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1 Introduction 
OptionsMatlab integrates the Options design exploration and optimization package 

[1] into the Matlab environment [2]. The advantages of this approach include; the 

potential to rapidly prototype and debug objective and constraint functions, and the 

ability to directly leverage the functionality available within the Matlab environment. 

Matlab provides data analysis and visualisation capabilities. Additional functionality 

is available from a variety of toolboxes, including the Geodise toolboxes for Grid-

enabled computational and data management [3]. 

 

OptionsMatlab provides access to all of the design search and optimisation algorithms 

within the Options package whilst retaining the maximum flexibility. Users define the 

objective and constraint functions that describe their problem as Matlab functions. 

These functions can therefore include interpreted Matlab, compiled MEX functions, 

or callbacks to external applications or to the Grid. The modular structure of 

OptionsMatlab is shown by Figure 1. 

 

Matlab environment Matlab environment 

OptionsMatlab.dll

optjob.m

optjob optfun optconoptjob optfun optcon

optfun.m
optcon.m

OptionsMatlab.m

 
Figure 1 The modular structure of OptionsMatlab. 

 

OptionsMatlab is invoked by calling the Matlab function OptionsMatlab . An input 

structure describes the user’s problem, and configures the design search and 

optimisation algorithm to be used. Additionally a large number of optional fields may 

be used to adjust the Options control parameters. The results are returned to the 

Matlab workspace in an output structure 

 



 7 

The usage of OptionsMatlab differs from the original Options interface. A programme 

of design search and optimisation is based upon a sequence of invocations of the 

OptionsMatlab function from the Matlab workspace. By comparison the Options 

interface supports a number of operations upon a data-set managed by the internal 

Options database. OptionsMatlab can be used to perform operations upon the results 

of a previous optimisation, such as building a Response Surface Model, by passing 

the results as a second input argument. 

 

The modular structure of OptionsMatlab also allows the user to customise the 

evaluation of the objective and constraint functions by replacing the function OPTJOB. 

For example, the default implementation of OPTJOB supplied with OptionsMatlab, 

optjob.m , evaluates the objective and constraint functions in serial. An alternative 

job manager is provided which supports parallel function evaluations (see section 

5.10). 

 

This document provides an introduction to the use of the OptionsMatlab package. For 

further details of the theory of design search and optimisation, and the use of the 

Options package, please consult the Options manual [1]. 

 

OptionsMatlab has three modes of operation: 

1. Direct Search. The specified optimisation algorithm is run over the user’s 

problem, directly invoking the Matlab functions that define the objective and 

constraint functions. 

2. Search Response Surface Model. A Response Surface Model (RSM) is built 

which models the behaviour of the user’s problem. The RSM is built from the 

results of a previous design search, and is searched with the specified 

optimisation algorithm. 

3. Hyper-parameter tuning. The Stochastic Process Model hyper-parameters 

which describe a Stochastic Process Model RSM must be tuned against an 

existing data set. The specified optimisation is used to tune the hyper-

parameters against a data set describing the user’s objective function (and/or 

constraints).  

 

These modes are invoked depending upon the fields of the input structure (Figure 2).  
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Tune
Hyperparameters

Build RSM

Direct
Search

1

2

 
Figure 2 OptionsMatlab’s modes of operation. Hyper-parameter tuning will be invoked if the input 

field TUNEHYPER is set (#1). If the input field OBJMOD (or CONMOD) is set the specified 

optimisation will be run over a RSM (#2). In all other conditions a direct search over the user's 

objective function is used. 
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2 Installing OptionsMatlab  
This section describes the steps needed to install OptionsMatlab.  

 

2.1 Obtain a Gendat license file 

Gendat licenses are linked to the MAC address (Windows) or hostid (UNIX) of the 

machine running OptionsMatlab, and are available from Prof. Andy Keane.  

 

OptionsMatlab looks for a Gendat license file at the location specified by the 

environment variable GENDAT_CODES. If this environment variable is not specified 

then the UNIX version of OptionsMatlab looks for a Gendat license in the file 

/usr/local/geodise/OptionsMatlab/gendat.cds  and if this file does not 

exist it will look for gendat.cds  in the current directory. The Windows version of 

OptionsMatlab will look for a Gendat license in the file 

C:\fortran\gendat\GENDAT.CDS if the environment variable does not exist. 

 

2.2 Add OptionsMatlab to the Matlab search path 

The directory containing the OptionsMatlab functions should be added to the Matlab 

search path. 

 

If using the Matlab desktop navigate to the 'Set Path' dialog ('File' > 'Set Path'). Click 

the 'Add Folder' button and browse to the directory containing the OptionsMatlab, 

select 'OK' to confirm. You may wish to click the 'Save' button to preserve the 

configuration between sessions. Click 'Close' to dismiss the dialog. 

 

If using Matlab via the Unix terminal use the addpath  function at the Matlab 

command line.  

 

>> addpath /home/USER/OptionsMatlab 

 

System administrators configuring a multi-user Matlab installation  may find it 

preferable to edit $MATLABROOT/toolbox/local/pathdef.m to make changes to the 

Matlab search path available to all users. 

 

To confirm that the Matlab search path has been successfully configured run: 

 

 >> str = which( 'OptionsMatlab ') 
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The variable str  should contain the path of the OptionsMatlab function. 

 

2.3 View the documentation 

To read the OptionsMatlab documentation type 'help OptionsMatlab'  at the 

Matlab command prompt. This text contains details of the input arguments to 

OptionsMatlab and the output structures returned. For information about the 

interfaces required by user-defined objective and constraint functions type 'help 

optjob' .  
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3 OptionsMatlab Tutorial 

3.1 Create a input structure 

Use the function createBeamStruct  to create an OptionsMatlab input structure. At 

the command line enter: 

 

>> input = createBeamStruct 

 

input =  

 

      DNULL: -777 

     OLEVEL: 2 

    MAXJOBS: 10 

       NVRS: 2 

       VNAM: {'BREADTH'  'HEIGHT'} 

      LVARS: [5 2] 

      UVARS: [50 25] 

       VARS: [30 20] 

      NCONS: 5 

       CNAM: {'SIGMA-B'  'TAU'  'DEFLN'  'H-ON-B'  'F-CRIT'} 

      LCONS: [-777 -777 -777 -777 5000] 

      UCONS: [200 100 5 10 -777] 

    NPARAMS: 7 

       PNAM: {'LENGTH'  'FORCE'  'FACTOR'  'EE'  'G G'  'NU'  

'SIGMAY'} 

     PARAMS: [1500 5000 2 216620 86650 0.2700 200] 

       ONAM: 'AREA' 

     OMETHD: 2.8000 

     DIRCTN: -1 

     NITERS: 500 

     OPTFUN: 'beamobjfun' 

     OPTCON: 'beamobjcon' 

     OPTJOB: 'optjob' 

 

The OptionsMatlab input structure describes the problem to be searched, including the 

design variables, constraints and parameters. The input structure will also include 

details of the optimisation or design search to be run over the problem. The function 

createBeamStruct  is a utility function which creates an input structure specific to 
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the Beam problem. 

 

The fields of the structure input  are described in detail by the documentation for 

OptionsMatlab . Of particular interest are the fields OPTFUN and OPTCON that 

specify the Matlab functions that describe the objective and constraint functions 

respectively. The objective and constraint functions used, beamobjfun.m  and 

beamobjcon.m , is a Matlab implementation of the Beam problem described in the 

Options manual [1]. 

 

The field OMETHD is a scalar which specifies the search method to be used (see FAQ 

section 5.2 for further details). This example uses a Design of Experiments study, 

OMETHD = 2.8 . 

 

3.2 Run the search 

OptionsMatlab can now be invoked with the input structure returned by 

createBeamStruct . At the command line enter: 

 

>> results = OptionsMatlab(input) 

 

results =  

 

       VARS: [2x1 double] 

     OBJFUN: 2.9455e+003 

       CONS: [5x1 double] 

     OBJTRC: [1x1 struct] 

    CONSTRC: [1x1 struct] 

 

OptionsMatlab will quickly perform a Design of Experiments study, evaluating the 

objective and constraint functions NITERS times. The results are returned in the 

structure results . The fields OBJFUN and VARS contain the minimum objective 

function found and the corresponding design variables. The field CONS contains the 

values of the constraints at the design variables VARS. 

 

Other fields OBJTRC and CONSTRC contain the search histories over the objective and 

constraint functions. This information is valuable to examine the history of the 

optimisation and build Response Surface Models. 
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3.3 View the search histories 

A simple tool is provided to view the search histories of problems with two design 

variables. At the command line enter: 

 

>> plotOptionsSurfaces(results, input) 

 

This will produce plots for the objective function and each of the constraints against 

the two design variables at each of the design variables evaluated. The final plot 

shows the objective function plotted against the two design variables, in which each 

point is coloured depending whether it exceeds the constraints (red), or not (blue) 

(Figure 3). 

 

 
Figure 3 The results of a 500 point DoE plotted with plotOptionsSurfaces  

 

3.4 Build and search a Response Surface Model 

The results returned by the Design of Experiments can be used to build a Response 

Surface Model (RSM) that can be searched very rapidly. This approach may be 

suitable when either the objective or constraint functions are expensive to evaluate. 

To do this we must create another input structure, with the same problem definition. 

We will modify this input structure to specify that a RSM is used to evaluate the 

objective and constraint functions. At the command line enter: 

 

>> inputRSM = createBeamStruct; 
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>> inputRSM.OBJMOD = 3.5; 

>> inputRSM.CONMOD = 3.5; 

 

By specifying OBJMOD and CONMOD equal to 3.5 OptionsMatlab will produce a RSM 

using a second order polynomial regression model. For a list of the alternative RSM 

approximation methods available within OptionsMatlab see the FAQ section 5.4. 

 

>> inputRSM.OMETHD = 4; 

>> inputRSM.NITERS = 1000; 

 

OMETHD equal to 4 specifies a Genetic Algorithm with 1,000 function evaluations. 

OptionsMatlab will perform the function evaluations required for the Genetic 

Algorithm against the RSM (rather than evaluating the user's objective or constraint 

functions directly).  

 

The input structure inputRSM  must be passed into OptionsMatlab together with the 

results of the Design of Experiments contained in the variable results . 

 

>> resultsRSM = OptionsMatlab(inputRSM, results) 

 

resultsRSM =  

 

      VARS: [2x1 double] 

    OBJFUN: 2.4824e+003 

      CONS: [5x1 double] 

 

The results structure returned, resultsRSM , does not contain search histories. This is 

because the model used to evaluate the design variables is an approximation of the 

user’s model and should not be considered to be equivalent to direct evaluation. It is 

good practice to verify the results of a search over a RSM by direct evaluation of the 

objective and constraint functions at the returned optimum design. 
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4 Function Reference 
 

Banana problem 

An example of the unconstrained Banana problem based upon Rosenbrock's function. 

 

 
Equation 1 Rosenbrock's function 

 

Example 

This problem may be extended into multiple dimensions; however by default the 

problem is 2D. This example plots the objective function surface of the Banana 

problem. 

 

>> input = createbananastruct(2.8, 2); 

>> input.OMETHD = 2.8; 

>> input.MC_TYPE = 4; 

>> input.NITERS = 500; 

>> input.LVARS = [-1, -1]; 

>> output = OptionsMatlab(input) 

 

output =  

 

      VARS: [2x1 double] 

    OBJFUN: 0 

    OBJTRC: [1x1 struct] 

 

>> optimisationTerrain(output,input,3) 
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Figure 4 The objective function surface of the Banana problem 

 

Functions 

bananafun    objective function 

bananafun_parallel  parallel version of the objective function 

bananafun_parallel_parse  parallel version of the objective function 

createbananastruct  creates an input structure for the banana problem 

createbananastructparallel creates an input structure for the parallel 

invocation of the banana problem 
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Beam problem 

An example of the constrained Beam problem 

 

Example 

This example plots the objective function surface of the Beam problem. 

 

>> input= createBeamStruct; 

>> input.MC_TYPE = 4; 

>> input.NITERS = 500; 

>> output = OptionsMatlab(input) 

 

output =  

 

       VARS: [2x1 double] 

     OBJFUN: 2.9269e+003 

       CONS: [5x1 double] 

     OBJTRC: [1x1 struct] 

    CONSTRC: [1x1 struct] 

 

>> optimisationTerrain(output,input,3) 

 

 
Figure 5 The valid objective function surface of the Beam problem 
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Functions 

beamcon_parallel   parallel version of the constraint function 

beamcon_parallel_parse parallel version of the constraint function 

beamcon_parallel2  parallel version of the constraint function 

beamcon_parallel2_parse2 parallel version of the constraint function 

beamfun_parallel   parallel version of the objective function 

beamfun_parallel_parse parallel version of the objective function 

beamfun_parallel2  parallel version of the objective function 

beamfun_parallel2_parse parallel version of the objective function 

beamobjcon    constraint function 

beamobjfun    objective function 

createBeamStruct    creates an input structure for the beam problem 

createBeamStructParallel creates an input structure for the parallel 

invocation of the beam problem 

createBeamStructParallel2 creates an input structure for the parallel 

invocation of the beam problem using 

optjobparallel2  

createBeamStructRSM creates an input structure for the generation of a 

RSM for the beam problem 
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Bump problem 

An example of the combined objective and constraint function of the Bump problem. 

 

Example 

The Bump problem may be extended into multiple dimensions. This example plots 

the objective function surface of the Bump problem in two dimensions. 

 

>> input= createbumpstruct(2.8, 2); 

>> input.MC_TYPE = 4; 

>> input.NITERS = 500; 

>> output = OptionsMatlab(input) 

 

output =  

 

       VARS: [2x1 double] 

     OBJFUN: 0.2021 

       CONS: [2x1 double] 

     OBJTRC: [1x1 struct] 

    CONSTRC: [1x1 struct] 

 

>> optimisationTerrain(output,input,3) 

 

 
Figure 6 The valid objective function surface of the Bump problem in two dimensions 
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Functions 

bumpfuncombined   combined objective and constraint function 

bumpfuncombined_parallel parallel version of the combined objective and 

constraint function 

bumpfuncombined_parallel_parse parallel version of the combined 

objective and constraint function 

createbumpstruct   creates an input structure for the bump problem  

createbumpstructparallel creates an input structure for the parallel 

invocation of the bump problem 
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optimisationAppendDataPoints  

Append data points to an output structure 

 

This function appends data points to an OptionsMatlab output structure from a second 

OptionsMatlab output structure. The function can either copy all of the points, 

specified points, or the best point returned by the optimiser, from the second output 

structure. 

  

The edited structure is returned as an output argument. 

 

Syntax  

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OUT, 

STRUCTOUT2) 

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OUT, 

STRUCTOUT2, POINTS)   

 

Description 

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OUT, 

STRUCTOUT2) where STRUCTOUT is the results structure returned by 

OptionsMatlab  containing data points in a field OBJTRC (and CONSTRC) or 

RSMTRC to which the data points are appended. STRUCTOUT2 is a results structure 

from which all data points are copied. STRUCTOUTEDIT is a copy of STRUCTOUT 

to which all of the points are copied. 

  

Note that RSM results can only be copied from to a structure containing RSM results 

(RSMTRC). Also unconstrained data points cannot be copied to a structure containing 

constrained data. 

  

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OUT, 

STRUCTOUT2, POINTS)  as above where POINTS is a string specifying the mode of 

operation, or a vector specifying the points to be copied. POINTS may be a string 

with the following values: 

all  all points from STRUCTOUT2 will be appended to 

STRUCTOUT. This is the default operation if POINTS is 

empty ([] ). 

best  the best point returned specified by STRUCTOUT2 will be 

appended to STRUCTOUT. 
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If POINTS is a vector it must contain the indices of points in 

STRUCTOUT2.OBJTRC.OBJFUN (or STRUCTOUT2.RSMTRC.OBJFUN) to be 

appended to STRUCTOUT. 

  

Examples 

These examples will demonstrate the three modes of operation of 

optimisationAppendDataPoints : 

  

structin = createBeamStruct(2.8); 

structin.NITERS = 10;               %Do a DoE of ten points  

structout = OptionsMatlab(structin); 

  

structin2 = structin; 

structin2.OMETHD = 4;               %Do a GA of ten points  

structout2 = OptionsMatlab(structin2); 

             

In this example all data points from the second output structure will be appended to 

the first. 

  

structoutedit = optimisationAppendDataPoints(struct out, 

structout2);  

structoutedit.OBJTRC 

structoutedit.CONSTRC 

  

ans =  

    OBJFUN: [1x20 double] 

      VARS: [2x20 double] 

    NCALLS: 20 

 

ans =  

      CONS: [5x20 double] 

      VARS: [2x20 double] 

     LCONS: [5x20 double] 

     UCONS: [5x20 double] 

    NCALLS: 20 

 

In this example the best data point from the second output structure will be appended 

to the first. 
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structoutedit2 = optimisationAppendDataPoints(struc tout, 

structout2, 'best' );  

structoutedit2.OBJTRC 

structoutedit2.CONSTRC 

 

ans =  

    OBJFUN: [1x11 double] 

      VARS: [2x11 double] 

    NCALLS: 11 

 

ans =  

      CONS: [5x11 double] 

      VARS: [2x11 double] 

     LCONS: [5x11 double] 

     UCONS: [5x11 double] 

    NCALLS: 11 

  

In this example the first, fifth and tenth data points from the second output structure 

will be appended to the first. 

