)
SC_DELP The correlation ellipsoid angles 5x0.
01745 =5°
SC_BKORRL  Switches on the rotation of the 1
correlation ellipsoid if non-zero
SC_KONVKR  Number of generations used when 1
applying convergence tests
SC_NRANDM  The number of random numbers drawn 0
and discarded before starting the
optimiser
OPT _TOL The accuracy with which solutions are 0
found
OPT_CTOL The accuracy with which constraints 1.00E-03
must be met to be considered satisfied
OPT_STEP The step size used 1.00E-05
SC_TYPE Controls whether the "comma" or "plus” 1
version of the code is used:
1 =comma
2 =plus
SC_IREKOM  Controls the recombination type (n.b., 333

each digit in this variable must lie
between 1 and 5)
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4 genetic
algorithm search

GA_NBIN

GA_NPOP
GA_PENAL

GA_PBEST

GA_PCROSS

GA_PINVRT

GA_PMUTNT

GA_PRPTNL

GA_ALPHA

GA_DMIN

GA_DMAX

GA_NCLUST

GA_NBREED

GA_PSEED

GA_NRANDM

The number of bits used per variable in
binary discretisation

Population size each generation

Set the penalty function control
parameter, r, with values less than one
invoking the modified Fiacco and
McCormick function (OPTIM2)
otherwise the one pass method is used
(OPTIM1)

The proportion of the solutions that are
used to form the parents of the next
generation

The proportion of the solutions in the
population that are crossed to form new
solutions

The proportion of the solutions in the
population that have their ordering
codes inverted to form new solutions
Mutation is allowed at a level set by this
parameter, i.e., this fraction of the total
number of binary digits are reversed at
each pass (n.b. greater than 0.5 results
in randomisation)

If .TRUE. the make-up of the following
generation is then biased in favour of
the most successful according to their
objective function values, otherwise
survival is proportional to ranking but
scaled to prevent dominance and
stagnation

The cluster penalising function. Small
values giving less severe penalties than
those nearer one, and a value less than
zero turning the mechanism off

The minimum distance between cluster
centroids

The furthest distance a new solution can
be from an existing cluster centroid
without a new cluster being formed

The initial number of clusters, either in
absolute terms or, if itis <1. 0, as a
fraction of the population size

Breeding is restricted to be between
members of the same cluster if there are
at least this many members in the
cluster

Seeding of the initial, randomly
generated members of the population is
allowed at a level set by this parameter
(0 =random, 1.0 clones of initial point)
The number of random numbers drawn
and discarded before starting the
optimiser

12

50
1.00E+20

0.8

0.8

0.2

0.005

1 (.TRUE.)

0.2

0.05

0.2

0.1

0.1

5 simulated
annealing

SA_NBIN
SA_PTEMP

SA_PWIDTH

The number of bits used per variable in
binary discretisation

The power to which the number of
iterations must be raised to calculate the
number of annealing temperatures

The range of temperatures in the
annealing schedule, with large values
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SA_PCOLD

SA_SCHED

SA_PENAL

SA_PMUTNT

SA_NRANDM

giving a wide range of temperatures,
which carries the risk of rapid freezing
but gives a wider ranging search

The bottom temperature in the
annealing schedule, with values over
two giving lower temperatures and thus
more accurate results at the expense of
perhaps missing the global optimum

If this parameter exists and contains an
array of variables it is taken to be a
cooling schedule which is to be used in
place of the preceding three parameters
Sets the penalty function control
parameter, r, with values less than one
invoking the modified Fiacco and
McCormick function (OPTIM2)
otherwise the one pass method is used
(OPTIM1)

Mutation is allowed at a level set by this
parameter, i.e., this fraction of the total
number of binary digits are reversed at
each evaluation (setting SA_PMUTNT
negative causes the mutations to be
made to the actual variables rather than
the binary digits)

The number of random numbers drawn
and discarded before starting the
optimiser

1.00E+20

0.1

6 evolutionary
programming

EP_NBIN

EP_NPOP
EP_PENAL

EP_IMUTNT

EP_TOURN

EP_NRANDM

The number of bits used per variable in
binary discretisation

Population size each generation

Set the penalty function control
parameter, r, with values less than one
invoking the modified Fiacco and
McCormick function (OPTIMZ2)
otherwise the one pass method is used
(OPTIM1)

Mutation is controlled so that the best
members are mutated least and the
worst, most, this parameter governs the
order of the mutation with ranking, a
value of one thus gives a linear change,
two a quadratic one and so on (only
positive values being allowed), default
two;