  

structoutedit3 = optimisationAppendDataPoints(struc tout, 

structout2, [1,5,10]);  

structoutedit3.OBJTRC 

structoutedit3.CONSTRC 

 

ans =  

    OBJFUN: [1x13 double] 

      VARS: [2x13 double] 

    NCALLS: 13 

 

ans =  

      CONS: [5x13 double] 

      VARS: [2x13 double] 

     LCONS: [5x13 double] 

     UCONS: [5x13 double] 

    NCALLS: 13  
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See also 

optimisationCropDataPoints , optimisationReplaceDataPoints  
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optimisationCropDataPoints  

Crops data points from an output structure 

 

This function crops data points from an OptionsMatlab  output structure. The output 

structure can contain data points in a field OBJTRC (and CONSTRC) or RSMTRC. 

  

The points to be cropped are specified by a vector of indices for points in the vector of 

objective function evaluations. The edited structure is returned as an output argument. 

  

Syntax 

STRUCTOUTEDIT = optimisationCropDataPoints(STRUCTOU T, 

POINTS) 

 

Description 

STRUCTOUTEDIT = optimisationCropDataPoints(STRUCTOU T, 

POINTS)  where STRUCTOUT is the results structure returned by OptionsMatlab  

containing data points in a field OBJTRC (and CONSTRC) or RSMTRC. POINTS is a 

vector of indices to data points in STRUCTOUT.OBJTRC.OBJFUN (or 

STRUCTOUT.RSMTRC.OBJFUN). 

  

STRUCTOUTEDIT is a copy of STRUCTOUT with the specified points cropped. 

  

Example 

In this example the first, fifth and tenth points are cropped from an output structure 

containing ten points: 

  

structin = createBeamStruct(2.8); 

structin.NITERS = 10;               %Do a DoE of ten points  

structout = OptionsMatlab(structin); 

  

structoutedit = optimisationCropDataPoints(structou t, 

[1,5,10]); 

structoutedit.OBJTRC 

structoutedit.CONSTRC 

 

ans =  

    OBJFUN: [4.1998e+003 2.5211e+003 2.3857e+003 3. 2492e+003 
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7.9283e+003 708.6411 1.7318e+003] 

      VARS: [2x7 double] 

    NCALLS: 7 

 

ans =  

      CONS: [5x7 double] 

      VARS: [2x7 double] 

     LCONS: [5x7 double] 

     UCONS: [5x7 double] 

    NCALLS: 7  

 

See also 

optimisationAppendDataPoints , optimisationReplaceDataPoints  
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optimisationReplaceDataPoints  

Replace data points based upon strategy 

 

This function will replace data points from an OptionsMatlab output structure with 

data points from a second structure selected depending upon the specified strategy. 

The attribute used to select the data points may the value of the objective function, or 

the normalized Euclidian distance from the best point specified in STRUCTOUT.  

 

Syntax 

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OUT, 

STRUCTOUT2,STRATEGY,STRUCTIN)   

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OUT, 

STRUCTOUT2,STRATEGY,STRUCTIN,NUMPOINTS)   

 

Description 

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OUT, 

STRUCTOUT2, STRATEGY, STRUCTIN) where STRUCTOUT and STRUCTOUT2 are 

results structure returned  by OptionsMatlab  containing data points in a field 

OBJTRC (and CONSTRC) or RSMTRC. STRATEGY is a string that specifies the strategy 

used to replace data points: 

 

select_best selects data points from STRUCTOUT and 

STRUCTOUT2 depending upon the value of the 

objective function  

select_closest  selects data points from STRUCTOUT and 

STRUCTOUT2 depending upon the normalized 

Euclidian distance from STRUCTOUT.VARS 

replace_worst replaces the worst NUMPOINTS data points 

from STRUCTOUT with the best points from 

STRUCTOUT2 depending upon the value of the 

objective function 

replace_furthest  replaces the furthest NUMPOINTS data points 

from STRUCTOUT with the closest points from 

STRUCTOUT2 depending upon the normalized 

Euclidian distance from STRUCTOUT.VARS 
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STRUCTIN is the OptionsMatlab  input structure for the problem that was used to 

generate the data points. STRUCTOUTEDIT is the edited copy of STRUCTOUT.    

  

Note that RSM results can only be copied from to a structure containing RSM results 

(RSMTRC). Also unconstrained data points cannot be copied to a structure containing 

constrained data. 

  

Note that duplicate points are not detected and may occur in STRUCTOUTEDIT. 

  

STRUCTOUTEDIT = optimisationAppendDataPoints(STRUCT OUT, 

STRUCTOUT2,STRATEGY,STRUCTIN,NUMPOINTS) where NUMPOINTS is an integer 

value that has alternative meanings depending upon the strategy. Where STRATEGY: 

 

select_* NUMPOINTS  is the number of data points in 

STRUCTOUTEDIT. If NUMPOINTS is not specified, or is 

empty ([] ), it will default to 

STRUCTOUT.*TRC.NCALLS 

replace_*  NUMPOINTS is the number of data points in STRUCTOUT 

replaced with points from STRUCTOUT2 

                         

Examples 

These examples will demonstrate the alternative strategies to replace data points. 

  

structin = createBeamStruct(2.8); 

structin.NITERS = 10;               %Do a DoE of ten points  

structout = OptionsMatlab(structin) 

  

structin2 = structin; 

structin2.OMETHD = 4;               %Do a GA of ten points  

structout2 = OptionsMatlab(structin2) 

             

In this example the best data points are selected from between structout  and 

structout2 .  

  

structoutedit = optimisationReplaceDataPoints(struc tout, ...  

                    structout2,'select_best',struct in)    

structoutedit.OBJTRC.OBJFUN 

structoutedit.OBJTRC.VARS 
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In this example 15 data points are selected from between structout  and 

structout2  depending upon their normalized Euclidian distance from 

structout.VARS .    

  

structoutedit = optimisationReplaceDataPoints(struc tout, ...  

                    structout2,'select_closest',str uctin,15) 

structoutedit.OBJTRC.OBJFUN 

structoutedit.OBJTRC.VARS 

  

In this example the 5 worst data points from structout  are replaced by the 5 best 

data points from structout2 .   

  

structoutedit = optimisationReplaceDataPoints(struc tout, ... 

                    structout2,'replace_worst',stru ctin,5)    

structoutedit.OBJTRC.OBJFUN 

structoutedit.OBJTRC.VARS 

  

In this example the 5 data points from structout  that are furthest from 

structout.VARS  are replaced by the 5 closest points from structout2 .    

  

structoutedit = optimisationReplaceDataPoints(struc tout, ... 

                    structout2,'replace_furthest',s tructin,5)    

structoutedit.OBJTRC.OBJFUN 

structoutedit.OBJTRC.VARS 

  

See also 

optimisationCropDataPoints , optimisationAppendDataPoints  
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optimisationDigest  

Prints the results of an optimisation and returns validity of optimum 

 

Syntax 

ISVALID = optimisationDigest(STRUCTOUT,STRUCTIN)  

ISVALID = optimisationDigest(STRUCTOUT,STRUCTIN,FIL ENAME) 

ISVALID = optimisationDigest(STRUCTOUT,STRUCTIN,[])   

  

Description 

ISVALID = optimisationDigest(STRUCTOUT, STRUCTIN)  Prints 

digest to standard output, where STRUCTOUT is the output, and STRUCTIN the input, 

from OptionsMatlab .  ISVALID  is 1 where the optimum point returned by the 

optimisation does not violate the constraints or the design variable limits, otherwise 

ISVALID  is 0. 

  

ISVALID = optimisationDigest(STRUCTOUT,STRUCTIN,FIL ENAME) 

Prints direct to FILENAME 

      

ISVALID = optimisationDigest(STRUCTOUT,STRUCTIN,[])  

Suppresses digest output 

 

 

Example 

The output of optimisationDigest  is illustrated by the following example: 

 

>> input = createBeamStruct 

>> results = OptionsMatlab(input) 

>> isvalid = optimisationDigest(results,input) 
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============================================================ 

  

 Optimisation of the problem defined by "beamobjfun" and 

"beamobjcon"  

 Optimisation method: 2.8  

  

 Status after 500 evaluations is:-  

  

 Trial vector  

 Lwr Bound       Vector       Uppr Bound    Variable (units)  

  

   5.00000000 <  19.96577454 >  50.00000000  BREADTH   

   2.00000000 <  14.75254536 >  25.00000000  HEIGHT   

  

 No of V. Boundary Violations =   0 

  

 Objective Function (min.)    =  2945.4599   AREA 

  

 Constraints vector  

  Lwr Bound       Vector       Uppr Bound    Variable 

(units)  

  

              < 103.56009357 > 200.00000000  SIGMA-B   

              <   2.54629163 > 100.00000000  TAU   

              <   4.86091675 >   5.00000000  DEFLN   

              <   7.38891713 >  10.00000000  H-ON-B   

 5000.00000000 < 184550.01793812             F-CRIT   

  

 No of Constraint Violations =   0 

============================================================ 

  

isvalid = 

 

     1 

 

See also 

OptionsMatlab  

 



 32 

optimisationHistory  

Plots a trace of the optimisation search history 

 

optimisationHistory  plots a trace of the objective function over the search 

history. optimisationHistory  provides a convenient way to view the search 

history over a number of searches by combining this information in a single plot.  

 

Syntax 

optimisationHistory(RESULTS)  

optimisationHistory(RESULTS,LABELS)                  

optimisationHistory(RESULTS,LABELS,WITHMARKERS) 

optimisationHistory(RESULTS,LABELS,WITHMARKERS,ISLO G) 

 

Description  

optimisationHistory(RESULTS)  Where RESULTS is a cell array 

containing all of the search results to be plotted. The elements of this array may be 

either OptionsMatlab  output structures or vectors containing objective function 

values.     

 

optimisationHistory(RESULTS,LABELS)  Where LABELS is a cell array 

of strings containing the labels for a legend which annotates each of the searches 

plotted. LABELS must be the same length as RESULTS, otherwise LABELS may be 

empty if no legend is required. 

                  

optimisationHistory(RESULTS,LABELS,WITHMARKERS)  Where 

WITHMARKERS specifies whether markers are to be used on the plot. If WITHMARKERS 

equals 0 markers will not be used, otherwise markers are generated automatically 

(default). 

  

optimisationHistory(RESULTS,LABELS,WITHMARKERS,ISLO G) 

Where ISLOG specifies whether the scale of the Y-axis is logarithmic. If 

WITHMARKERS equals 0 a linear scale will be used (default), otherwise a logarithmic 

scale will be used for the Y-axis. 

 

Example 

The following example illustrates the use of optimisationHistory : 
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>> input = createBeamStruct; 

>> input.OMETHD = 1.6; 

>> resultscell{1} = OptionsMatlab(input); 

>> resultscell{2} = rand(200,1)*3000+1000; 

>> labels = {'Optivar SEEK','Random values'}   

>> optimisationHistory(resultscell, labels) 

         

 
Figure 7 The plot produced by optimisationHistory  

 

See also 

OptionsMatlab , plotOptionsSurfaces  
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optimisationSampleRSM  

Builds and samples a Response Surface Model. 

 

This function will generate an array of candidate points and then invokes 

OptionsMatlab to build a Response Surface Model (RSM) and samples the candidate 

points. The structure returned by optimisationSampleRSM  can then be plotted. 

 

Syntax 

STRUCTOUT = optimisationSampleRSM(STRUCTIN,RESULTS,  

NUMPOINTS)  

STRUCTOUT = optimisationSampleRSM(...,LVARS,UVARS)  

[STRUCTOUT, VECTORS] = optimisationSampleRSM(...)  

 

Description  

STRUCTOUT = optimisationSampleRSM(STRUCTIN,RESULTS,  

NUMPOINTS) where STRUCTIN is an OptionsMatlab  input structure which 

specifies the RSM, and RESULTS is an output structure containing the results over 

which the RSM is built. If NUMPOINTS is a scalar value, this will specify the total 

number of sample points which will be distributed evenly across NVRS dimensions.  

Otherwise NUMPOINTS must be a vector of length NVRS which specifies the number 

of sample points in each dimension (the total number of sample points will equal 

PROD(NUMPOINTS) ). The return argument STRUCTOUT will contain the output 

structure returned by OptionsMatlab .  

 

To hold a design variable constant set the corresponding element of 

NUMPOINTS equal to zero. All design variables for which NUMPOINTS is zero will be 

sampled at the value specified by STRUCTIN.VARS. 

  

STRUCTOUT = optimisationSampleRSM(...,LVARS,UVARS)  as above 

where LVARS and UVARS are vectors that specify the upper and lower limits between 

which the design variables are sampled. If these vectors are not specified the values of 

LVARS and UVARS defined in STRUCTIN are used.  

  

[STRUCTOUT, VECTORS] = optimisationSampleRSM(...)  as above 

where VECTORS is a cell array containing NVRS vectors of the points at which the 

each of the design variables were sampled.   
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Examples 

The first example will sample response surface models built over the beam problem.  

 

%Run a DOE in OptionsMatlab 

input1 = createBeamStruct; 

input1.NITERS = 50; 

output1 = OptionsMatlab(input1); 

  

%Create an input structure to search a RSM 

input2 = createBeamStruct; 

input2.OBJMOD = 3.3;       

input2.CONMOD = 3.3;         

  

%Sample 100 evenly spaced points  

output2 = optimisationSampleRSM(input2, output1, 10 0) 

 

output2 =  

 

      VARS: [2x1 double] 

    OBJFUN: 2.3606e+003 

      CONS: [5x1 double] 

    RSMTRC: [1x1 struct]  

 

%Plot an interpolated surface over the sampled poin ts 

fig = optimisationTerrain(output2, input2); 

%Plot the original points 

optimisationTrace(output1, input1, 1, fig); 
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Figure 8 First plot of the output of optimisationSampleRSM  

 

%Sample 5 points in the first dimension and 20 poin ts in the 

%second dimension  

output3 = optimisationSampleRSM(input2, output1, [5 , 20]) 

optimisationTerrain(output3, input2); 

 

output3 =  

 

      VARS: [2x1 double] 

    OBJFUN: 2.3606e+003 

      CONS: [5x1 double] 

    RSMTRC: [1x1 struct] 
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Figure 9 Second plot of the output of optimisationSampleRSM  

 

The second example samples the bump problem over two dimensions of a five 

dimensional problem. The values of the design variables which are held constant are 

specified by input5.VARS . 

 

%Run a DOE over the bump function in 5 dimensions  

input4 = createbumpstruct(2.8, 5); 

input4.NITERS = 50; 

output4 = OptionsMatlab(input4); 

 

%Build a RSM over the DOE and sample in the second and third 

%dimensions 

input5 = createbumpstruct(2.8, 5); 

input5.OBJMOD = 3.3; 

input5.CONMOD = 3.3; 

output5 = optimisationSampleRSM(input5,output4,[0,2 0,20,0,0]); 

 

%Plot the sampled points in the second and third di mensions 

optimisationTerrain(output5, input5, 1, [], [-37.5, 30], [2,3]); 
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Figure 10 Third plot of the output of optimisationSampleRSM  

 

See also 

optimisationTerrain , OptionsMatlab  
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optimisationSearchTrace 

Search trace history for values at optimum VARS 

 

This function searches the optimisation trace history(ies) in OBJTRC (and CONSTRC) 

or RSMTRC fields of an OptionsMatlab  output structure for the values of the 

objective and constraint functions at the optimum vector in the VARS field. The 

function will only operate on structures for which the values of OBJFUN and/or CONS 

are zero. This function is intended for use when a search has been performed at 

OLEVEL<2 and the values at the optimum point have not been returned. 

 

The edited structure is returned as an output argument. 

 

Syntax 

STRUCTOUTEDIT = optimisationSearchTrace(STRUCTOUT) 

 

Description 

 STRUCTOUTEDIT = optimisationSearchTrace(STRUCTOUT)  where 

STRUCTOUT is the results structure returned by OptionsMatlab  containing data 

points in a field OBJTRC (and CONSTRC) or RSMTRC. 

 

Example 

This example demonstrates how the values of the objectives and constraints are 

retrieved from the trace history when the search has been performed at OLEVEL=0: 

 

structin = createBeamStruct(2.8); 

structin.OLEVEL = 0;             %Validation call not made  

structin.NITERS = 10;            %Do a DoE of ten points  

structout = OptionsMatlab(structin) 

 

structout.OBJFUN 

structout.CONS 
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structout =  

 

       VARS: [2x1 double] 

     OBJFUN: 0 

       CONS: [5x1 double] 

     OBJTRC: [1x1 struct] 

    CONSTRC: [1x1 struct] 

 

 

ans = 

 

     0 

 

 

ans = 

 

     0 

     0 

     0 

     0 

     0 

 

 

This searches the problem at OLEVEL=0 and consequently the values of the objective 

and constraints at structout.VARS  are returned as zeros in structout.OBJFUN  

and structout.CONS . The values of the objective and constraints at the optimum 

point are assigned to these variables by searching the trace history: 

 

structout2 = optimisationSearchTrace(structout) 

structout2.OBJFUN 

structout2.CONS 
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structout2 =  

 

       VARS: [2x1 double] 

     OBJFUN: 5.0853e+003 

       CONS: [5x1 double] 

     OBJTRC: [1x1 struct] 

    CONSTRC: [1x1 struct] 

 

 

ans = 

 

  5.0853e+003 

 

 

ans = 

 

  1.0e+005 * 

 

    0.0004 

    0.0000 

    0.0000 

    0.0001 

    5.4913 

 

 

See also 

OptionsMatlab 
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optimisationTerrain  

Mesh, surface & contour plots of optimisation results 

 

This function plots surfaces produced by interpolation between the points at which the 

objective function was evaluated. The optimisation terrain may be represented as a 

mesh, surface or contour plot. The points which do not meet the optimisation 

constraints will be cropped from the surface. 

 

Syntax 

optimisationTerrain(STRUCTOUT,STRUCTIN)  

optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE)  

optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG )  

optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG ,VIEW)  

optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG ,VIEW,DIMS)  

FIG = optimisationTerrain(...) 

 

Description 

optimisationTerrain(STRUCTOUT,STRUCTIN)  where STRUCTOUT is 

the results structure returned by OptionsMatlab  and STRUCTIN is the 

OptionsMatlab  input structure. 

  

optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE)  as above 

where PLOTTYPE is a scalar which indicates the type of plot. The valid values of 

PLOTTYPE are: 

1 = Mesh of valid points [default] 

2 = Mesh of valid points in a single colour 

3 = Surface of valid points 

4 = 3D contour plot of valid points 

5 = 3D contour plot of valid points with a mesh 

6 = Mesh of all points  

7 = Mesh of all points in a single colour 

8 = Surface of all points 

9 = 3d contour plot of all points 

10 = 3d contour plot of all points with a mesh 

  

optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG )  as 

above where FIG  is the figure in which to plot the optimisation terrain. If FIG  is not 
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provide a new figure will be generated. FIG can also be empty []. 

  

optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG ,VIEW)  

as above where VIEW is a two element vector that sets the view of the 3D plot. For 

example VIEW = [0 90] for overhead plots. The default view is [-37.5, 30]. VIEW can 

also be empty []. 

  

optimisationTerrain(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG ,VIEW,

DIMS)  as above where DIMS is a two element vector specifying the two design 

variables to be plotted.  By default the first two design variables are plotted. 

  

FIG = optimisationTerrain(...)  as above where FIG  is a the number 

of figure in which the terrain was plotted. 

  

Example 

input = createBeamStruct; 

results = OptionsMatlab(input) 

optimisationTerrain(results, input) 

 

 
Figure 11 Plot produced by optimisationTerrain  

 

See also 

view , mesh, griddata  
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optimisationTestSuite 

A script which demonstrates the functionality of OptionsMatlab  with the Beam 

problem.  

 

See also 

beamcon_parallel , beamcon_parallel_parse , beamfun_parallel , 

beamfun_parallel_parse , beamobjcon , beamobjfun , createBeamStruct ,  

createBeamStructParallel , createBeamStructRSM  

 

optimisationTestSuiteComb 

A script which demonstrates the functionality of OptionsMatlab  with the combined 

objective and constraint function of the Bump problem. 

 

See also 

bumpfuncombined , bumpfuncombined_parallel , 

bumpfuncombined_parallel_parse ,  

createbumpstruct , createbumpstructparallel  

 

optimisationTestSuiteUncon 

A script which demonstrates the functionality of OptionsMatlab  with 

unconstrained Banana problem based upon Rosenbrock's function. 

 

See also 

bananafun , bananafun_parallel , bananafun_parallel_parse , 

createbananastruct , createbananastructparallel  
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optimisationTestSuiteSPM 

A script which demonstrates the stochastic process model functionality of 

OptionsMatlab  with constrained or unconstrained problems. 

 

This function is intended as an extension to the test suites and performs additional 

tests that search and sample stochastic process model RSMs using quick tuned hyper-

parameters. These tests can be invoked on constrained and unconstrained design 

problems and demonstrate how to build and investigate stochastic process models. 

 

Syntax 

 

optimisationTestSuiteSPM(STRUCTIN, STRUCTOUT_DOE, 

STRUCTOUT_HP) 

optimisationTestSuiteSPM(..., PLOTTYPE) 

 

Description 

 optimisationTestSuiteSPM(STRUCTIN, STRUCTOUT_DOE, 

STRUCTOUT_HP) where STRUCTIN is the default input data structure for the design 

problem, STRUCTOUT_DOE is the trace history of a previous design search which 

contains the information required to generate the RSM and STRUCTOUT_HP is the 

results of tuning the hyperparameters of a stochastic process model over the points in 

the DoE. 

 

 optimisationTestSuiteSPM(..., PLOTTYPE)  where PLOTTYPE is a 

scalar which indicates the type of plot used in calls to optimisationTerrain . The 

valid values of PLOTTYPE are: 

0 = No plotting 

1 = Mesh of valid points [default] 

2 = Mesh of valid points in a single colour 

3 = Surface of valid points 

4 = 3D contour plot of valid points 

5 = 3D contour plot of valid points with a mesh 

6 = Mesh of all points  

7 = Mesh of all points in a single colour 

8 = Surface of all points 

9 = 3d contour plot of all points 

10 = 3d contour plot of all points with a mesh 
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Example 

This example demonstrates how the SPM tests can be invoked on the Banana problem 

 

>> inputStruct = createbananastruct; 

 

Perform a 50 point DoE over the problem 

 

>> input1 = inputStruct; 

>> input1.OLEVEL = 0; 

>> input1.OMETHD = 2.8;        %Design of Experiments  

>> input1.NITERS = 50;         %Number of iterations  

>> input1.MC_TYPE = 4;         %Full factorial DoE  

>> output1 = OptionsMatlab(input1); 

 

Perform a quick tuning of the hyperparameters of the stochastic process model RSM 

 

>> input10 = inputStruct; 

>> input10.OLEVEL = 0; 

>> input10.OBJMOD = 4.1;       %Stochastic process model  

>> input10.CONMOD = 4.1;       %Stochastic process model  

>> input10.RSM_QCK_HP = 1;     %Quick hyperparameter tuning 

>> output10 = OptionsMatlab(input10, output1); 

 

Invoke the stochastic process model test suite on the problem 

 

>> optimisationTestSuiteSPM(inputStruct, output1, o utput10, 5) 
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Figure 12 Sampled stochastic process model RSM surface and result of the search for the optimum 

 

 
Figure 13 Sampled Root Mean Square Error of the stochastic process model RSM and the result of the 

search for the maximum in the surface. 
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Figure 14 Sampled Expected Improvement of the stochastic process model RSM and the result of the 

search for the maximum in the surface. NB. When the direction of the underlying search is negative 

(minimisation) Options automatically inverts the surface to seek the numerical minimum in the EI 

surface which will be the point of maximum EI in the true problem – the test suite plots the raw 

minimisation search in figure 1 and plots the inverted surface in figure 2. 

 

 
Figure 15 Sampled Probability of Improvement of the stochastic process model RSM and the result of 

the search for the maximum in the surface. NB. When the direction of the underlying search is negative 

(minimisation) Options automatically inverts the surface to seek the numerical minimum in the PI 
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surface which will be the point of maximum PI in the true problem – the test suite plots the raw 

minimisation search in figure 1 and plots the inverted surface in figure 2. 

 

 

See also 

optimisationTestSuite, optimisationTestSuiteComb, 

optimisationTestSuiteUncon 
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optimisationTilePlot  

Tile plot of four dimensions of a problem  

 

This plots the behaviour of the objective function over four dimensions of a problem. 

The first two of the design variables (A and B) are plotted across rows and columns of 

tiles. The third and fourth design variables (1 and 2) will be plotted across the x and y 

axes of each tile. 

  

Each design variable will be sampled at the specified number of points between the 

limits defined within the fields LVARS and UVARS of STRUCTIN. For example a 

problem in which the variables A and B are each sampled at two points the resulting 

tile plot will have four tiles.  

  

 
 

The value of the objective function is plotted as a surface within each 2D tile. The 

surface colormap is consistent between the tiles. The tile plot is interactive, and by 

clicking on a tile it is visible as a 3D plot in a separate figure window. 

 

Syntax 

optimisationTilePlot(STRUCTOUT,STRUCTIN,DESIGNVARS,  

NUMPOINTS,TILETYPE) 

optimisationTilePlot(...,PLOTPOINTS) 

optimisationTilePlot(...,FIG) 

FIG = optimisationTilePlot(...) 

[FIG,TILESOUT,TILESIN] = optimisationTilePlot(...) 

optimisationTilePlot(TILESOUT,TILESIN) 

 

Description 

optimisationTilePlot(STRUCTOUT,STRUCTIN,DESIGNVARS,  

NUMPOINTS,TILETYPE) where STRUCTOUT is the results structure returned by 

OptionsMatlab and STRUCTIN is the corresponding OptionsMatlab input structure. If 
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the TILETYPE is direct search STRUCTOUT can be empty [] . 

  

DESIGNVARS must be a four element vector that defines the design variables 

to be plotted [A,B,1,2] based upon their index in STRUCTIN.VARS. NUMPOINTS must 

also be a four element vector that defines the number of points to be evaluated for 

each of the DESIGNVARS. 

  

TILETYPE is an integer that defines how the tile is to be evaluated. The valid 

values of TILETYPE are: 

1 = Evaluation of the RSM defined by the fields OBJMOD and 

CONMOD of STRUCTIN 

                            2 = Direct search of the objective function 

  

optimisationTilePlot(...,PLOTPOINTS)  as above when 

PLOTPOINTS is a flag that indicates whether to plot the data points. For a RSM if  

PLOTPOINTS = 1 the original data points contained in STRUCTOUT will be plotted in 

each tile, otherwise for a direct search the evaluated points will be plotted. If  

PLOTPOINTS = 0 the points will not be plotted. Default value PLOTPOINTS = 0. 

  

optimisationTilePlot(...,FIG)  as above where FIG  is the figure in 

which to plot the tile plot. If FIG  is not provide a new figure will be generated. FIG  

can also be empty [] . 

  

FIG = optimisationTilePlot(...)  as above where FIG  is a the 

number of figure in which the tiles were plotted. 

     

[FIG,TILESOUT,TILESIN] = optimisationTilePlot(...)  as above 

where TILESOUT and TILESIN  are cell arrays containing the OptionsMatlab output 

and input structures that were used to generate the surfaces for each of the tiles. 

  

optimisationTilePlot(TILESOUT,TILESIN)  replots the tile plot with 

data returned in the cell arrays TILESOUT and TILEIN . All other input arguments are 

optional. The PLOTPOINTS argument can be supplied to indicate that the data points 

should be plotted. 

  

Examples 

The following example demonstrates a tile plot of the peaks4d problem using direct 

search: 
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>> structin = createpeaks4dstruct(2.8); 

>> optimisationTilePlot([],structin,[3,4,1,2],[2,3, 15,15],2) 

  

 
Figure 16 Tile plot of the peaks4d problem produced by direct search 

 

By clicking on the tiles of the tile plot with the mouse that tile will be displayed in 

3D. For example by clicking on the tile in the top left of the figure the following plot 

will be displayed: 
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Figure 17 Tiles may be viewed in 3D by clicking on the tile plot 

 

 

The second example demonstrates a tile plot of the peaks4d problem produced using a 

Shepard RSM. Using the PLOTPOINTS argument the points of the original data set 

are also plotted: 

         

>> structin = createpeaks4dstruct(2.8); 

>> structin.NITERS = 25; 

>> structout = OptionsMatlab(structin); 

   

>> structin.OBJMOD = 1;  %Shepard RSM 

>> structin.CONMOD = 1; 

>> optimisationTilePlot(structout,structin,[3,4,1,2 ], 

[2,3,15,15],1,1) 
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Figure 18 Tile plot of the peaks4d problem produced with a Shepard RSM and the original data set  

 

See also 

optimisationTerrain , optimisationTrace  
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optimisationTrace  

Plots the objective function against two design variables 

 

This function plots points at which the objective function was evaluated. The 

objective function points may be plotted in colour or black and white. The points may 

also be joined to represent the sequence of function evaluations. 

 

Syntax 

optimisationTrace(STRUCTOUT,STRUCTIN)  

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE)  

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG)  

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,V IEW)  

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,V IEW, 

DIMS)  

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG, 

VIEW,DIMS,LABELS)  

FIG = optimisationTrace(...)  

 

Description  

optimisationTrace(STRUCTOUT,STRUCTIN)  where STRUCTOUT is the 

results structure returned by OptionsMatlab  and STRUCTIN is the 

OptionsMatlab  input structure. 

  

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE)  as above 

where PLOTTYPE is a scalar which indicates the type of plot. The valid values of 

PLOTTYPE are:  

1 = Coloured point plot [default] 

2 = Black and white point plot 

3 = Coloured joined point plot 

4 = Back and white joined point plot 

  

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG)  as above 

where FIG  is the figure in which to plot the optimisation terrain. If FIG  is not provide 

a new figure will be generated. FIG can also be empty []. 

  

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,V IEW)  as 

above where VIEW is a two element vector that sets the view of the 3D plot. For 



 56 

example VIEW = [0 90] for overhead plots. The default view is [-37.5, 30]. VIEW can 

also be empty []. 

  

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,V IEW, 

DIMS)  as above where DIMS is a two element vector specifying the two design 

variables to be plotted.  By default the first two design variables are plotted. 

  

optimisationTrace(STRUCTOUT,STRUCTIN,PLOTTYPE,FIG,V IEW, 

DIMS,LABELS)  as above where LABELS is a flag specifying whether the plot should 

be labelled. By default labelling is switched off (LABELS = 0). 

  

FIG = optimisationTrace(...)  as above where FIG  is a the number of 

figure in which the terrain was plotted. 

  

Example  

input = createBeamStruct; 

results = OptionsMatlab(input) 

optimisationTrace(results, input) 

 

 
Figure 19 Plot produced by optimisationTrace  

 

See also  

view , mesh, griddata  
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OptionsMatlab  

Options optimisation and design search package 

 

OptionsMatlab  makes the Options optimisation and design search package 

available to Matlab, calling user-defined constraint and objective functions defined as 

Matlab functions. OptionsMatlab  also supports a number of Response Surface 

Model algorithms that allow optimisation to be carried out cheaply using 

approximations of the values of the objective function and/or constraints. 

  

Syntax 

STRUCTOUT = OptionsMatlab(STRUCTIN) 

STRUCTOUT = OptionsMatlab(STRUCTIN,STRUCTOUT) 

     

Description 

STRUCTOUT = OptionsMatlab(STRUCTIN)  where STRUCTIN is a Matlab 

structure containing the problem definition and control parameters for the 

optimisation algorithms, and STRUCTOUT is a structure containing optimum design 

variables and the objective function and constraint values at this point. 

  

STRUCTOUT2 = OptionsMatlab(STRUCTIN,STRUCTOUT)  where 

STRUCTIN is a Matlab structure containing the problem definition and control 

parameters for an optimisation over a Response Surface Model (RSM), and where 

STRUCTOUT is the trace history of a previous design search which contains the 

information required to generate the RSM. STRUCTIN should contain values for either 

of the parameters OBJMOD or CONMOD which specify the RSM used, if any, for the 

objective function and constraints. The design search used to generate data points 

from which the RSM is produced should ideally be a space-filling search such as a 

Genetic Algorithm (GA) or Design of Experiments (DoE).  

  

Input argument 

The structure STRUCTIN must contain a number of mandatory fields, and may also 

contain a number of optional control parameters. The mandatory fields required are:  

DNULL: A number that corresponds to a NULL value in the problem setup 

OLEVEL: [optional] The output level of the OptionsMatlab  package [0-10]. 

Default value OLEVEL = 1. 

MAXJOBS: [optional] Allows the user to limit the number of parallel jobs. 

Default value MAXJOBS = 1.  
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NVRS: The number of design variables 

VARS: A vector of NVRS design variables corresponding to the initial design 

variables to be evaluated 

VNAM: A cell array of length NVRS containing the names of the design 

variables for the internal GENDAT database (variable names must not exceed 

10 chars)  

LVARS: A vector of length NVRS representing the lower limits to the design 

variable values. 

UVARS: A vector of length NVRS representing the upper limits to the design 

variable values. 

NDVRS: [optional] The maximum number of discrete design variable values 

for any single design variable. Default value NDVRS = 0, where all design 

variables are contiguous. 

DVARS: [required if NDVRS > 0] A matrix of size NVRS by NDVRS of the 

discrete design variable values (set to DNULL if contiguous) 

  

NCONS: [optional] The number of design constraints. If NCONS is set to zero 

the problem will be unconstrained, and OPTCON will not be invoked. Default 

value NCONS = 0. 

CNAM: [required if NCONS > 0] A cell array of length NCONS containing the 

names of the design constraints for the internal GENDAT database (constraint 

names must not exceed 10 chars)   

LCONS: [required if NCONS > 0] A vector of length NCONS representing the 

lower limits to the design constraints (set to DNULL if no lower limit)  

UCONS: [required if NCONS > 0] A vector of length NCONS representing the 

upper limits to the design constraints (set to DNULL if no upper limit)  

 

NPARAMS: [optional] The number of user-defined parameters. If NPARAMS are 

set to zero an empty parameter array will be passed to the user-defined 

functions. Default value NPARAMS = 0. 

PARAMS: [required if NPARAMS > 0] A vector of NPARAMS user-defined 

parameter values  

PNAM: [required if NPARAMS > 0] A cell array of length NPARAMS containing 

the names of the user-defined parameters for the internal GENDAT database 

(parameter names must not exceed 10 chars)   

  

ONAM: A char array (max length 10 chars) containing the name of the objective 
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function in the internal GENDAT database.   