The number of members in the ranking
tournament, either in absolute terms or,
if it is <1. 0, as a fraction of the
population size

The number of random numbers drawn
and discarded before starting the
optimiser

12

50
1.00E+20

0.5

7 evolution
strategy

ES_NPPOP
ES_NCPOP
ES_PENAL

The population size

The parent populations size, a fraction
of the total population size

Sets the penalty function control
parameter, r, with values less than one
invoking the modified Fiacco and
McCormick function (OPTIM2)
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otherwise the one pass method is used
(OPTIM1)
ES_DELSIG Used to set the standard deviation of a 0.1
random number whose exponential is
then used to scale the previous mutation
control parameter.
ES _UCHILD When selecting the next generation all 0 (false)
the children may be used or a mixture of
the best children and parents used; if
this parameter is non-zero it is taken to
be .TRUE. and the children are used in
preference to parents.
ES VDSCRT  Controls the crossover type between 1 (true)
parents for design variables. Either
discrete crossover (.TRUE.) or
intermediate crossover (.FALSE.).
ES MDSCRT Controls the crossover type between 0 (false)
parents for mutation control parameters.
Either discrete crossover (.TRUE.) or
intermediate crossover (.FALSE.).
ES_NRANDM  The number of random numbers drawn 0
and discarded before starting the
optimiser

Table 1 OptionsMatlab optional control parameters

5.17 How do | deal with failed calculations when co nstructing a
response surface model?

Failures may occur when calculating the value oblajective function during a direct
search. These failures may be stochastic (perha@gadthe unexpected failure of a
Grid resource), or they may be indicative of a peoiatic area of the parameter space
(perhaps representing an unfeasible geometry). eTlaee a couple of possible
strategies to ensure that failed calculations areectly handled byptionsMatlab

when constructing and searching a Response Suvfadel.

The optional control paramet@BJ_BAD_PTmay be used to define an outer bound
for acceptable values of an objective function. WidptionsMatlab ~ encounters
objective function values exceedingBJ_BAD_PT during the construction of a
Response Surface Model these values will be ignof@dring minimisation
OptionsMatlab will ignore any objective function values greatehan
OBJ_BAD_PT whereas during maximisation values less tb@d_BAD_PTwill be
ignored.

It is possible to us®BJ_BAD_PTto filter stochastic failures that occur duringe th
evaluation of the objective function. For a miniatien problem the Matlab function
defining the user's objective function should netarvery large value for the objective
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function (which exceeds expected values) uponr&ilWhen building and searching
a Response Surface Model of the objective functima OptionsMatlab input
structure should contain the fieltBJ_BAD_PTwith a value less than that of the failed
calculations. The bad points will therefore notushce the Response Surface Model
of the objective function.

When a failed calculation represents a problenat@ of the parameter space it is
sometimes desirable to steer a design search awaythese areas. To do this it is
possible to define an extra constraint to indida&el points. In this case when a
calculation fails this constraint should be setindicate an invalid point. As the
design search proceeds the constraint may steeophmiser away from these
problematic areas. When searching over a Respam$ac& Model this strategy may
be used in conjunction withBJ_BAD_PT

5.18 How do | build and evaluate a RSM faster?

There are a number of ways to make OptionsMatlabfaster when building and
evaluating a Response Surface Model.

If additional output information is requested fr@ptionsMatlab QLEVEL>0 further
calculations may be performed. This may signifibamicrease the time taken to
build and evaluate a RSM, in particular for largeadets. Therefore to perform faster
searches of a RSM it may be advantageous t@KEVEL=0in the OptionsMatlab
input structure.

When performing multiple searches of a Stochasticéss Model (SPM), i.e. when
OBJMOr CONMOPBqual to 4.1, 4.2 or 4.3, it is possible to aveiduilding the SPM
by passing the hyper-parameters for the modelanrthut structure. When a SPM is
first built and searched (or when the hyper-parameatre explicitly tuned, see section
5.11) the hyper-parameters are returned in theubwupucture fieldsOBJHYPER
(and/orCONHYPER By adding these fields to the OptionsMatlab ingtaucture when
subsequently searching the SPM the hyper-parameitreot be rebuilt. However,
please note that it is important to rebuild the dryparameters following changes to
dataset otherwise they may become ill-defined taryataset.
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6 OptionsMatlab Examples

6.1 DoE Direct search

Perform a DoE over the problem defined by the ingtuicture, and then plot the
results of the DoE. The results of this DoE aredut® build RSM in many of the
subsequent examples.