 

OMETHD: The number of the optimisation or design search algorithm to be 

used. The available search methods are:  

0.0  to just evaluate the user's problem code at the point specified   

1.1  for OPTIVAR routine ADRANS  

1.2  for OPTIVAR routine DAVID  

1.3  for OPTIVAR routine FLETCH  

1.4  for OPTIVAR routine JO  

1.5  for OPTIVAR routine PDS  

1.6  for OPTIVAR routine SEEK  

1.7  for OPTIVAR routine SIMPLX  

1.8  for OPTIVAR routine APPROX  

1.9  for OPTIVAR routine RANDOM  

2.1  for user specified routine OPTUM1  

2.2  for user specified routine OPTUM2  

2.3  for NAG routine E04UCF  

2.4  for bit climbing  

2.5  for dynamic hill climbing  

2.6  for population based incremental learning  

2.7  for numerical recipes routines  

2.8  for design of experiment based routines  

3.11  for Schwefel library Fibonacci search  

3.12  for Schwefel library Golden section search  

3.13  for Schwefel library Lagrange interval search  

3.2  for Schwefel library Hooke and Jeeves search  

3.3  for Schwefel library Rosenbrock search  

3.41  for Schwefel library DSCG search  

3.42  for Schwefel library DSCP search  

3.5  for Schwefel library Powell search  

3.6  for Schwefel library DFPS search  

3.7  for Schwefel library Simplexsearch  

3.8  for Schwefel library Complexsearch  

3.91  for Schwefel library two-membered evolution strategy  

3.92  for Schwefel library multi-membered evolution strategy  

4  for genetic algorithm search  

5  for simulated annealing  

6  for evolutionary programming  
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7  for evolution strategy  

DIRCTN: The search direction (in the range +/-2). The optimizers try to 

minimize the objective function if this argument is -1, maximize it if is +1, 

minimize the log of the function if it is -2 or maximize the log if it is +2 

NITERS: The maximum number of iterations to be used 

  

OPTJOB: The name of the Matlab function responsible for calling the user-

defined objective and constraint functions (maximum length 255 chars) 

OPTFUN: A string describing the user-defined objective function routine to be 

called by the OPTJOB (maximum length 255 chars)  

OPTCON: [required if NCONS > 0] A string describing the user-defined 

constraint function routine to be called by the OPTJOB (maximum length 255 

chars)   

  

OBJMOD: [optional] The RSM method to be used to approximate the value of 

objective function. The available methods are:  

1.0  for a Shepard response surface model should 

2.1  for linear Radial Basis Function  

2.2  for thin plate Radial Basis Function  

2.3  for cubic splines Radial Basis Function  

2.4  for cubic splines Radial Basis Function with regression via 

reduced bases  

3.1  for mean polynomial regression model 

3.2  for first order polynomial regression model 

3.3  for first order polynomial regression model plus squares   

3.4  for first order polynomial regression model plus products 

(cross-terms)  

3.5  for second order polynomial regression model  

3.6  for second order polynomial regression model plus cubes 

4.1  for a Stochastic Process Model 

4.2  for the root mean square error of the Stochastic Process Model  

4.3  for the expected improvement of the Stochastic Process Model 

4.31 for the expected improvement of the constrained Stochastic 

 Process Model [requires CONMOD=4.1] 

4.32 for the feasibility of improvement of the constrained Stochastic 

 Process Model [requires CONMOD=4.1] 

4.33 for the probability of improvement of the Stochastic Process 

Model 
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0.0  if the underlying user supplied function is to be called.   

CONMOD: [optional] The RSM method to be used to approximate the values of 

the constraints. The available methods are: 

1.0  for a Shepard response surface model should 

2.1  for linear Radial Basis Function  

2.2  for thin plate Radial Basis Function  

2.3  for cubic splines Radial Basis Function  

2.4  for cubic splines Radial Basis Function with regression via 

reduced bases  

3.1  for mean polynomial regression model 

3.2  for first order polynomial regression model 

3.3  for first order polynomial regression model plus squares  

3.4  for first order polynomial regression model plus products 

(cross-terms)  

3.5  for second order polynomial regression model  

3.6  for second order polynomial regression model plus cubes 

4.1  for a Stochastic Process Model 

4.2  for the root mean square error of the Stochastic Process Model 

4.3  for the expected improvement of the Stochastic Process Model  

0.0  if the underlying user supplied function is to be called.  

  

NUMUPDATE: [optional] is a scalar which determines the number of update 

points to be returned when a search routine is run over a RSM. Update points 

can be used to improve the accuracy of the dataset that was used to generate 

the RSM. The update points are return in a sub-structure DOE_TRACE in the 

output structure. If NUMUPDATE is not specified then update points are not 

returned by OptionsMatlab . 

  

DOE_TRACE: [optional] is a structure containing the user-supplied DOE points 

to be used when the control parameter MC_TYPE equals 7. DOE_TRACE 

requires two mandatory fields:   

DOE_TRACE.NCALLS: the number of user-supplied DOE points. Note 

that DOE_TRACE.NCALLS must equal NITERS-1 as the DOE will first 

evaluate the design variables VARS. 

DOE_TRACE.VARS: the design points to be evaluated during the DOE 

(size NVARS by DOE_TRACE.NCALLS) 

  

OBJHYPER: [optional] is a structure containing Stochastic Process Model 
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hyper-parameters used to approximate the value of the objective function. 

OBJHYPER has three recognised fields:  

OBJHYPER.OBJ_LAMBDA: the value of hyper-parameter LAMBDA  

OBJHYPER.OBJ_THETA: the values of hyper-parameter THETA 

 (length NVARS; see RSM_QCK_HP)  

OBJHYPER.OBJ_EXP: the values of hyper-parameter EXP (length 

NVARS; see RSM_QCK_HP)  

CONHYPER: [optional] is a structure containing Stochastic Process Model 

hyper-parameters used to approximate the value of the constraints. CONHYPER 

has three recognised fields: 

CONHYPER.CST_LAMBDA: the value of hyper-parameter LAMBDA  

CONHYPER.CST_THETA: the values of hyper-parameter THETA 

(length NVARS; see RSM_QCK_HP)   

CONHYPER.CST_EXP: the values of hyper-parameter EXP (length 

NVARS; see RSM_QCK_HP)   

 

RSM_QCK_HP: [optional] is a flag that indicates whether quick hyper-

parameter tuning should be used when building and searching a Stochastic 

Process Model RSM. Quick tuning will be used when RSM_QCK_HP is true 

(e.g. 1). In this condition single values of the hyper-parameters THETA and 

EXP will be tuned across all design variables, rather than NVARS values of 

THETA and EXP corresponding to each design variable. This approach is faster 

but less accurate, and may be appropriate for some problems. If true the values 

of OBJ_EXP and OBJ_THETA, and of CST_EXP and CST_THETA (in the 

structures OBJHYPER and CONHYPER) will be scalar, rather than a vector of 

length NVARS. Quick hyper-parameter tuning is not available when manually 

tuning the hyper-parameters (i.e. when TUNEHYPER>0). 

 

USERDATA: [optional] is an optional field which can contain any type of 

Matlab variable. This variable will be passed to the user-defined objective and 

constraint functions via the OPTJOB function.   

  

TUNEHYPER: [optional] is a flag that indicates whether Stochastic Process 

Model hyper-parameters should be tuned over the search history contained in 

the second input argument. Hyper-parameters will be tuned if TUNEHYPER is 

true (e.g. 1). When TUNEHYPER is called the hyper-parameters are tuned using 

the search method specified by the input structure. Note that the user's 

problem is not searched, and the output structure will return the structures 
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OBJHYPER (and CONHYPER where appropriate) in addition to the objective 

function OBJ_CLF (and CST_CLF).   

  

It is possible to tune the values of specific hyper-parameters with following 

values of TUNEHYPER: 

0  No tuning  

1 Tune THETA, EXP and LAMBDA 

2  Tune THETA and EXP  

3 Tune THETA and LAMBDA 

4  Tune THETA 

If a value of TUNEHYPER greater than 1 is specified, and no user-defined 

hyper-parameters are supplied (via OBJHYPER or CSTHYPER), then initial 

values for all hyper-parameters will be generated but only the specified hyper-

parameters will be tuned with the designated search method. 

  

CHKPT_INTV: [optional] is an integer value that specifies the interval with 

which the search history is checkpointed to a MAT file. If parallel optimiser is 

used (OMETHD 2.8 or 4) CHKPT_INTV should be a multiple of MAXJOBS. If 

CHKPT_INTV equals 0 there will be no checkpointing (default). If OMETHD 

equals 4 CHKPT_INTV will contain the structure GA_VARS (once available) 

that will allow the genetic algorithm to be restarted.  

CHKPT_FILE: [optional] specifies the file name that the checkpoint file is 

written (maximum length 20 characters). The default checkpoint file name is 

'OptionsCHKPNT.mat'. 

 

OPTUM1: [optional] A string describing the user-defined sequential 

optimisation routine to be called when OPTUM1 = 2.1 (maximum length 255 

chars). The default value 'optum1'  corresponds to the example 

implementation of a random optimiser (see help optum1  for more details). 

  

Other valid STRUCTIN fields correspond to scalar Options control parameters 

documented in the Options manual (http://www.soton.ac.uk/~ajk/options.ps) sections 

8.8 and 8.9. See also FAQ section 5.16. These control parameters include: 

  

BC_NBIN, BC_NRANDM, BC_PENAL, CST_BAD_PT, DHC_INITS Z, 

DHC_NRANDM, DHC_PENAL, DHC_THRESH, DOE_NRANDM, EP_IMUTNT, 

EP_NBIN, EP_NPOP, EP_NRANDM, EP_PENAL, EP_TOURN, ES _DELSIG, 

ES_MDSCRT, ES_NCPOP, ES_NPPOP, ES_NRANDM, ES_PENAL, ES_UCHILD, 



 64 

ES_VDSCRT, FUSION_TYP, GA_ALPHA, GA_DMAX, GA_DMIN, GA_NBIN, 

GA_NBREED, GA_NCLUST, GA_NPOP, GA_NRANDM, GA_PBEST, GA_PCROSS, 

GA_PENAL, GA_PINVRT, GA_PMUTNT, GA_PRPTNL, GA_PSEED, MC_MAND, 

MC_P1, MC_P2, MC_PENAL, MC_TYPE, NAG_BIGBND, NAG_ET A, NAG_RHO, 

OBJ_BAD_PT, OPT_CTOL, OPT_STEP, OPT_TOL, OPT_TSIZE,  OVR_CONV, 

OVR_MAND, OVR_NPTS, OVR_PENAL, OVR_SEED, OVR_SHRK, OVR_SIMP, 

OVR_STEP, OVR_STOP, PL_LRATE, PL_NBIN, PL_NPOP, PL_ NRANDM, 

PL_PENAL, PL_PMUTNT, RSM_EIF_W, RSM_NCSKIP, RSM_NSK IP, 

RSM_NULL_T, SA_NBIN, SA_NRANDM, SA_PCOLD, SA_PENAL,  SA_PMUTNT, 

SA_PTEMP, SA_PWIDTH, SA_SCHED, SC_BKORRL, SC_CONV, SC_DELI, 

SC_DELP, SC_DELS, SC_IELTER, SC_IREKOM, SC_KONVKR, SC_LR, 

SC_LS, SC_NACHKO, SC_NITERS, SC_NRANDM, SC_NS, SC_P ENAL, 

SC_SN, SC_TYPE 

 

Output argument  

The structure STRUCTOUT contains the following fields: 

VARS: The optimum design variables 

OBJFUN: The objective function value at VARS 

CONS: The constraint values at VARS 

 

Following a direct search over the user's code the objective function and constraint 

search histories are returned to the user in to sub-structures, OBJTRC and CONSTRC 

(respectively). Following evaluation of a RSM search histories are returned in the 

field RSMTRC.  

OBJTRC: The history of evaluations of the objective function  

OBJTRC.NCALLS: The number of objective function evaluations 

OBJTRC.OBJFUN: The values of the objective function (a vector of length 

OBJTRC.NCALLS) 

OBJTRC.VARS: The variables at which the objective function was evaluated 

(size NVARS by OBJTRC.NCALLS) 

 

CONSTRC: The history of evaluations of the constraints 

CONSTRC.NCALLS: The number of constraint evaluations 

CONSTRC.CONS: The values of the constraints (size NCONS by 

CONSTRC.NCALLS)  

CONSTRC.VARS: The variables at which the constraints were evaluated (size 

NVARS by CONSTRC.NCALLS)  

CONSTRC.UCONS: The upper limits to the constraints at each evaluation (size 
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NCONS by CONSTRC.NCALLS)   

CONSTRC.LCONS: The lower limits to the constraints at each evaluation (size 

NCONS by CONSTRC.NCALLS)   

  

If the field NUMUPDATE is specified in the input structure for a search over a RSM a 

sub-structure DOE_TRACE is returned containing suggested points that would improve 

the initial dataset. 

DOE_TRACE: Suggested points that would improve the dataset 

DOE_TRACE.NCALLS: The number of suggested update points 

DOE_TRACE.VARS: The design variables  

  

Following an optimisation over a RSM OptionsMatlab will return the search history 

in the following field of the output structure (OptionsMatlab 0.9.0+): 

RSMTRC: Search history of points evaluated over a RSM 

RSMTRC.NCALLS: The number of user specified points used 

RSMTRC.VARS: The user-specified design points used 

RSMTRC.OBJFUN: The value of the objective function RSM at the user-

specified design points. 

RSMTRC.CONS: The value of the problem constraint RSM at the user-specified 

design points. 

RSMTRC.UCONS: The upper limits of the problem constraint at the user-

specified design points. 

RSMTRC.LCONS: The upper limits of the problem constraint at the user-

specified design points. 

 

If a genetic algorithm (OMETHD=4) is used OptionsMatlab will return the values of the 

GA variables that may be used to restart the genetic algorithm. This information is 

contained in the following field of the output structure: 

GA_VARS: The GA restart variables  

GA_VARS.GA_POP: The GA population design variable and fitness values  

GA_VARS.GA_CODE: The final GA code string values 

GA_VARS.GA_NRANDM: The random number sequence used by the genetic 

algorithm. 

  

Following an optimisation over approximate values of the objective and constraint 

functions using a Stochastic Process Model (OBJMOD and CONMOD respectively) the 

values and limits of the hyper-parameters will be returned. The hyper-parameters used 

to approximate values of the objective function will be returned in the structure 
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OBJHYPER, and the constraint hyper-parameters will be returning in the structure 

CONHYPER.  The structures OBJHYPER and CONHYPER are identical to the optional 

fields of the input structure described above. 

 

Notes 

OptionsMatlab requires a valid Options licence file. 

  

See also 

optjob , createBeamStruct  
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optjob  

Multiple objective function and constraint evaluation for OptionsMatlab   

 

Optjob.m  provides an example implementation of a broker for multiple objective 

function and constraint evaluations for OptionsMatlab . These evaluations are done 

in serial, other implementations of optjob  support concurrent evaluations.  

  

The optjob  function to be used by OptionsMatlab  must be set in the OPTJOB field 

of the structure passed to OptionsMatlab . The function name of user-defined 

objective function and constraint functions should be set in the OPTFUN and OPTCON 

fields for the structure passed to OptionsMatlab . If the OPTFUN and OPTCON fields 

are equal it is assumed that the objective function routine will return constraint values 

as the fifth output argument (see below).  

  

The user-defined objective function called by optjob  should conform to the 

following function prototype: 

 

[eval,gd,H,PARAMS,CONS,U_CONS,L_CONS]=opfun(VARS,PA RAMS, 

U_CONS,L_CONS,DATA) 

  

The user-defined constraint function called by optjob  should conform to the 

following function prototype: 

 

[CONS,ceq,GC,Gceq,PARAMS,U_CONS,L_CONS]=objcon(VARS , 

PARAMS,U_CONS,L_CONS,DATA)  

  

Reimplementing optjob 

OPTJOB takes a matrix of size NJOBS by NVARS and returns a vector of function 

evaluations of length NJOBS. Other arguments include the names of the user-defined 

OPTFUN and OPTCON functions, as well as user defined parameters, constraints and 

upper and lower constraint limits.    

  

The minimum required function prototype of the optjob  function is: 

 

[evals,cons] = optjob(optfunname,optconname,vars) 

 

where the input arguments are: 
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optfunname : the name of the user defined objective function 

optconname : the name of the user defined constraint functions 

vars : the matrix of design variables size NJOBS by NVARS (where NJOBS is 

the number of design points to be evaluated and NVARS the number of design 

variables)   

where the output arguments are: 

evals : a vector of NJOBS function evaluations  

cons : a matrix of NJOBS by NCONS constraints 

   

The complete function prototype of the optjob  function is: 

 

[evals,cons,params,u_cons,l_cons]=optjob(optfunnam,  

optconnam,vars,params,cons,u_cons,l_cons,data)  

 

as above where additional input arguments are  

params : a vector of size NPARAMS of user-defined parameters 

cons : a vector of NCONS constraints at the design variables to be evaluated 

(applies only to a single function evaluation for OPTFUN only otherwise 

empty)   

u_cons : a vector of size NCONS of the upper limits for the user defined 

constraints (where there is no limit set to inf )   

l_cons : a vector of size NCONS of the lower limits for the user defined 

constraints (where there is no limit set to -inf ) 

data : the user-supplied data passed unaltered from the field USERDATA of the 

input structure   

and as above where additional output arguments are: 

params : a revised vector of size NPARAMS of user defined parameters 

u_cons : a revised vector of size NCONS of the upper limits for the user 

defined constraints   

l_cons : a revised vector of size NCONS of the lower limits for the user 

defined constraints   

   

The optjob  Matlab function is invoked from three places with OptionsMatlab , 

OPTJOB, OPTFUN and OPTCON, each of these FORTRAN subroutines will use the 

optjob  function in a different fashion.   

   

OPTJOB: Calls the optjob  Matlab function for NJOBS function (and 

constraint) evaluations. Passes all of the available input parameters, apart from 
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the vector cons  for which is substituted an empty array. The user-defined 

routine optfun  must be called for each of the NJOBS designs supplied. If the 

problem is constrained the constraints will be can be evaluated by a combined 

objective/constraint function (where optfunname == optconname ), or by a 

separate constraint function (defined by optconname ). For unconstrained 

optimisations the argument optconname  will be empty. OPTJOB requires the 

output arguments evals  and cons  to be returned, all other output arguments 

will be ignored.  

   

OPTFUN: Calls the optjob  Matlab function for a single function evaluation. 

Passes all of the available input parameters, apart from the string optconnam  

for which is substituted an empty string. The user-defined routine 

optfunname  is called once. Requires the output argument evals  to be 

returned, the cons  output argument will be ignored, and the params , u_cons  

and l_cons  output arguments will be used to update the corresponding values 

in the internal GENDAT database if returned.        

   

OPTCON: Calls the optjob  Matlab function for a single constraint evaluation. 

Passes all of the available input parameters, apart from the string optfunnam  

for which is substituted an empty string and the vector cons  for which is 

substituted an empty array. The user-defined routine optconname  is called 

once. Requires the output argument cons  to be returned, the evals  output 

argument will be ignored, and the params , u_cons  and l_cons  output 

arguments will be used to update the corresponding values in the internal 

GENDAT database if returned.        

  

See also 

OptionsMatlab , createBeamStruct  
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optjobparallel  

Multiple objective function and constraint evaluation for OptionsMatlab  

 

Optjobparallel  evaluates user defined objective and constraint functions in 

parallel. To evaluate the objective function the user must define two functions, the 

first which initiates the calculation of the objective function, and the second which 

returns the values of the objective function.  

  

In practice the first function will typically perform a Globus GRAM job submission 

returning a handle which can be polled and an application specific job ID. The second 

function will typically use the application specific job ID to retrieve the output of the 

GRAM job and parse the objective function (and optionally the values of the 

constraints also). 

     

The user-defined objective function called by optjobparallel  to perform the job 

submission should conform to the following function prototype:  

 

[JOBHANDLE,RETRIEVALID]=objfun(VARS,PARAMS,U_CONS,L _CONS,

DATA) where JOBHANDLE is a GRAM job handle which can be polled by 

gd_jobpoll , and RETRIEVALID is an identifier used by retrieve the results. If 

JOBHANDLE is empty it will not be polled. The only mandatory input argument is 

VARS, the other input arguments PARAMS, U_CONS, L_CONS and DATA are all 

optional.   

     

This function must be specified in the OPTFUN field of the OptionsMatlab  input 

structure.  

  

A second retrieval function is be defined to return the value of the objective function. 

This function must have the same name as the job submission function appended with 

'_parse' . For example when the objective function submission function is saved in 

the file 'objfun.m'  the retrieval function must be saved in the file 

'objfun_parse.m' .   

 

The retrieval function should conform to the following function prototype:  

 

[EVAL,PARAMS,CONS,U_CONS,L_CONS]=objfun_parse(RETRI EVALID

)  where RETRIEVALID is the identifier returned by the job submission function. 
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EVAL is the value of the objective function. The other output arguments PARAMS, 

CONS, U_CONS and L_CONS are all optional. CONS is the value of the constraints. 

  

If the value of the constraints and the objective function are return by the same 

function the field OPTCON should be set to equal OPTFUN. Alternatively if the 

constraints are evaluated independently of the objective function the user may also 

define two separate functions to perform the job submission and to parse the 

constraints.  In this case the functions indicated by the field OPTCON should conform 

to the following function prototypes: 

  

[JOBHANDLE,RETRIEVALID]=objcon(VARS,PARAMS,U_CONS,L _CONS,DATA) 

[CONS,PARAMS,U_CONS,L_CONS] = objcon_parse(RETRIEVA LID) 

  

See also 

optjob , OptionsMatlab , optjobparallel2  
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optjobparallel2 

Multiple objective function and constraint evaluation for OptionsMatlab   

 

optjobparallel2  evaluates user defined objective and constraint functions in 

parallel. To evaluate the objective function the user must define two functions, the 

first which initiates the calculation of the objective function, and the second which 

determines the state of the job and, if complete, return the value of the objective or 

constraint functions.   

  

The user-defined objective function called by optjobparallel2  to perform the job 

submission should conform to the following function prototype: 

         

RETRIEVALID = objfun(VARS,PARAMS,U_CONS,L_CONS,DATA )  where 

RETRIEVALID is an identifier used by retrieve the results, for example this may be a 

structure containing a number of fields. The only mandatory input argument is VARS, 

the other input arguments PARAMS, U_CONS, L_CONS and DATA are all optional. 

 

This function must be specified in the OPTFUN field of the OptionsMatlab  input 

structure. 

  

A second retrieval function is be defined to determine whether the job has completed, 

and if so return the value of the objective function. This function must have the same 

name as the job submission function appended with '_parse2' . For example, when 

the objective function submission function is saved in the file 'objfun.m'  the 

retrieval function must be saved in the file 'objfun_parse2.m' .   

  

The retrieval function should conform to the following function prototype:  

 

[EVAL,PARAMS,CONS,U_CONS,L_CONS]=objfun_parse2( 

RETRIEVALID)  where RETRIEVALID is the identifier returned by the job submission 

function. EVAL is the value of the objective function (or empty if the job has not 

completed). The other output arguments PARAMS, CONS, U_CONS and L_CONS are all 

optional. CONS is the value of the constraints. 

  

This function should determine whether the job has completed. If the job has 

completed the value of EVAL (and that of CONS) should be returned. If the job is still 

running the function should return an empty value for EVAL (i.e. EVAL = [] ), in 
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which case the status of other jobs will be determined before the '_parse2'  function 

is invoked again for this job. If the job has failed a suitable bad point indicator should 

be returned. 

  

  

If the value of the constraints and the objective function are return by the same 

function the field 'OPTCON'  should be set to equal 'OPTFUN' . Alternatively if the 

constraints are evaluated independently of the objective function the user may also 

define two separate functions to perform the job submission and to parse the 

constraints. In this case the functions indicated by the field 'OPTCON'  should 

conform to the following function prototypes: 

  

RETRIEVALID = objcon(VARS,PARAMS,U_CONS,L_CONS,DATA ) 

[CONS,PARAMS,U_CONS,L_CONS] = objcon_parse2(RETRIEV ALID) 

  

See also 

optjob , OptionsMatlab  
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optum1  

Example user-defined sequential optimiser for OptionsMatlab   

 

optum1  is a random sequential optimiser that demonstrates how to define an arbitrary 

optimisation strategy to be invoked by OptionsMatlab . This optimiser can be 

invoked by specifying the fields OMETHD = 2.1 and OPTUM1 = 'optum1'  in the input 

structure of OptionsMatlab . 

  

To implement your own optimiser your function should conform to the following 

function prototype. User-defined optimisers should minimise the objective function 

irrespective of the search direction specified by the input structure. 

 

Syntax  

[VARS, STOPOPT] = OPTUM1(VARS, FVAL, CONS, UVARS, L VARS, 

UCONS, LCONS, MAXCALLS, CALLNUM, TOL, STEPSIZE, OLE VEL)  

 

Description 

[VARS, STOPOPT] = OPTUM1(VARS, FVAL, CONS, UVARS, L VARS, 

UCONS, LCONS, MAXCALLS, CALLNUM, TOL, STEPSIZE, OLE VEL)  where the 

meaning of the input arguments are: 

        VARS  vector containing the last evaluated value of VARS 

        FVAL   objective function value at VARS 

        CONS  vector of constraint values at VARS (empty if unconstrained) 

        UVARS  vector of upper limits for VARS 

        LVARS  vector of lower limits for VARS 

        UCONS   vector of upper limits for CONS (may vary) 

        LCONS  vector of lower limits for CONS (may vary) 

        MAXCALLS maximum number of function evaluations, must be honoured 

by your implementation of optum1  

        CALLNUM      number of iterations performed 

        TOL           requested tolerance of the optimiser 

        STEPSIZE     requested step-size of the optimiser 

        OLEVEL       requested output level of the optimiser  

where the meaning of the output arguments are: 

VARS vector containing the next value of VARS to be evaluated. If 

STOPOPT indicates that the optimiser is complete VARS should 

contain the minimum variable values detected by the optimiser 
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STOPOPT  a flag indicating the whether the optimiser has completed. The 

optimiser will run whilst STOPOPT = 0, and will complete when 

STOPOPT = 1 is returned. If STOPOPT is not set to 1 the 

optimiser will run indefinitely. 

  

Example 

This example invokes the user-defined optimiser defined by optum1  over the Beam 

problem. 

  

input = createBeamStruct; 

input.NITERS = 20; 

input.OMETHD = 2.1; 

input.OPTUM1 = 'optum1'; 

output = OptionsMatlab(input); 

optimisationTrace(output,input,3) 

 

 
Figure 20 Trace produced by random optimiser optum1  

 

See also 

OptionsMatlab  
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Peaks4d problem 

A four dimension problem based upon the Matlab peaks  function. 

 

Example 

This example plots the objective function surface of the Peaks4D problem. 

 

>> input = createpeaks4dstruct(2.8); 

>> input.MC_TYPE = 4; 

>> input.NITERS = 500; 

>> input.UVARS = [3,3,0.01,0.01]; % hold vars 3 and 4 constant  

>> output = OptionsMatlab(input) 

 

output =  

 

       VARS: [4x1 double] 

     OBJFUN: 7.4643 

       CONS: 0 

     OBJTRC: [1x1 struct] 

    CONSTRC: [1x1 struct] 

 

>> optimisationTerrain(output,input,3) 

 

 
Figure 21 The valid objective function surface of the Peaks4d problem 
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Functions 

peaks4d    objective function 

createpeaks4dstruct creates an input structure for the peaks4d 

problem 
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5 Frequently Asked Questions 

5.1 Why does Matlab crash when I call OptionsMatlab ?  

When OptionsMatlab is invoked with an invalid Gendat license file the error message 

below will be printed: 

 

>> input = createBeamStruct; 

>> output = OptionsMatlab(input); 

 

??? Optimization failed. OPTIONS Error code:    -2147483648 

 

Gendat license files may be invalid if they have expired, or if they contain incorrect 

machine details. 

 

Write statements by some of the third party algorithms available within the Options 

have also caused OptionsMatlab to crash. These can be diagnosed by examining the 

temporary files generated by OptionsMatlab; .OPTIONS*.opt  and 

.OPTSDTO*.opt . In some cases this behaviour can be ameliorated by reducing the 

output level of OptionsMatlab, OLEVEL = 0 . 

 

When creating a new problem definition conflicts between user-specified design 

variable, parameter or constraint names can cause OptionsMatlab to crash. Conflicts 

occur when there is an ambiguity between a variable name and the name of an 

existing Options variable. For example the variable name FACT would be ambiguous 

if the parameter FACTOR had previously been defined. If a variable name conflict has 

caused Matlab to crash this may be diagnosed by examining the temporary file 

.OPTIONS*.opt . 

 

Please report any reoccurring problems to me by email. Bugs are documented in the 

buglists included in the OptionsMatlab distribution. 

 

5.2 How do I specify the search method?  

The search method is specified by the field OMETHD of the Options input structure. 

The scalar values correspond to the search methods listed below. For more details of 

each of the search methods please see the Options manual [1]. 
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0.0  to just evaluate the user’s problem code at the point specified  

1.1  for OPTIVAR routine ADRANS  

1.2  for OPTIVAR routine DAVID  

1.3  for OPTIVAR routine FLETCH  

1.4  for OPTIVAR routine JO  

1.5  for OPTIVAR routine PDS  

1.6  for OPTIVAR routine SEEK  

1.7  for OPTIVAR routine SIMPLX  

1.8  for OPTIVAR routine APPROX  

1.9  for OPTIVAR routine RANDOM  

2.1  for user specified routine OPTUM1  

2.2  for user specified routine OPTUM2  

2.3  for NAG routine E04UCF  

2.4  for bit climbing  

2.5  for dynamic hill climbing  

2.6  for population based incremental learning  

2.7  for numerical recipes routines  

2.8  for design of experiment based routines  

3.11  for Schwefel library Fibonacci search  

3.12  for Schwefel library Golden section search  

3.13  for Schwefel library Lagrange interval search  

3.2  for Schwefel library Hooke and Jeeves search  

3.3  for Schwefel library Rosenbrock search  

3.41  for Schwefel library DSCG search  

3.42  for Schwefel library DSCP search  

3.5  for Schwefel library Powell search  

3.6  for Schwefel library DFPS search  

3.7  for Schwefel library Simplexsearch  

3.8  for Schwefel library Complexsearch  

3.91  for Schwefel library two-membered evolution strategy  

3.92  for Schwefel library multi-membered evolution strategy  

4  for genetic algorithm search  

5  for simulated annealing  

6  for evolutionary programming  
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7  for evolution strategy  

 

5.3 How do I run a Design of Experiments?  

A Design of Experiments search can be used to efficiently sample points across the 

multi-dimensional parameter space represented by large numbers of design variables. 

A Design of Experiments search can be invoked by setting OMETHD = 2.8. The 

number of points to be evaluated can be configured by altering the input structure 

field NITERS. 

 

A number of different Design of Experiments search methods are available within the 

Options package. These can be configured using the optional input field MC_TYPE, 

where; 

1 Random (default)  

2 LPτ  

3 Central composite and LPτ  

4 Full factorial and LPτ  

5 Latin hypercubes  

6 Cell-based latin hypercubes  

7 User supplied candidate points  

 

For more details about these Design of Experiments search methods please consult the 

Options manual [1]. 

 

User supplied candidate points to be evaluated during a Design of Experiments can be 

supplied with the optional input field DOE_TRACE when the control parameter 

MC_TYPE = 7 . DOE_TRACE requires two mandatory fields: 

 DOE_TRACE.NCALLS containing the number of user-supplied DOE points  

 DOE_TRACE.VARS the design points to be evaluated during the DOE (size 

NVARS by DOE_TRACE.NCALLS)  

 

When using user supplied candidate points NITERS must equal DOE_TRACE.NCALLS 

plus one as the Design of Experiments will first evaluate the design point specified by 

VARS. 
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5.4 How do I build a Response Surface Model?  

A Response Surface Model is used to approximate the value of objective or constraint 

functions based upon the results of direct evaluation of the user’s model. Response 

Surface Models can be built independently over the objective and constraints, and are 

configured using the optional input fields OBJMOD and CONMOD respectively. If these 

fields are not set OptionsMatlab  will directly evaluate the user supplied objective 

and constraint functions. 

 

A number of Response Surface Model methods are available to be used to 

approximate the values of the objective function and constraints. The possible settings 

for the optional input fields OBJMOD and CONMOD are: 

 

1.0 for a Shepard response surface model  

2.1 for linear Radial Basis Function  

2.2 for thin plate Radial Basis Function  

2.3 for cubic splines Radial Basis Function  

2.4 for cubic splines Radial Basis Function with regression via reduced 

bases  

3.1 for mean polynomial regression model  

3.2 for first order polynomial regression model  

3.3 for first order polynomial regression model plus squares  

3.4 for first order polynomial regression model plus products (cross-terms)  

3.5 for second order polynomial regression model  

3.6 for second order polynomial regression model plus cubes  

4.1 for a Stochastic Process Model  

4.2 for the root mean square error of the Stochastic Process Model  

4.3 for the expected improvement of the Stochastic Process Model  

4.31 for the expected improvement of the constrained Stochastic Process 

Model [requires CONMOD=4.1] 

4.32 for the feasibility of improvement of the constrained Stochastic 

Process Model [requires CONMOD=4.1] 

4.33 for the probability of improvement of the Stochastic Process Model 

0.0 if the underlying user supplied function is to be called.  
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5.5 How do I plot my Response Surface Model?  

Following OptionsMatlab version 0.9.0+ search histories are available for 

optimisations which are run over a Response Surface Model in the output structure 

field RSMTRC. Previously OptionsMatlab would only return a search history when 

candidate points were provided. 

 

To evaluate a factorial search of the RSM that is suitable for plotting it may be 

appropriate to evaluate a list of candidate points. The candidate points must be 

provided in a field DOE_TRACE of the input structure (see section 5.3). In versions of 

OptionsMatlab 0.9.0+ it is necessary to specify that the optimisation is a candidate 

points Design of Experiments (OMETHD=2.8, MC_TYPE=7). 

 

>> %Create the initial dataset 

>> DOEinput = createBeamStruct; 

>> DOEoutput = OptionsMatlab(DOEinput); 

>> %Define a RSM input structure  

>> RSMinput = createBeamStruct; 

>> RSMinput.OBJMOD = 3.3; 

>> RSMinput.CONMOD = 3.3; 

>> %Create a list of candidate points to be evaluated  

>> ii = linspace(DOEinput.LVARS(1),DOEinput.UVARS(1 ),10); 

>> jj = linspace(DOEinput.LVARS(2),DOEinput.UVARS(2 ),10); 

>> [x,y] = meshgrid(ii,jj); 

>> RSMinput.DOE_TRACE.VARS(1,:)= 

reshape(x,1,prod(size(x))); 

>> RSMinput.DOE_TRACE.VARS(2,:)=   

reshape(y,1,prod(size(y))); 

>> RSMinput.DOE_TRACE.NCALLS = prod(size(x)); 

>> %Define the search a candidate points DoE  

>> RSMinput.OMETHD = 2.8; 

>> RSMinput.MC_TYPE = 7; 

>> RSMoutput = OptionsMatlab(RSMinput, DOEoutput);  

>> disp(RSMoutput.RSMTRC) 
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    OBJFUN: [1x100 double] 

      VARS: [2x100 double] 

    NCALLS: 100 

      CONS: [5x100 double] 

     LCONS: [5x100 double] 

     UCONS: [5x100 double] 

 

The contents of RSMTRC can then be plotted to show the surface of the Response 

Surface Model. 