inputl = createBeamStruct;

inputl. OMETHD = 2.8; %Design of Experiments
inputl.NITERS = 50; %Number of iterations
inputl.OLEVEL = 2;

inputl.MC_TYPE = 4; %Full factorial DoE

outputl = OptionsMatlab(inputl)

outputl =

VARS: [2x1 double]
OBJFUN: 3.6877e+003
CONS: [5x1 double]
OBJTRC: [1x1 struct]
CONSTRC: [1x1 struct]

%Print a digest of the optimisation and determine i f
%optimum returned is valid

isvalid = optimisationDigest(outputl, inputl)
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Optimisation of the problem defined by "beamobjfun
"beamobjcon”

Optimisation method: 2.8

Status after 50 evaluations is :-

Trial vector

Lwr Bound Vector Uppr Bound Variabl

5.00000000 < 24.68750000 > 50.00000000 BREADT
2.00000000 < 14.93750000 > 25.00000000 HEIGHT

No of V. Boundary Violations = 0

Objective Function (min.) = 3687.6953 AREA

Constraints vector

Lwr Bound Vector Uppr Bound Variabl

< 81.69200669 > 200.00000000 SIGMA-

< 2.03379058 > 100.00000000 TAU

< 3.78699170 > 5.00000000 DEFLN

< 6.05063291 > 10.00000000 H-ON-B
5000.00000000 < 290554.98816615 F-CRIT

No of Constraint Violations = 0

and

e (units)

e (units)

%PIlot the results of the optimisation
plotOptionsSurfaces(outputl, inputl)
optimisationTerrain(outputl, inputl)

optimisationTrace(outputl, inputl)
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optimisationHistory({output1}, { 'Design of Experiments' ]

isvalid =

6.2 RSM returning update points

Build and search a Response Surface Model usingethdts of example 6.1. This
search will return up to 10 update points wheredqbality of the DoE would be best
improved.

input2 = createBeamStruct;

input2.OMETHD = 4; %Genetic Algorithm

input2.NITERS = 50;

input2.OLEVEL = 2;

input2.0BJMOD = 3.3; %First order polynomial regression
%model plus squares

input2.CONMOD = 3.3; %First order polynomial regression
%model plus squares

input2.NUMUPDATE = 10; %10 update points

output2 = OptionsMatlab(input2, outputl)

output2 =

VARS: [2x1 double]
OBJFUN: 2.5149e+003
CONS: [5x1 double]
DOE_TRACE: [1x1 struct]

6.3 DoE evaluating candidate points

Perform a candidate point DoE search to evaluageugtdate points suggested by
example 6.2.

input3 = createBeamStruct;
input3.OLEVEL = 2;
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input3.OMETHD = 2.8; %Design of Experiments
%Specify update points as candidate
%points
input3.DOE_TRACE = output2.DOE_TRACE;
%Set the number of iterations
input3.NITERS = output2.DOE_TRACE.NCALLS+1;

input3.MC_TYPE =7, %Specify that the DOE uses
%candidate points
%Note that the meaning of MC_TYPE
%has changed sinc e version 0.6.5

output3 = OptionsMatlab(input3)

output3 =

VARS: [2x1 double]
OBJFUN: 6000

CONS: [5x1 double]
OBJTRC: [1x1 struct]
CONSTRC: [1x1 struct]

%Concatenate the output structures from examples 6. 1land 6.3

output3_cat = optimisationAppendDataPoints(outputl, output3)

output3_cat =

VARS: [2x1 double]
OBJFUN: 3.6877e+003
CONS: [5x1 double]
OBJTRC: [1x1 struct]
CONSTRC: [1x1 struct]

6.4 RSM using candidate points

Build and evaluate an RSM at specified points. Tiélity function
optimisationSampleRSM can assist you to do this (see example 6.9).

input4 = createBeamStruct;
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input4d.OLEVEL = 2;
input4. OMETHD = 2.8; %Design of Experiments
%Specify the candidat e points to
%be evaluated
input4.DOE_TRACE.NCALLS = outputl.OBJTRC.NCALLS;
input4.DOE_TRACE.VARS = outputl.OBJTRC.VARS;
input4d.NITERS = input4.DOE_TRACE.NCALLS +1;

input4.MC_TYPE =7, %DoE using candidate points
input4.0BJMOD = 3.3; %First order polynomial

%regression model plu S squares
input4.CONMOD = 3.3; %/First order polynomial

%regression model plu S squares

output4 = OptionsMatlab(input4, output3_cat)

output4 =

VARS: [2x1 double]
OBJFUN: 2.6319e+003
CONS: [5x1 double]

RSMTRC: [1x1 struct]