 

>> optimisationTerrain(RSMoutput, RSMinput); 

 

 
Figure 22 Plotting approximate values of the Beam objective function generated by a RSM 

 

The utility function optimisationSampleRSM  automates the process of sampling a 

RSM built over the user's problem. 

 

5.6 How do I generate Design of Experiment update p oints?  

It is possible to improve the quality of a Response Surface Model by improving to 

original dataset by selectively adding new points. The Genetic Algorithm (OMETHD = 

4) and Dynamic Hill Climbing (OMETHD = 2.5) optimisation algorithms, when run 

over a Response Surface Model, are capable of returning a list of points that would 
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improve the dataset. 

 

Update points will be returned if the OptionsMatlab input structure contains the 

optional field NUMUPDATE. The value of NUMUPDATE is a scalar which determines the 

number of update points to be returned when a search routine is run over a RSM. The 

update points will be returned in the field DOE_TRACE of the output structure. 

 

In the following example a Genetic Algorithm is run over a RSM generated from the 

search history contained in the structure DOEoutput . NUMUPDATE is set to equal 10, 

meaning that the Genetic Algorithm will suggest ten update points at which the 

original data set can be improved.  

 

Note that the optimisation algorithm may return less than NUMUPDATE update points, 

in this case the remaining elements of DOE_TRACE.VARS will contain zeros. 

 

>> %Create the initial dataset 

>> DOEinput = createBeamStruct; 

>> DOEoutput = OptionsMatlab(DOEinput); 

>> %Define a RSM input structure  

>> RSMinput = createBeamStruct; 

>> RSMinput.OMETHD = 4; 

>> RSMinput.OBJMOD = 3.3; 

>> RSMinput.CONMOD = 3.3; 

>> RSMinput.NUMUPDATE = 10;  

>> RSMoutput = OptionsMatlab(RSMinput, DOEoutput);  

>> disp(RSMoutput.DOE_TRACE) 

 

    NCALLS: 10 

      VARS: [2x10 double] 

 

The update points contained in the field DOE_TRACE of the structure RSMoutput  can 

now be used as candidate points for a second Design of Experiments study.  

 

>> DOEinput2 = createBeamStruct; 

>> DOEinput2.OMETHD = 2.8; 

>> DOEinput2.MC_TYPE = 7; 

>> DOEinput2.DOE_TRACE = RSMoutput.DOE_TRACE; 
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>> DOEinput2.NITERS = RSMoutput.DOE_TRACE.NCALLS+1;  

>> DOEoutput2 = OptionsMatlab(DOEinput2); 

 

Note that DOEinput2.NITERS  must equal DOEinput2.DOE_TRACE.NCALLS  plus 

one as the Design of Experiments will first evaluate the design point specified by 

DOEinput2.VARS . 

 

5.7 How do I define an unconstrained optimisation?  

From version 0.5 of OptionsMatlab onwards users do not have to define a null 

constraint function for unconstrained optimisation problems. To indicate that an 

optimisation problem is unconstrained the field NCONS should be set to 0. In this case 

the fields CNAM, LCONS, UCONS, CONS and OPTCON are not mandatory and will be 

ignored. 

 

5.8 How do I write my own objective and constraint functions?  

The default implementation of OPTJOB (optjob.m ) requires user-defined objective 

and constraint functions to conform to well-defined interfaces. These interfaces are 

design to be compatible with objective and constraint functions used with the Matlab 

Optimization Toolbox [4]. 

 

The full function signature for the user-defined objective function is: 

 

[eval,gd,H,PARAMS,CONS,U_CONS,L_CONS]=objfun(VARS,P ARAMS, 

U_CONS,L_CONS,DATA) 

 

Where eval  is the value of the objective function at the design variables VARS. The 

objective function corresponding to this header can return the constraint values for the 

design point, CONS, and also alter the values of the parameters, PARAMS, and 

constraint limits U_CONS and L_CONS. The argument DATA contains the Matlab 

variable contained in the optional USERDATA field of the input structure. The 

parameters gd and H are relevant to the Matlab Optimization Toolbox [4] and are not 

used by OptionsMatlab. 

 

NOTE: The full function signature for user-defined objective function has changed in 

OptionsMatlab version 0.7. In earlier versions the third optional input argument was 

CONS, the value of the constraints at VARS. However this feature was unreliable and 
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has been removed. Please update objective functions that use the earlier form of the 

function signature. 

 

The minimum function signature required by optjob.m  is: 

 

eval = objfun(VARS) 

 

The full function signature for the user-defined constraint function is: 

  

[CONS,ceq,GC,Gceq,PARAMS,U_CONS,L_CONS]=objcon(VARS ,PARAM

S,U_CONS,L_CONS,DATA) 

 

Where CONS are the constraint values at the design variables VARS. The parameters 

ceq , GC and Gceq are relevant to the Matlab Optimization Toolbox [4] and are not 

used by OptionsMatlab. 

 

Again the minimum function signature required by optjob.m  is a lot smaller: 

 

CONS = objcon(VARS) 

 

Alternative implementations of OPTJOB may require different function signatures 

from user-defined objective and constraint functions. Please consult the 

documentation of alternative implementations of OPTJOB to confirm that your 

objective and constraint functions conform to the requirements. 

 

Note that the OptionsMatlab may ignore altered values of the parameters, PARAMS, 

and constraint limits U_CONS and L_CONS if it is not appropriate to change them, for 

example during a Design of Experiments. 

 

5.9 How do I evaluate a combined objective and cons traint function?  

The default implementation of OPTJOB (optjob.m ) supports combined objective and 

constraint functions. The combined function must conform to following objective 

function signature; 

 

[eval,gd,H,PARAMS,CONS,...] = objfun(VARS,...) 

 

optjob.m  will evaluate this function once when evaluating objective and constraint 
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functions if the input fields OPTFUN and OPTCON specify the same function. 

 

NOTE: The full function signature for user-defined objective function has changed in 

OptionsMatlab version 0.7. In earlier versions the third optional input argument was 

CONS, the value of the constraints at VARS. However this feature was unreliable and 

has been removed. Please update objective functions that use the earlier form of the 

function signature. 

 

5.10 Can OptionsMatlab calculate function evaluatio ns in parallel?  

The standard OptionsMatlab job manager, optjob.m , will evaluate the objective and 

constraint functions sequentially. However a parallel job manager, 

optjobparallel2 , is included in the OptionsMatlab distribution (this supersedes 

the parallel job manager optjobparallel ). When your objective or constraint 

function is expensive and you wish to use a search method with inherent parallelism it 

may be more considerably efficient to use the parallel job manager. 

 

To run the demo of parallel objective function evaluations enter the following 

commands: 

 

>> input = createBeamStructParallel2 

>> output = OptionsMatlab(input)  

 

To make your objective and constraint functions available to optjobparallel2  

different function signatures are required to those described in section 5.8. To 

evaluate the objective function the user must define two functions, the first which 

initiates the calculation of the objective function, and a second which determines 

whether the calculation has completed, and if so returns the value of the objective 

function. 

 

In practice the first function could perform a Globus GRAM job submission [5] 

returning a handle which can be used to query the status of the job, and an application 

specific job ID. The second function will typically use the application specific job ID 

to retrieve the output of the GRAM job and parse the objective function (and 

optionally the values of the constraints also). The interaction between these functions 

is shown by Figure 23. 
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Matlab environment 

OptionsMatlab.dll

optjobparallel2.m

OptionsMatlab.m

objfun.m
objfun_parse2.m

x10 x10

start job retrieve results

Matlab environment Matlab environment 

OptionsMatlab.dll

optjobparallel2.m

OptionsMatlab.m

objfun.m
objfun_parse2.m

x10 x10

start job retrieve results  
Figure 23 Parallel objective function evaluation in OptionsMatlab. Objfun.m is called ten times to 

begin the objective function evaluation at ten points. When these jobs are complete objfun_parse2.m is 

called ten times to retrieve and parse the results 

The user-defined objective function called by optjobparallel2  to perform the job 

submission should conform to the following function prototype:  

 

[RETRIEVALID] = objfun(VARS,...) 

 

where RETRIEVALID is an identifier used to determine the status of the job, and to 

retrieve the results. The only mandatory input argument is VARS, the other input 

arguments PARAMS, U_CONS and L_CONS are all optional. This function must be 

specified in the OPTFUN field of the OptionsMatlab input structure. 

 

A second retrieval function is be defined to return the value of the objective function. 

This function must have the same name as the job submission function appended with 

'_parse2' . For example when the objective function submission function is saved 

in the file 'objfun.m'  the retrieval function must be saved in the file 

'objfun_parse2.m' . 

 

The retrieval function should conform to the following function prototype:  

 

  [EVAL,PARAMS,CONS,U_CONS,L_CONS]=objfun_parse2(RE TRIEVALID) 

 

where RETRIEVALID is the identifier returned by the job submission function. EVAL 

is the value of the objective function (or empty if the job has not completed). The 
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other output arguments PARAMS, CONS, U_CONS and L_CONS are all optional. CONS is 

the value of the constraints. 

 

If the value of the constraints and the objective function are returned by the same 

function the field OPTCON should be set to equal OPTFUN. Alternatively if the 

constraints are evaluated independently of the objective function the user may also 

define two separate functions to perform the job submission and to parse the 

constraints. In this case the functions indicated by the field OPTCON should conform 

to the following function prototypes: 

 

  [JOBHANDLE] = objcon(VARS,PARAMS,U_CONS,L_CONS) 

  [CONS,PARAMS,U_CONS,L_CONS] = objcon_parse2(RETRI EVALID) 

 

5.11 How do I tune the hyper-parameters for a stoch astic process model 

RSM?  

Instead of searching the user’s problem OptionsMatlab  can be used to tune the 

hyper-parameters for a stochastic process model RSM. This can be done by setting up 

the OptionsMatlab  input structure as though you are going to build a RSM (see 

section 5.4) over an existing search history. Hyper-parameter tuning is specified by 

setting the input structure field TUNEHYPER equal to 1. 

 

When TUNEHYPER is set the hyper-parameters are tuned using the search method 

specified by the input structure. The output structure will return the structures 

OBJHYPER (and/or CONHYPER where appropriate) in addition to the final value of the 

concentrated likelihood function which is used as the objective function OBJ_CLF (or 

CST_CLF). Note that the user’s problem is not searched, and no optimum for the 

user’s problem is returned. 

 

To use the tuned hyper-parameters to build and search a RSM, or to further tune the 

hyper-parameters, the structures OBJHYPER and CONHYPER can be passed as fields in 

the OptionsMatlab  input structure. These structures contain the hyper-parameter 

values, and upper and lower limits to these values. 

 

The example below demonstrates hyper-parameter tuning by performing the 

following steps:  

• training hyper-parameters over a data set  
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• refining hyper-parameters with further training  

• searching a RSM with user supplied hyper-parameters  

• searching a RSM with starting at the previous 'best-point'  

This example uses the Beam problem. 

 

% Build initial dataset  

input1 = createBeamStruct;  

input1.OMETHD = 2.8;        %Design of Experiments  

input1.NITERS = 50;         %Number of iterations   

input1.OLEVEL = 2;  

input1.MC_TYPE = 4;         %Full factorial DoE   

output1 = OptionsMatlab(input1) 

 

output1 =  

 

       VARS: [2x1 double] 

     OBJFUN: 3.6877e+003 

       CONS: [5x1 double] 

     OBJTRC: [1x1 struct] 

    CONSTRC: [1x1 struct] 

 

% Tune hyper-parameters with SA  

input2 = createBeamStruct;  

input2.OLEVEL = 2;  

input2.OBJMOD = 4.1;     %Tune Stochastic Process Model  

%hyper-parameters over the objective    

%function  

input2.CONMOD = 4.1;     %Tune Stochastic Process Model   

 %hyper-parameters over the constraints  

input2.TUNEHYPER = 1;    %Tune the hyper-parameters  

                         %(do not search the user's  problem)   

input2.OMETHD = 5;       %Simulated Annealing  

output2 = OptionsMatlab(input2, output1)  
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output2 =  

 

    OBJHYPER: [1x1 struct] 

     OBJ_CLF: 712.6938 

    CONHYPER: [1x1 struct] 

     CST_CLF: 824.2750 

 

% Further train user-supplied hyper-parameters with  GA  

input3 = input2; 

% Note that if OBJHYPER or CONHYPER are provided th ese  

% hyper-parameters will be used in preference to th ose  

% generated by OPTRSS  

input3.OBJHYPER = output2.OBJHYPER; 

input3.CONHYPER = output2.CONHYPER; 

input3.OMETHD = 4; 

output3 = OptionsMatlab(input3, output1)  

 

output3 =  

 

    OBJHYPER: [1x1 struct] 

     OBJ_CLF: 842.2571 

    CONHYPER: [1x1 struct] 

     CST_CLF: 892.1499 

 

% Search RSM using user-supplied hyper-parameters  

input4 = input1; 

input4.OBJMOD = 4.1; 

input4.CONMOD = 4.1; 

input4.OBJHYPER = output3.OBJHYPER; 

input4.CONHYPER = output3.CONHYPER; 

input4.OMETHD = 5; 

input4.NITERS = 5000; 

input4.OLEVEL = 2; 

output4 = OptionsMatlab(input4, output1)  
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output4 =  

 

        VARS: [2x1 double] 

      OBJFUN: 2.1522e+003 

        CONS: [5x1 double] 

    OBJHYPER: [1x1 struct] 

    CONHYPER: [1x1 struct] 

 

% Search RSM using user-supplied hyper-parameters a t the  

% previous best point  

input5 = input4; 

input5.OMETHD = 4; 

input5.NITERS = 50; 

% Reset starting point to previous best 

input5.VARS = output4.VARS';  

output5 = OptionsMatlab(input5, output1) 

 

output5 =  

 

        VARS: [2x1 double] 

      OBJFUN: 2.4426e+003 

        CONS: [5x1 double] 

    OBJHYPER: [1x1 struct] 

    CONHYPER: [1x1 struct] 

 

For more details on the stochastic process model and hyper-parameter tuning see 

chapter 10 of the Options manual [1]. 

 

5.12 Can I checkpoint the progress of an optimisati on?  

During a lengthy optimisation it can be reassuring to checkpoint its progress. 

OptionsMatlab can write the current objective function and constraint search histories 

to file following a call to OPTJOB. Checkpointing can be switched on by setting the 

checkpoint interval in the field CHKPT_INTV of the input structure (CHKPT_INTV 

should be a multiple of MAXJOBS). 
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When checkpointing is used the search histories for the objective function and 

constraint search histories are written to file. The file format used is the binary Matlab 

.MAT format. The file name can be specified with the optional field CHKPT_FILE of 

the input structure. 

 

5.13 How do I pass Matlab variables to my objective  function?  

OptionsMatlab supports the optional input structure field USERDATA. This field can 

be used to pass any Matlab variable (including structures or cell arrays) to the user-

defined objective and constraint functions. To use the information contained within 

USERDATA in your objective function you must you must accept a sixth input 

argument DATA (see section 5.8). To access the variable from a separate constraint 

function the constraint function must accept a fifth input argument DATA. 

 

Please note that the USERDATA field is supported by the OPTJOB functions supplied 

with OptionsMatlab (optjob.m  and optjobparallel.m ), however the USERDATA 

field may not be supported by older OPTJOB functions. 

 

5.14 How do I define discrete design variables? 

By default design variables in OptionsMatlab are contiguous between upper and 

lower limits; however it is possible to specify discrete values for one or more of the 

design variables. To use discrete variables the fields NDVRS and DVARS of the input 

structure must be configured appropriately.  

 

The field NDVRS must be set equal to the maximum number of discrete design 

variable values for any single design variable. In the example below one of the design 

variables has three possible discrete states, whilst the second is contiguous; therefore 

we set NDVRS equal to 3. 

 

The field DVARS is a matrix of size NVRS by NDVRS which contains the discrete 

design variable values for each of the design variables. Therefore in the example 

below the three possible discrete states of the first design variable are place in the first 

row of DVARS. Because the second design variable is contiguous all values of the 

second row are set equal to DNULL. If a design variable has fewer possible discrete 

values fewer than NDVRS, the remaining elements of DVARS should be set to DNULL. 
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The example below illustrates the use of discrete design variable values with the 

Banana problem.  