%Plot the RSM
fig = optimisationTerrain(output4, input4, 2);

optimisationTrace(output4, input4, 2, fig);

6.5 Direct search with checkpointing

Checkpoint the search history of a direct searchrye800 generations in a file
‘'optimTest5.mat'.

input5 = createBeamStruct;
input5.OLEVEL = 2;
input5.OMETHD = 2.8;

input5.NITERS = 500; %500 iterations

input5.MAXJOBS = 100; %Submit jobs in groups of 100
input5.CHKPT_INTV = 300; %Checkpoint every 300 generations
input5.CHKPT_FILE = 'optimTest5.mat’; %Checkpoint file name
delete( 'optimTest5.mat' ) %6Remove existing checkpoint file
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output5 = OptionsMatlab(input5)

output5 =

VARS: [2x1 double]
OBJFUN: 2.9455e+003
CONS: [5x1 double]
OBJTRC: [1x1 struct]
CONSTRC: [1x1 struct]

load( ‘'optimTest5.mat' )  %Load checkpoint file

whos CHKPOINT

Name Size Bytes Cla ss

CHKPOINT 1x1 49256 str uct array

Grand total is 6012 elements using 49256 bytes

6.6 Parallel job submission with userdata

This example uses the Geodise compute toolboxhgg]fgrovides client functionality
to Globus Grid resources that may be used to etak@nputational jobs. The jobs
will be submitted to the Globus resource to runctorently. When the jobs are
complete the results will be retrieved and pargeddtermine the objective function
values. Note that you must have the Geodise compuaieox installed, and have
valid credentials with permissions to submit jobb$hte specified compute resource.

%Define the Globus server to which to submit the jo bs

GLOBUSSERVER =escience-dept2.sesnet.soton.ac.uk' ;

gd_createproxy

Paused: Press any key...

input6 = createBeamStructParallel;
input6.OLEVEL = 0;
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input6.MAXJOBS = 10; %The number of the jobs to be run

%concurrently
input6.NITERS = 20; %The number of iterations
%USERDATA field is used to pass the
%host name upon which to ru n the
%objective function to the Matlab

%function
input6.USERDATA.hosthame = GLOBUSSERVER;
outputé = OptionsMatlab(input6)

[.]

ohandle =

https://escience-

dept2.sesnet.soton.ac.uk:30040/10303/1134728028/

uniquedir =

20051216T101347_57891/

EVAL =

3.9666e+003

output6 =

VARS: [2x1 double]
OBJFUN: 3.9666e+003
CONS: [5x1 double]
OBJTRC: [1x1 struct]
CONSTRC: [1x1 struct]
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6.7 Hyper-parameter tuning

This example will tune hyper-parameters for a Sastic Process Model over the
results of the DoE produced in example 6.1. Theehyarameters will be tuned using
the optimisation algorithm specified WMETHDThe tuned hyper-parameters will be
returned in fields of the output struct@8JHYPERor CONHYPERNhat be supplied in
the input structure when building a Stochastic BssdModel RSM.

input? = createBeamStruct;

input7.OLEVEL = 0;

input7.OBJMOD =4.1; %Tune stochastic Process Model
%Dhyper-parameters over the
%o0bjective function

input7.CONMOD = 4.1; %Tune stochastic Process Model
%Dhyper-parameters over the

%constraints

input7. TUNEHYPER = 1; %Tune the hyper-parameters (do not
%search the user's problem )
input7.OMETHD = 5; %Simulated Annealing

%Note that if OBJHYPER or CONHYPER are
%provided these hyper-para meters will
%be used in preference to those
%generated by OPTRSS
output7 = OptionsMatlab(input7, outputl)

output7 =

OBJHYPER: [1x1 struct]
OBJ_CLF: 712.6938
CONHYPER: [1x1 struct]
CST_CLF: 824.2750

6.8 User-defined sequential optimiser

This example invokes the sequential optimiser aefirby the Matlab function

'optuml.m' , which randomly generates searches points witltemparameters space.
It is possible to write a Matlab function that pides alternative behaviour for a
sequential optimiser.
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input8 = createBeamStruct;

input8.OLEVEL = 2;

input8.OMETHD = 2.1; %User-defined optimiser 1

input8.OPTUM1 = ‘'optuml' ; %Specifies function 'optuml.m'as
%user-defined optimiser

output8 = OptionsMatlab(input8)

output8 =

VARS: [2x1 double]
OBJFUN: 2.6409e+003
CONS: [5x1 double]
OBJTRC: [1x1 struct]
CONSTRC: [1x1 struct]

6.9 Sample a Response Surface Model

This example uses the utility functi@ptimisationSampleRSM to build an RSM
and sample the RSM at 100 evenly spaced pointsinwitie parameter space.
Compare this method to example 6.4.

%Create an input structure to search an RSM
input9 = createBeamStruct;

input9.OLEVEL = 2;

input9.0BJMOD = 3.3;

input9.CONMOD = 3.3;

%Sample 100 evenly spaced points

output9 = optimisationSampleRSM(input9, outputl, 10 0)

%Plot the points sampled from the RSM

optimisationTerrain(output9, input9)
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output9 =

VARS: [2x1 double]
OBJFUN: 2.4349e+003
CONS: [5x1 double]

RSMTRC: [1x1 struct]

6.10 Build a stochastic process model RSM with quic ~ k tuning

This example builds a stochastic process model RSMg quick hyper-parameter
tuning (by setting the flaBSM_QCK_HP Here the hyper-parametefSETAandEXP
will be tuned across all design variables, rathantNVARSvalues ofTHETAandEXP
corresponding to each design variable. The valfi€d38d_EXPandOBJ_THETA and
of CST_EXPandCST_THETA(iIn the structure®©®BJHYPERand CONHYPERwill be
scalar, rather than a vector of leni/ARS

%Create an input structure to search an SPM RSM wit h quick
tuning

inputl0 = createBeamStruct;

input10.OLEVEL = 0;

input10.0BJMOD = 4.1;

input10.CONMOD = 4.1;

inputl0.RSM_QCK_HP = 1;

output10 = OptionsMatlab(input10, outputl);

outputl0.OBJHYPER
outputl0.CONHYPER
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ans =
OBJ_LAMBDA: -6
U_OBJ_LAMBDA: 3
L_OBJ_LAMBDA: -20
OBJ_THETA: 0.1548
U_OBJ_THETA: 3
L_OBJ_THETA: -10
OBJ_EXP: 2
U_OBJ_EXP: 2
L_OBJ_EXP: 1

ans =
CST_LAMBDA: -6
U_CST_LAMBDA: 3
L_CST_LAMBDA: -20
CST_THETA: 0.1563
U_CST_THETA: 3
L_CST_THETA: -10
CST_EXP: 2
U_CST_EXP: 2
L CST_EXP: 1

6.11 Search a tuned stochastic process model RSM

This example samples and then searches the stclpastess model RSM built
using the quick tuned hyper-parameters. The scalgoer-parameter values
OBJ_THETAandOBJ_EXPare duplicated across the design variables optbblem
and assigned to the fie@BJHYPERf the input structure.

% Duplicate the scalar hyperpameter values across t he design
variables

inputStruct = createBeamStruct;

inputStruct. OBJHYPER.OBJ_THETA =
output10.0BJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1 );

inputStruct. OBJHYPER.OBJ_EXP =
output10.0BJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);

inputStruct. OBJHYPER.OBJ_LAMBDA = output10.0BJHYPER .OBJ_LAMBDA;
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%Sample the RSM surface
inputlla = inputStruct;
inputlla.OLEVEL = 0;

inputl1a.0BJMOD =4.1; %Evaluate SPM RSM objective function
inputll1a.CONMOD = 0.0; %Evaluate constraint function directly
outputlla = optimisationSampleRSM(inputlla, outputl , 400);
%Create an input structure to search the SPM RSM us ing a GA
inputllb = inputlla; %Copy the sampling input structure
inputl1b.OMETHD = 4; %Genetic Algorithm

inputllb.NITERS = 500 %10 generations

outputllb = OptionsMatlab(inputllb, outputl);
outputllb = optimisationSearchTrace(outputllb)

optimum from the trace history

%Retrieve

outputllb =

VARS: [2x1 double]
OBJFUN: 2.6948e+003
CONS: [5x1 double]
RSMTRC: [1x1 struct]
OBJHYPER: [1x1 struct]

%Plot the RSM and optimum point
optimisationTerrain(outputlla, inputlla, 5)
hold on;

plot3(outputl1b.VARS(1,1), outputllb.VARS(2,1),

outputl1b.OBJFUN, ko' , 'MarkerFaceColor’

6.12 Search the root mean square error of a tuned s

model RSM
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tochastic process

This example samples and then searches the Roat Stpaare Error of the stochastic
process model RSM built using the quick tuned hyggameters. The scalar hyper-
parameter valuesOBJ THETA and OBJ_EXP are duplicated across the design
variables of the problem and assigned to the fidHYPERof the input structure.