 

>> % Create an unconstrained input structure  

>> input = createbananastruct; 

>> % Set the maximum number of discrete variable state s 

(between all design variables) 

>> input.NDVRS = 3; 

>> % Resize the matrix of discrete design variable val ues (set 

to DNULL for contiguous design variables)  

>> input.DVARS = ones(input.NVRS, input.NDVRS) * in put.DNULL; 

>> % Set discrete values for the first design variable  (the 

second design variable will remain contiguous)  

>> input.DVARS(1,:) = [0, 0.5, 1] 

>> disp(input.DVARS) 

 

         0    0.5000    1.0000 

 -777.0000 -777.0000 -777.0000 

 

>> % Run the optimisation 

>> results = OptionsMatlab(input); 

>> % Plot the output of the optimisation to demonstrat e 

discrete variables  

>> optimisationTrace(results, input, 1, 1, [-37.5, 30], [], 1) 
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Figure 24 Example of a problem with one discrete variable and one contiguous variable 

 

5.15 How do I restart a Genetic Algorithm? 

The structure GA_VARS, which is contained in the OptionsMatlab  output and 

checkpoint structures when a Genetic Algorithm is used (OMETHD = 4), allows the 

user to restart a Genetic Algorithm from its previous state. The following example 

demonstrates a Genetic Algorithm restarted from the output of an earlier calculation: 

 

>> %Run a Genetic Algorithm 

>> input1 = createBeamStruct;  

>> input1.NITERS = 500;  

>> input1.OMETHD = 4;  

>> input1.GA_NPOP = 50;  

>> output1 = OptionsMatlab(input1)  
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output1 =  

 

       VARS: [2x1 double] 

     OBJFUN: 2.6884e+003 

       CONS: [5x1 double] 

     OBJTRC: [1x1 struct] 

    CONSTRC: [1x1 struct] 

    GA_VARS: [1x1 struct] 

 

>> %Restart a Genetic Algorithm 

>> input2 = input1;  

>> input2.GA_VARS = output1.GA_VARS;  

>> input2.NITERS = 50;  

>> output2 = OptionsMatlab(input2) 

 

output2 =  

 

       VARS: [2x1 double] 

     OBJFUN: 2.6884e+003 

       CONS: [5x1 double] 

     OBJTRC: [1x1 struct] 

    CONSTRC: [1x1 struct] 

    GA_VARS: [1x1 struct] 

 

>> %Plot the history of the two optimisations  

>> optimisationHistory({output1, output2}, {'First run', 

'Second run'})   
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Figure 25 A Genetic Algorithm restarted following 500 iterations is already adapted to the objective 

function surface 

 

5.16 What is the meaning of the optional control pa rameters? 

Table 1 contains the meaning and default value of the optional control parameters. 

Since the meaning of the control parameters may differ depending upon the 

optimisation method in use the control parameters are organised with respect to the 

optimisation method. 

 
Optimisation 
Method 

Control 
Parameter 

Meaning Default 
value 

Response 
Surface 
Modelling 

FUSION_TYP Flag to indicate RSM fusion type 
(differences=0, ratios=1) 

0 

 CST_BAD_PT The outer limit of acceptable constraint 
function values in RSMs 

None 

 OBJ_BAD_PT The outer limit of acceptable objective 
function values in RSMs 

None 

 RSM_EIF_W The weighting between exploitation and 
exploration used when applying 
expected improvement methods in RSM 

None 

 RSM_NCSKIP Number of radial basis functions 
skipped for constraints 

0 

 RSM_NSKIP Number of radial basis functions 
skipped for objective function 

0 

 RSM_NULL_T Percentage worsening required in RBF 
regression to halt fitting 

10% 

1.1 OPTIVAR 
routine ADRANS 

OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

0.001 
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 OPT_STEP The step size used  0.02 
 OVR_MAND Turns on mandatory design constraints 0 (off) 
 OVR_PENAL Selects the kind of penalty function used 

by a number of the OPTIVAR routines: 
  1 = one pass external 
  2 = Fiacco-McCormick 
  3 = Powell  
  4 = Schuldt 

1 

 OVR_SEED Sets the seed for random number 
sequences 

128 

1.2 OPTIVAR 
routine DAVID 

OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

0.001 

 OPT_STEP The step size used  1.00E-06 
 OVR_MAND Turns on mandatory design constraints 0 (off) 
 OVR_PENAL Selects the kind of penalty function used 

by a number of the OPTIVAR routines: 
  1 = one pass external 
  2 = Fiacco-McCormick 
  3 = Powell  
  4 = Schuldt 

1 

 OVR_CONV Sets the convergence criterion 1D-4/1D-5 
1.3 OPTIVAR 
routine FLETCH 

OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

0.001 

 OPT_STEP The step size used  1.00E-06 
 OVR_MAND Turns on mandatory design constraints 0 (off) 
 OVR_PENAL Selects the kind of penalty function used 

by a number of the OPTIVAR routines:  
  1 = one pass external 
  2 = Fiacco-McCormick 
  3 = Powell  
  4 = Schuldt 

1 

 OVR_CONV Sets the convergence criterion 1D-4/1D-5 
1.4 OPTIVAR 
routine JO 

OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  1.00E-06 
 OVR_MAND Turns on mandatory design constraints 0 (off) 
 OVR_PENAL Selects the kind of penalty function used 

by a number of the OPTIVAR routines: 
  1 = one pass external 
  2 = Fiacco-McCormick 
  3 = Powell  
  4 = Schuldt 

1 

 OVR_CONV Sets the convergence criterion 1D-4/1D-5 
1.5 OPTIVAR 
routine PDS 

OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  0.1 
 OVR_MAND Turns on mandatory design constraints 0 (off) 
 OVR_PENAL Selects the kind of penalty function used 

by a number of the OPTIVAR routines:  
  1 = one pass external 
  2 = Fiacco-McCormick 

1 
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  3 = Powell  
  4 = Schuldt 

 OVR_CONV Sets the convergence criterion 1D-4/1D-5 
1.6 OPTIVAR 
routine SEEK 

OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  0.01 
 OVR_MAND Turns on mandatory design constraints 0 (off) 
 OVR_PENAL Selects the kind of penalty function used 

by a number of the OPTIVAR routines: 
  1 = one pass external 
  2 = Fiacco-McCormick 
  3 = Powell  
  4 = Schuldt 

1 

 OVR_STOP sets the minimum step length stopping 
criterion 

0.01 

1.7 OPTIVAR 
routine SIMPLX 

OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  0.1 
 OVR_MAND Turns on mandatory design constraints 0 (off) 
 OVR_PENAL Selects the kind of penalty function used 

by a number of the OPTIVAR routines: 
  1 = one pass external 
  2 = Fiacco-McCormick 
  3 = Powell  
  4 = Schuldt 

1 

 OVR_CONV Sets the convergence criterion 1D-4/1D-5 
1.8 OPTIVAR 
routine APPROX 

OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  0.001 
 OVR_MAND Turns on mandatory design constraints 0 (off) 
 OVR_PENAL Selects the kind of penalty function used 

by a number of the OPTIVAR routines:  
  1 = one pass external 
  2 = Fiacco-McCormick 
  3 = Powell  
  4 = Schuldt 

1 

 OVR_STEP Sets the fraction of range limiting step 
lengths 

0.1 

 OVR_SIMP Sets the maximum number of simplex 
iterations 

46 

1.9 OPTIVAR 
routine 
RANDOM 

OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  0.02 
 OVR_MAND Turns on mandatory design constraints 0 (off) 
 OVR_PENAL Selects the kind of penalty function used 

by a number of the OPTIVAR routines:  
  1 = one pass external 
  2 = Fiacco-McCormick 
  3 = Powell  
  4 = Schuldt 

1 
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 OVR_NPTS Sets the number of points retained per 
iteration 

5 

 OVR_SHRK Sets the shrinkage factor 4 
2.3 NAG routine 
E04UCF 

NAG_BIGBND Sets the size of non-existent upper 
bounds. 

1.00E+10 

 NAG_ETA Sets the accuracy of the linear 
minimizations 

0.5 

 NAG_RHO Used in the definition of the augmented 
Lagrangian function 

1 

 OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  5.0N 
 MC_MAND Turns on mandatory design constraints  0 (off) 

2.4 bit climbing BC_NBIN The number of bits used per variable in 
binary discretisation 

12 

 BC_PENAL Set the penalty function control 
parameter, r, with values less than one 
invoking the modified Fiacco and 
McCormick function (OPTIM2) 
otherwise the one pass method is used 
(OPTIM1) 

1.00E+20 

 BC_NRANDM The number of random numbers drawn 
and discarded before starting the 
optimiser 

0 

 OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  1.00E-05 
 MC_MAND Turns on mandatory design constraints  0 (off) 

2.5 dynamic hill 
climbing 

DHC_INITSZ Sets the non-dimensional size of the 
initial steps in the hill climbing search 

0.5 

 DHC_THRESH The hill climbing searches proceed with 
reducing step sizes until they are less 
than the value set by this parameter 

0.01 

 DHC_PENAL Sets the penalty function control 
parameter, r, with values less than one 
invoking the modified Fiacco and 
McCormick function (OPTIM2) 
otherwise the one pass method is used 
(OPTIM1) 

1.00E+20 

 DHC_NRANDM The number of random numbers drawn 
and discarded before starting the 
optimiser 

0 

 OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  1.00E-05 
 MC_MAND Turns on mandatory design constraints  0 (off) 

2.6 population 
based 
incremental 
learning 

PL_NBIN The number of bits used per variable in 
binary discretisation 

12 

 PL_NPOP The number of random guesses 100 
 PL_PENAL Sets the penalty function control 

parameter, r, with values less than one 
1.00E+20 
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invoking the modified Fiacco and 
McCormick function (OPTIM2) 
otherwise the one pass method is used 
(OPTIM1) 

 PL_LRATE The learning rate controls how rapidly 
the probability vector changes towards 
the successful solutions at the end of 
each generation  

0.05 

 PL_PMUTNT mutation is applied to the probability 
vector randomly at the end of each 
generation with this probability per 
element  

0.02 

 PL_NRANDM The number of random numbers drawn 
and discarded before starting the 
optimiser 

0 

 OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  1.00E-05 
 MC_MAND Turns on mandatory design constraints  0 (off) 

2.7 numerical 
recipes routines 

OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  1.00E-05 
 MC_MAND Turns on mandatory design constraints  0 (off) 
 MC_TYPE Selects the kind of optimizer used by the 

numerical recipes routines: 
  1 = Powell 
  2 = Polak-Ribiere 
  3 = Fletcher-Reeves  
  4 = Broyden-Fletcher 

1 

 MC_PENAL Selects the kind of penalty function used 
by the numerical recipes routines: 
  1 = one pass external  
  2 = Fiacco-McCormick 

1 

2.8 design of 
experiment 
based routines 

DOE_NRANDM DoE sequence random number seed  

 MC_TYPE DoE search methods:  
  1 = Random 
  2 = Lptau 
  3 = Central composite + Lptau 
  4 = Full factorial + Lptau 
  5 = Latin hypercubes 
  6 = Cell-based latin hypercubes 
  7 = User supplied candidate points 

1 

 MC_MAND Turns on mandatory design constraints  0 (off) 
2.9 design of 
experiment 
based routines 
(without function 
calls) 

DOE_NRANDM Six Design of Experiment search 
methods  

0 

 MC_MAND Turns on mandatory design constraints  0 (off) 
3.11 Schwefel 
library Fibonacci 
search 

OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 1.00E-03 



 102 

must be met to be considered satisfied 
 OPT_STEP The step size used  1.00E-05 
 SC_PENAL Selects the kind of penalty function used 

by unconstrained search methods in the 
Schwefel library routines: 
  1 = one pass external  
  2 = Fiacco-McCormick 

1 

3.12 Schwefel 
library Golden 
section search 

OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  1.00E-05 
 SC_PENAL Selects the kind of penalty function used 

by unconstrained search methods in the 
Schwefel library routines: 
  1 = one pass external  
  2 = Fiacco-McCormick 

1 

3.13 Schwefel 
library Lagrange 
interval search 

OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  1.00E-05 
 SC_PENAL Selects the kind of penalty function used 

by unconstrained search methods in the 
Schwefel library routines: 
  1 = one pass external  
  2 = Fiacco-McCormick 

1 

3.2 Schwefel 
library Hooke 
and Jeeves 
search 

OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  1.00E-05 
 SC_PENAL Selects the kind of penalty function used 

by unconstrained search methods in the 
Schwefel library routines: 
  1 = one pass external  
  2 = Fiacco-McCormick 

1 

3.3 Schwefel 
library 
Rosenbrock 
search 

OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  1.00E-05 
3.41 Schwefel 
library DSCG 
search 

OPT_TOL The accuracy with which solutions are 
found 

1.00E-03 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  1.00E-05 
 SC_PENAL Selects the kind of penalty function used 

by unconstrained search methods in the 
Schwefel library routines:  
  1 = one pass external  
  2 = Fiacco-McCormick 

1 
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3.42 Schwefel 
library DSCP 
search 

OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  1.00E-05 
 SC_PENAL Selects the kind of penalty function used 

by unconstrained search methods in the 
Schwefel library routines: 
  1 = one pass external  
  2 = Fiacco-McCormick 

1 

3.5 Schwefel 
library Powell 
search 

OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  1.00E-05 
 SC_PENAL selects the kind of penalty function used 

by unconstrained search methods in the 
Schwefel library routines : 
  1 = one pass external  
  2 = Fiacco-McCormick 

1 

 SC_TYPE Selects the default convergence 
criterion or an alternate criterion: 
  1 = default convergence 
  2 = alternate convergence 

1 

3.6 Schwefel 
library DFPS 
search 

OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  1.00E-05 
 SC_PENAL Selects the kind of penalty function used 

by unconstrained search methods in the 
Schwefel library routines: 
  1 = one pass external  
  2 = Fiacco-McCormick 

1 

 SC_CONV Defines the expected solution value of 
the objective function at the optimum, 
default zero (50% improvement) 

0 

3.7 Schwefel 
library Simplex 
search 

OPT_TOL The accuracy with which solutions are 
found 

1.00E-03 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  1.00E-05 
 SC_PENAL Selects the kind of penalty function used 

by unconstrained search methods in the 
Schwefel library routines: 
  1 = one pass external  
  2 = Fiacco-McCormick 

1 

 SC_NITERS The number of iterations before 
convergence testing is applied, default 
zero (the total number of function calls 
to be used divided by 25 times the 
number of design variables) 

0 

3.8 Schwefel 
library Complex 
search 

OPT_TOL The accuracy with which solutions are 
found 

0 
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 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  1.00E-05 
 SC_PENAL Selects the kind of penalty function used 

by unconstrained search methods in the 
Schwefel library routines: 
  1 = one pass external  
  2 = Fiacco-McCormick 

1 

3.91 Schwefel 
library two-
membered 
evolution 
strategy (EVOL) 

SC_LS How severe convergence testing is, with 
bigger values requiring the objective 
function to remain essentially stationary 
for longer before convergence is 
considered complete 

2 

 SC_NRANDM The number of random numbers drawn 
and discarded before starting the 
optimiser 

0 

 OPT_TOL The accuracy with which solutions are 
found 

1.00E-03 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  1.00E-05 
 SC_LR Controls step size management, with 

bigger values giving a slower but more 
accurate search 

1 

 SC_SN Controls step size adjustment, which 
can be kept constant using a value of 
unity 

0.85 

3.92 Schwefel 
library multi-
membered 
evolution 
strategy (KORR) 

SC_IELTER The number of parents in a generation 10 

 SC_NACHKO The number of descendants of a 
generation 

100 

 SC_NS The number of different step size 
parameters 

N 

 SC_DELS The global random step sizes 1/sqtr(2N) 
 SC_DELI The local random step sizes 1/sqtr(2N)/

sqtr(NS) 
 SC_DELP The correlation ellipsoid angles 5 × 0. 

01745 = 5° 
 SC_BKORRL Switches on the rotation of the 

correlation ellipsoid if non-zero 
1 

 SC_KONVKR Number of generations used when 
applying convergence tests 

1 

 SC_NRANDM The number of random numbers drawn 
and discarded before starting the 
optimiser 

0 

 OPT_TOL The accuracy with which solutions are 
found 

0 

 OPT_CTOL The accuracy with which constraints 
must be met to be considered satisfied 

1.00E-03 

 OPT_STEP The step size used  1.00E-05 
 SC_TYPE Controls whether the "comma" or "plus" 

version of the code is used: 
  1 = comma 
  2 = plus 

1 

 SC_IREKOM Controls the recombination type (n.b., 
each digit in this variable must lie 
between 1 and 5) 

333 
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4 genetic 
algorithm search 

GA_NBIN The number of bits used per variable in 
binary discretisation 

12 

 GA_NPOP Population size each generation 50 
 GA_PENAL Set the penalty function control 

parameter, r, with values less than one 
invoking the modified Fiacco and 
McCormick function (OPTIM2) 
otherwise the one pass method is used 
(OPTIM1) 

1.00E+20 

 GA_PBEST The proportion of the solutions that are 
used to form the parents of the next 
generation 

0.8 

 GA_PCROSS The proportion of the solutions in the 
population that are crossed to form new 
solutions 

0.8 

 GA_PINVRT The proportion of the solutions in the 
population that have their ordering 
codes inverted to form new solutions 

0.2 

 GA_PMUTNT Mutation is allowed at a level set by this 
parameter, i.e., this fraction of the total 
number of binary digits are reversed at 
each pass (n.b. greater than 0.5 results 
in randomisation) 

0.005 

 GA_PRPTNL If .TRUE. the make-up of the following 
generation is then biased in favour of 
the most successful according to their 
objective function values, otherwise 
survival is proportional to ranking but 
scaled to prevent dominance and 
stagnation 

1 (.TRUE.) 