The RMSE surface is invariant to a change in thection of search for the




underlying problem. This means that the surface lmamsearched in either direction
for points of maximum or minimum error. The testsfiverifies that the RSM is
identical when the direction of search is reversed.

The reader will be aware that the root mean sqesaioe of the SPM falls to zero at all
sampled points (since the values of the objective @nstraints are known at these
points) so searching for the minimum of the surfacef little value. To find the
maximum error in the stochastic process model RBMdirection of search in the
input field DIRCTN is always set to +1 regardless of the directiorsedrch of the
underlying problem. This is worth highlighting besa this differs from the searches
of the other stochastic process model properties.the cases of expected
improvement ©BIJMOD=4.3, constrained expected improveme@B({MOD=4.31),
constrained feasibility of improvementOBIJMOD=4.32 and probability of
improvement ©BJMOD=4.33 the RSM surface that is built is critically degent on
the direction of search of the underlying problény searches of these surfaces are
hard-coded within OPTIONS to build the surface adicg to the direction of search
for the underlying problem and seek the maximurthat surface accordingly. Only
in the case of RMSE must the direction of searclXaicitly set to +1 to find the
maximum in the root mean square error of the RSM.

% Duplicate the scalar hyperpameter values across t he design
variables

inputStruct = createBeamStruct;

inputStruct. OBJHYPER.OBJ_THETA =
output10.OBJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1 );

inputStruct. OBJHYPER.OBJ_EXP =
output10.0BJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);

inputStruct. OBJHYPER.OBJ_LAMBDA = output10.0BJHYPER .OBJ_LAMBDA,;

%Sample the RSM surface
inputl2a = inputStruct;
inputl2a.OLEVEL = 0;

inputl2a.0BJMOD = 4.2; %Evaluate RMSE of SPM RSM over
objective function

inputl2a.CONMOD = 0.0; %Evaluate constraint function directly
inputl2a.ONAM = 'RMSE'; %LlLabel objective

inputl2a.DIRCTN = +1; %The error surface should not change
with DIRCTN
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outputl2a = optimisationSampleRSM(inputl2a, outputl , 400);
%Sample RSM

inputl2b = inputl2a; %Copy the sampling input structure
inputl12b.DIRCTN = -1; %The error surface should not change
with DIRCTN
outputl2b = optimisationSampleRSM(input12b, outputl , 400);
%Check that the RMSE surface is invariant under cha nge of
DIRCTN
if (sum(abs(outputl2a.RSMTRC.OBJFUN - outputl2b.RSMTR C.OBJFUN))
>0)

error( *** RMSE of Stochastic Process Model is not
invariant under change of DIRCTN *** )
end
inputl2c = inputl2b; %Copy the sampling input structure
inputl2c.DIRCTN = +1; %Search for maximum in RMSE of the SPM

%(NB. This value is set to +1
regardless of the
% direction of the underlying problem)
inputl2c.OMETHD = 4; %Genetic Algorithm
inputl2c.NITERS = 500 %310 generations
outputl2c = OptionsMatlab(inputl2c, outputl);
outputl2c = optimisationSearchTrace(outputl2c) % Search the

trace history for optimum

outputl2c =

VARS: [2x1 double]
OBJFUN: 746.8510
CONS: [5x1 double]
RSMTRC: [1x1 struct]
OBJHYPER: [1x1 struct]

%Plot the RSM and optimum point
optimisationTerrain(output12a, inputl2a, 5)

hold on;
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plot3(outputl2c.VARS(1,1), outputl2c.VARS(2,1),
outputl2c.OBJFUN, 'ko' , 'MarkerFaceColor’ , K

6.13 Search the expected improvement of a tuned sto  chastic process
model RSM

This example samples and then searches the Expegpedvement of the stochastic
process model RSM built using the quick tuned hygsameters. The scalar hyper-
parameter valuesOBJ _THETA and OBJ_EXP are duplicated across the design
variables of the problem and assigned to the f@dHYPEROf the input structure.
Note that for a minimisation problem OPTIONS ingetthe Expected Improvement
calculation, returning a minimum value of the irteer problem, at the point of
maximum expected improvement of the RSM.

% Duplicate the scalar hyperpameter values across t he design
variables

inputStruct = createBeamStruct;

inputStruct. OBJHYPER.OBJ_THETA =
output10.0BJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1 );

inputStruct. OBJHYPER.OBJ_EXP =
output10.0BJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);

inputStruct. OBJHYPER.OBJ_LAMBDA = output10.0BJHYPER .OBJ_LAMBDA;

%Sample the RSM surface
inputl3a = inputStruct;
inputl3a.OLEVEL = 0;

inputl3a.0BJMOD = 4.3; %Evaluate El of SPM RSM over objective
function

input13a.CONMOD = 0.0; %Evaluate constraint function directly
inputl3a.ONAM = 'EI' ; %Label objective

outputl3a = optimisationSampleRSM(input13a, outputl , 400);

%Sample RSM

%Create an input structure to search the SPM RSM us ing a GA
inputl3b = inputl3a; %Copy the sampling input structure
inputl3b.OMETHD = 4; %Genetic Algorithm

input13b.NITERS = 500 %210 generations

output13b = OptionsMatlab(input13b, outputl);
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outputl3b = optimisationSearchTrace(output13b) %Search the

trace history for optimum

outputl3b =

VARS: [2x1 double]
OBJFUN: 115.1293
CONS: [5x1 double]
RSMTRC: [1x1 struct]
OBJHYPER: [1x1 struct]

%Plot the RSM and optimum point

optimisationTerrain(output13a, input13a, 5)

hold on;
plot3(output13b.VARS(1,1), outputl3b.VARS(2,1),
output13b.OBJFUN, ko' , 'MarkerFaceColor’ , K

6.14 Search the probability of improvement of a tun ed stochastic
process model RSM

This example samples and then searches the Prbpatdil Improvement of the
stochastic process model RSM built using the quicked hyper-parameters. The
scalar hyper-parameter value®J THETAand OBJ_EXP are duplicated across the
design variables of the problem and assigned tofithé OBJHYPERoOf the input
structure. Note that for a minimisation problem @®NS inverts the Probability of
Improvement calculation, returning a minimum vabfghe inverted problem, at the
point of maximum probability of improvement of tHRSM (this is why this
calculation may return negative value for the pholitgg when searching a
minimisation problem).

% Duplicate the scalar hyperpameter values across t he design
variables

inputStruct = createBeamStruct;

inputStruct. OBJHYPER.OBJ_THETA =
output10.O0BJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1 );

inputStruct. OBJHYPER.OBJ_EXP =
output10.0BJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);

inputStruct. OBJHYPER.OBJ_LAMBDA = output10.0BJHYPER .OBJ_LAMBDA,;
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%Sample the RSM surface
inputl4a = inputStruct;
inputl4a.OLEVEL = 0;

inputl4a.0BIJMOD = 4.33; %Evaluate Pl of SPM RSM over objective
function

inputl4a.CONMOD = 0.0; %Evaluate constraint function directly
inputl4a.ONAM = 'PI' ; %Label objective

outputlda = optimisationSampleRSM(inputl4a, outputl , 400);

%Sample RSM

%Create an input structure to search the SPM RSM us ing a GA
inputl4b = inputl4a; %Copy the sampling input structure
inputl4b.OMETHD = 4; %Genetic Algorithm

inputl4b.NITERS = 500 %10 generations

outputl4b = OptionsMatlab(input1l4b, outputl);
outputl4b = optimisationSearchTrace(outputl4b) %Search the

trace history for optimum

outputl4b =

VARS: [2x1 double]
OBJFUN: -1.0776e-042
CONS: [5x1 double]
RSMTRC: [1x1 struct]
OBJHYPER: [1x1 struct]

%Plot the RSM and optimum point

optimisationTerrain(outputl4a, inputl4a, 5)

hold on;

plot3(outputl4b.VARS(1,1), outputldb.VARS(2,1),
output14b.OBJFUN, ko' , 'MarkerFaceColor' , K

6.15 Search the constrained expected improvement of a tuned
stochastic process model RSM

This example samples and then searches the corwstr&xpected Improvement of
the stochastic process model RSM built using thekquned hyper-parameters. The
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scalar hyper-parameter value8J THETA, OBJ_EXP, CST_THETA and CST_EXP
are duplicated across the design variables of thblgm and assigned to the fields
OBJHYPERand CONHYPEROf the input structure. Note that for a minimieati
problem OPTIONS inverts the constrained Expectegpréwement calculation,
returning a minimum value of the inverted probleat, the point of maximum
expected improvement of the constrained RSM.

% Duplicate the scalar hyperpameter values across t he design
variables

inputStruct = createBeamStruct;

inputStruct. OBJHYPER.OBJ_THETA =
output10.OBJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1 );

inputStruct. OBJHYPER.OBJ_EXP =
output10.0BJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);

inputStruct. OBJHYPER.OBJ_LAMBDA = output10.0BJHYPER .OBJ_LAMBDA,;
inputStruct. CONHYPER.CST_THETA =
outputl0.CONHYPER.CST_THETA*ones(inputStruct.NVRS,1 );

inputStruct. CONHYPER.CST_EXP =
outputl0.CONHYPER.CST_EXP*ones(inputStruct.NVRS,1);

inputStruct. CONHYPER.CST_LAMBDA = outputl0.CONHYPER .CST_LAMBDA;

%Sample the RSM surface
inputl5a = inputStruct;
inputl5a.OLEVEL = 0;

inputl5a.0BJMOD = 4.31; %Evaluate constrained El of SPM
RSM over objective function

inputl5a.CONMOD =4.1; %Evaluate constraint function
using SPM RSM

inputl5a.ONAM = 'CST-EI' ; %Label objective

outputl5a = optimisationSampleRSM(inputl5a, outputl , 400);

%Sample RSM

%Create an input structure to search the SPM RSM us ing a GA
inputl5b = inputl5a; %Copy the sampling input structure
inputl5b.OMETHD = 4; %Genetic Algorithm

inputl5b.NITERS = 500 %10 generations

outputl5b = OptionsMatlab(input1l5b, outputl);
outputl5b = optimisationSearchTrace(outputl5b) %Search the
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trace history for optimum

outputl5b =

VARS: [2x1 double]
OBJFUN: -7.5469
CONS: [5x1 double]
RSMTRC: [1x1 struct]
OBJHYPER: [1x1 struct]
CONHYPER: [1x1 struct]

%Plot the RSM and optimum point

optimisationTerrain(outputl5a, input15a, 5)

hold on;
plot3(outputl5b.VARS(1,1), outputl5b.VARS(2,1),
output15b.OBJFUN, ko' , 'MarkerFaceColor’ , K

6.16 Search the constrained feasibility of improvem ent of a tuned
stochastic process model RSM

This example samples and then searches the cowrstr&easibility of Improvement
of the stochastic process model RSM built usingghiek tuned hyper-parameters.
The scalar hyper-parameter value€BJ THETA, OBJ_EXP, CST_THETA and
CST_EXPare duplicated across the design variables opthblem and assigned to
the fields OBJHYPER and CONHYPERof the input structure. Note that for a
minimisation problem OPTIONS inverts the constrdif@asibility of Improvement
calculation, returning a minimum value of the irteer problem, at the point of
maximum feasibility of improvement of the constedrRSM.

% Duplicate the scalar hyperpameter values across t he design
variables

inputStruct = createBeamStruct;

inputStruct. OBJHYPER.OBJ_THETA =
output10.O0BJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1 );

inputStruct. OBJHYPER.OBJ_EXP =
output10.0BJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);

inputStruct. OBJHYPER.OBJ_LAMBDA = output10.0BJHYPER .OBJ_LAMBDA,;
inputStruct. CONHYPER.CST_THETA =
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outputl0.CONHYPER.CST_THETA*ones(inputStruct.NVRS,1 );

inputStruct. CONHYPER.CST_EXP =
outputl0.CONHYPER.CST_EXP*ones(inputStruct.NVRS,1);

inputStruct. CONHYPER.CST_LAMBDA = outputl0.CONHYPER .CST_LAMBDA;

%Sample the RSM surface
inputl6a = inputStruct;
inputl6a.OLEVEL = 0;

inputl6a.0BJMOD = 4.32; %Evaluate constrained FI of SPM
RSM over objective function

inputl6a.CONMOD = 4.1; %Evaluate constraint function
using SPM RSM

inputl6a.ONAM = 'CST-FI' ; %Label objective

outputl6a = optimisationSampleRSM(inputl6a, outputl , 400);

%Sample RSM

%Create an input structure to search the SPM RSM us ing a GA
inputl6b = inputl6a; %Copy the sampling input structure
inputl6b.OMETHD = 4; %Genetic Algorithm

inputl6b.NITERS = 500 %10 generations

outputl6b = OptionsMatlab(input1l6b, outputl);
outputl6b = optimisationSearchTrace(outputl6b) %Search the

trace history for optimum

outputl6b =

VARS: [2x1 double]
OBJFUN: 0
CONS: [5x1 double]
RSMTRC: [1x1 struct]
OBJHYPER: [1x1 struct]
CONHYPER: [1x1 struct]

%Plot the RSM and optimum point

optimisationTerrain(outputl6a, inputl6a, 5)

hold on;
plot3(outputl6b.VARS(1,1), outputl6b.VARS(2,1),
output16b.OBJFUN, ko' , 'MarkerFaceColor' , K
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