 GA_ALPHA The cluster penalising function. Small 
values giving less severe penalties than 
those nearer one, and a value less than 
zero turning the mechanism off 

0.2 

 GA_DMIN The minimum distance between cluster 
centroids 

0.05 

 GA_DMAX The furthest distance a new solution can 
be from an existing cluster centroid 
without a new cluster being formed 

0.2 

 GA_NCLUST The initial number of clusters, either in 
absolute terms or, if it is <1. 0, as a 
fraction of the population size 

0.1 

 GA_NBREED Breeding is restricted to be between 
members of the same cluster if there are 
at least this many members in the 
cluster 

0.1 

 GA_PSEED Seeding of the initial, randomly 
generated members of the population is 
allowed at a level set by this parameter 
(0 = random, 1.0 clones of initial point) 

0 

 GA_NRANDM The number of random numbers drawn 
and discarded before starting the 
optimiser 

0 

5 simulated 
annealing 

SA_NBIN The number of bits used per variable in 
binary discretisation 

12 

 SA_PTEMP The power to which the number of 
iterations must be raised to calculate the 
number of annealing temperatures 

1/3 

 SA_PWIDTH The range of temperatures in the 
annealing schedule, with large values 

5 
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giving a wide range of temperatures, 
which carries the risk of rapid freezing 
but gives a wider ranging search  

 SA_PCOLD The bottom temperature in the 
annealing schedule, with values over 
two giving lower temperatures and thus 
more accurate results at the expense of 
perhaps missing the global optimum 

2 

 SA_SCHED If this parameter exists and contains an 
array of variables it is taken to be a 
cooling schedule which is to be used in 
place of the preceding three parameters 

 

 SA_PENAL Sets the penalty function control 
parameter, r, with values less than one 
invoking the modified Fiacco and 
McCormick function (OPTIM2) 
otherwise the one pass method is used 
(OPTIM1) 

1.00E+20 

 SA_PMUTNT Mutation is allowed at a level set by this 
parameter, i.e., this fraction of the total 
number of binary digits are reversed at 
each evaluation (setting SA_PMUTNT 
negative causes the mutations to be 
made to the actual variables rather than 
the binary digits) 

0.1 

 SA_NRANDM The number of random numbers drawn 
and discarded before starting the 
optimiser 

0 

6 evolutionary 
programming 

EP_NBIN The number of bits used per variable in 
binary discretisation 

12 

 EP_NPOP Population size each generation 50 
 EP_PENAL Set the penalty function control 

parameter, r, with values less than one 
invoking the modified Fiacco and 
McCormick function (OPTIM2) 
otherwise the one pass method is used 
(OPTIM1) 

1.00E+20 

 EP_IMUTNT Mutation is controlled so that the best 
members are mutated least and the 
worst, most, this parameter governs the 
order of the mutation with ranking, a 
value of one thus gives a linear change, 
two a quadratic one and so on (only 
positive values being allowed), default 
two; 

2 

 EP_TOURN The number of members in the ranking 
tournament, either in absolute terms or, 
if it is <1. 0, as a fraction of the 
population size 

0.5 

 EP_NRANDM The number of random numbers drawn 
and discarded before starting the 
optimiser 

0 

7 evolution 
strategy 

ES_NPPOP The population size 100 

 ES_NCPOP The parent populations size, a fraction 
of the total population size 

1 

 ES_PENAL Sets the penalty function control 
parameter, r, with values less than one 
invoking the modified Fiacco and 
McCormick function (OPTIM2) 

1.00E+20 
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otherwise the one pass method is used 
(OPTIM1) 

 ES_DELSIG Used to set the standard deviation of a 
random number whose exponential is 
then used to scale the previous mutation 
control parameter.  

0.1 

 ES_UCHILD When selecting the next generation all 
the children may be used or a mixture of 
the best children and parents used; if 
this parameter is non-zero it is taken to 
be .TRUE. and the children are used in 
preference to parents. 

0 (false) 

 ES_VDSCRT Controls the crossover type between 
parents for design variables. Either 
discrete crossover (.TRUE.) or 
intermediate crossover (.FALSE.). 

1 (true) 

 ES_MDSCRT Controls the crossover type between 
parents for mutation control parameters. 
Either discrete crossover (.TRUE.) or 
intermediate crossover (.FALSE.). 

0 (false) 

 ES_NRANDM The number of random numbers drawn 
and discarded before starting the 
optimiser 

0 

Table 1 OptionsMatlab optional control parameters 

 

5.17 How do I deal with failed calculations when co nstructing a 

response surface model? 

Failures may occur when calculating the value of an objective function during a direct 

search. These failures may be stochastic (perhaps due to the unexpected failure of a 

Grid resource), or they may be indicative of a problematic area of the parameter space 

(perhaps representing an unfeasible geometry). There are a couple of possible 

strategies to ensure that failed calculations are correctly handled by OptionsMatlab  

when constructing and searching a Response Surface Model. 

 

The optional control parameter OBJ_BAD_PT may be used to define an outer bound 

for acceptable values of an objective function. When OptionsMatlab  encounters 

objective function values exceeding OBJ_BAD_PT during the construction of a 

Response Surface Model these values will be ignored. During minimisation 

OptionsMatlab  will ignore any objective function values greater than 

OBJ_BAD_PT, whereas during maximisation values less than OBJ_BAD_PT will be 

ignored. 

 

It is possible to use OBJ_BAD_PT to filter stochastic failures that occur during the 

evaluation of the objective function. For a minimisation problem the Matlab function 

defining the user's objective function should return a very large value for the objective 
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function (which exceeds expected values) upon failure. When building and searching 

a Response Surface Model of the objective function the OptionsMatlab  input 

structure should contain the field OBJ_BAD_PT with a value less than that of the failed 

calculations. The bad points will therefore not influence the Response Surface Model 

of the objective function. 

 

When a failed calculation represents a problematic area of the parameter space it is 

sometimes desirable to steer a design search away from these areas. To do this it is 

possible to define an extra constraint to indicate bad points. In this case when a 

calculation fails this constraint should be set to indicate an invalid point. As the 

design search proceeds the constraint may steer the optimiser away from these 

problematic areas. When searching over a Response Surface Model this strategy may 

be used in conjunction with OBJ_BAD_PT. 

 

5.18 How do I build and evaluate a RSM faster? 

There are a number of ways to make OptionsMatlab run faster when building and 

evaluating a Response Surface Model.  

 

If additional output information is requested from OptionsMatlab (OLEVEL>0) further 

calculations may be performed. This may significantly increase the time taken to 

build and evaluate a RSM, in particular for large datasets. Therefore to perform faster 

searches of a RSM it may be advantageous to set OLEVEL=0 in the OptionsMatlab 

input structure. 

 

When performing multiple searches of a Stochastic Process Model (SPM), i.e. when 

OBJMOD or CONMOD equal to 4.1, 4.2 or 4.3, it is possible to avoid rebuilding the SPM 

by passing the hyper-parameters for the model in the input structure. When a SPM is 

first built and searched (or when the hyper-parameters are explicitly tuned, see section 

5.11) the hyper-parameters are returned in the output structure fields OBJHYPER 

(and/or CONHYPER). By adding these fields to the OptionsMatlab input structure when 

subsequently searching the SPM the hyper-parameters will not be rebuilt. However, 

please note that it is important to rebuild the hyper-parameters following changes to 

dataset otherwise they may become ill-defined for your dataset. 
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6 OptionsMatlab Examples 

6.1 DoE Direct search 

Perform a DoE over the problem defined by the input structure, and then plot the 

results of the DoE.  The results of this DoE are used to build RSM in many of the 

subsequent examples. 

 

input1 = createBeamStruct; 

input1.OMETHD = 2.8;        %Design of Experiments 

input1.NITERS = 50;         %Number of iterations 

input1.OLEVEL = 2; 

input1.MC_TYPE = 4;         %Full factorial DoE 

output1 = OptionsMatlab(input1) 

 

output1 =  

 

       VARS: [2x1 double] 

     OBJFUN: 3.6877e+003 

       CONS: [5x1 double] 

     OBJTRC: [1x1 struct] 

    CONSTRC: [1x1 struct] 

 

%Print a digest of the optimisation and determine i f  

%optimum returned is valid 

isvalid = optimisationDigest(output1, input1) 
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=================================================== ========= 

  

 Optimisation of the problem defined by "beamobjfun " and 

"beamobjcon"  

 Optimisation method: 2.8  

  

 Status after 50 evaluations is :-  

  

 Trial vector  

  

 Lwr Bound       Vector       Uppr Bound    Variabl e (units)  

  

   5.00000000 <  24.68750000 >  50.00000000  BREADT H   

   2.00000000 <  14.93750000 >  25.00000000  HEIGHT    

  

 No of V. Boundary Violations =   0 

  

 Objective Function (min.)    =  3687.6953   AREA 

  

  

 Constraints vector  

  

 Lwr Bound       Vector       Uppr Bound    Variabl e (units)  

  

              <  81.69200669 > 200.00000000  SIGMA- B   

              <   2.03379058 > 100.00000000  TAU   

              <   3.78699170 >   5.00000000  DEFLN   

              <   6.05063291 >  10.00000000  H-ON-B    

 5000.00000000 < 290554.98816615             F-CRIT    

  

 No of Constraint Violations =   0 

  

=================================================== ========= 

 

%Plot the results of the optimisation 

plotOptionsSurfaces(output1, input1) 

optimisationTerrain(output1, input1) 

optimisationTrace(output1, input1) 
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optimisationHistory({output1}, { 'Design of Experiments' })   

 

isvalid = 

 

     1 

 

6.2 RSM returning update points 

Build and search a Response Surface Model using the results of example 6.1. This 

search will return up to 10 update points where the quality of the DoE would be best 

improved. 

 

input2 = createBeamStruct; 

input2.OMETHD = 4;          %Genetic Algorithm 

input2.NITERS = 50; 

input2.OLEVEL = 2; 

input2.OBJMOD = 3.3;        %First order polynomial regression 

    %model plus squares 

input2.CONMOD = 3.3;        %First order polynomial regression  

    %model plus squares 

input2.NUMUPDATE = 10;      %10 update points  

output2 = OptionsMatlab(input2, output1) 

 

output2 =  

 

         VARS: [2x1 double] 

       OBJFUN: 2.5149e+003 

         CONS: [5x1 double] 

    DOE_TRACE: [1x1 struct] 

 

6.3 DoE evaluating candidate points 

Perform a candidate point DoE search to evaluate the update points suggested by 

example 6.2. 

 

input3 = createBeamStruct; 

input3.OLEVEL = 2; 



 112 

input3.OMETHD = 2.8;        %Design of Experiments 

                            %Specify update points as candidate         

                            %points 

input3.DOE_TRACE = output2.DOE_TRACE; 

                            %Set the number of iterations  

input3.NITERS = output2.DOE_TRACE.NCALLS+1; 

input3.MC_TYPE = 7;         %Specify that the DOE uses  

                                  %candidate points   

                            %Note that the meaning of MC_TYPE  

                                  %has changed sinc e version 0.6.5 

output3 = OptionsMatlab(input3) 

 

output3 =  

 

       VARS: [2x1 double] 

     OBJFUN: 6000 

       CONS: [5x1 double] 

     OBJTRC: [1x1 struct] 

    CONSTRC: [1x1 struct] 

 

%Concatenate the output structures from examples 6. 1 and 6.3 

output3_cat = optimisationAppendDataPoints(output1, output3) 

 

output3_cat =  

 

       VARS: [2x1 double] 

     OBJFUN: 3.6877e+003 

       CONS: [5x1 double] 

     OBJTRC: [1x1 struct] 

    CONSTRC: [1x1 struct] 

 

6.4 RSM using candidate points 

Build and evaluate an RSM at specified points. The utility function 

optimisationSampleRSM  can assist you to do this (see example 6.9). 

 

input4 = createBeamStruct; 
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input4.OLEVEL = 2; 

input4.OMETHD = 2.8;          %Design of Experiments 

                              %Specify the candidat e points to  

                              %be evaluated 

input4.DOE_TRACE.NCALLS = output1.OBJTRC.NCALLS; 

input4.DOE_TRACE.VARS = output1.OBJTRC.VARS; 

input4.NITERS = input4.DOE_TRACE.NCALLS +1; 

input4.MC_TYPE = 7;           %DoE using candidate points 

input4.OBJMOD = 3.3;          %First order polynomial  

                              %regression model plu s squares 

input4.CONMOD = 3.3;          %First order polynomial  

                              %regression model plu s squares 

output4 = OptionsMatlab(input4, output3_cat) 

 

output4 =  

 

      VARS: [2x1 double] 

    OBJFUN: 2.6319e+003 

      CONS: [5x1 double] 

    RSMTRC: [1x1 struct] 

 

%Plot the RSM 

fig = optimisationTerrain(output4, input4, 2); 

optimisationTrace(output4, input4, 2, fig); 

 

6.5 Direct search with checkpointing 

Checkpoint the search history of a direct search every 300 generations in a file 

'optimTest5.mat'. 

 

input5 = createBeamStruct; 

input5.OLEVEL = 2; 

input5.OMETHD = 2.8; 

input5.NITERS = 500;    %500 iterations 

input5.MAXJOBS = 100;   %Submit jobs in groups of 100 

input5.CHKPT_INTV = 300; %Checkpoint every 300 generations 

input5.CHKPT_FILE = 'optimTest5.mat';  %Checkpoint file name  

delete( 'optimTest5.mat' ) %Remove existing checkpoint file  
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output5 = OptionsMatlab(input5) 

 

output5 =  

 

       VARS: [2x1 double] 

     OBJFUN: 2.9455e+003 

       CONS: [5x1 double] 

     OBJTRC: [1x1 struct] 

    CONSTRC: [1x1 struct] 

 

load( 'optimTest5.mat' )  %Load checkpoint file  

whos CHKPOINT 

 

  Name           Size                    Bytes  Cla ss 

 

  CHKPOINT       1x1                     49256  str uct array 

 

Grand total is 6012 elements using 49256 bytes 

 

6.6 Parallel job submission with userdata 

This example uses the Geodise compute toolbox [3] that provides client functionality 

to Globus Grid resources that may be used to evaluate computational jobs. The jobs 

will be submitted to the Globus resource to run concurrently. When the jobs are 

complete the results will be retrieved and parsed to determine the objective function 

values. Note that you must have the Geodise compute toolbox installed, and have 

valid credentials with permissions to submit jobs to the specified compute resource. 

 

%Define the Globus server to which to submit the jo bs  

GLOBUSSERVER = 'escience-dept2.sesnet.soton.ac.uk' ; 

 

gd_createproxy 

 

Paused: Press any key... 

 

input6 = createBeamStructParallel; 

input6.OLEVEL = 0; 
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input6.MAXJOBS = 10;    %The number of the jobs to be run  

                        %concurrently 

input6.NITERS = 20;     %The number of iterations 

 

                        %USERDATA field is used to pass the  

                        %host name upon which to ru n the  

                        %objective function to the Matlab 

                        %function  

input6.USERDATA.hostname = GLOBUSSERVER; 

output6 = OptionsMatlab(input6) 

 

[...] 

 

ohandle = 

 

https://escience-

dept2.sesnet.soton.ac.uk:30040/10303/1134728028/ 

 

 

uniquedir = 

 

20051216T101347_57891/ 

 

 

EVAL = 

 

  3.9666e+003 

 

output6 =  

 

       VARS: [2x1 double] 

     OBJFUN: 3.9666e+003 

       CONS: [5x1 double] 

     OBJTRC: [1x1 struct] 

    CONSTRC: [1x1 struct] 
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6.7 Hyper-parameter tuning 

This example will tune hyper-parameters for a Stochastic Process Model over the 

results of the DoE produced in example 6.1. The hyper-parameters will be tuned using 

the optimisation algorithm specified by OMETHD. The tuned hyper-parameters will be 

returned in fields of the output structure OBJHYPER (or CONHYPER) that be supplied in 

the input structure when building a Stochastic Process Model RSM.  

 

input7 = createBeamStruct; 

input7.OLEVEL = 0; 

input7.OBJMOD = 4.1;     %Tune stochastic Process Model   

                         %hyper-parameters over the   

                         %objective function  

input7.CONMOD = 4.1;     %Tune stochastic Process Model  

                         %hyper-parameters over the   

                         %constraints 

input7.TUNEHYPER = 1;    %Tune the hyper-parameters (do not  

                         %search the user's problem ) 

input7.OMETHD = 5;       %Simulated Annealing   

 

                         %Note that if OBJHYPER or CONHYPER are  

                         %provided these hyper-para meters will  

                         %be used in preference to those 

                         %generated by OPTRSS 

output7 = OptionsMatlab(input7, output1) 

 

output7 =  

 

    OBJHYPER: [1x1 struct] 

     OBJ_CLF: 712.6938 

    CONHYPER: [1x1 struct] 

     CST_CLF: 824.2750 

 

6.8 User-defined sequential optimiser 

This example invokes the sequential optimiser defined by the Matlab function 

'optum1.m' , which randomly generates searches points within the parameters space. 

It is possible to write a Matlab function that provides alternative behaviour for a 

sequential optimiser. 
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input8 = createBeamStruct; 

input8.OLEVEL = 2; 

input8.OMETHD = 2.1;      %User-defined optimiser 1 

input8.OPTUM1 = 'optum1' ; %Specifies function 'optum1.m' as  

                          %user-defined optimiser 

output8 = OptionsMatlab(input8) 

 

output8 =  

 

       VARS: [2x1 double] 

     OBJFUN: 2.6409e+003 

       CONS: [5x1 double] 

     OBJTRC: [1x1 struct] 

    CONSTRC: [1x1 struct] 

 

6.9 Sample a Response Surface Model 

This example uses the utility function optimisationSampleRSM  to build an RSM 

and sample the RSM at 100 evenly spaced points within the parameter space. 

Compare this method to example 6.4. 

 

%Create an input structure to search an RSM 

input9 = createBeamStruct; 

input9.OLEVEL = 2; 

input9.OBJMOD = 3.3;  

input9.CONMOD = 3.3; 

 

%Sample 100 evenly spaced points  

output9 = optimisationSampleRSM(input9, output1, 10 0) 

 

%Plot the points sampled from the RSM 

optimisationTerrain(output9, input9) 
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output9 =  

 

      VARS: [2x1 double] 

    OBJFUN: 2.4349e+003 

      CONS: [5x1 double] 

    RSMTRC: [1x1 struct] 

 

6.10 Build a stochastic process model RSM with quic k tuning 

This example builds a stochastic process model RSM using quick hyper-parameter 

tuning (by setting the flag RSM_QCK_HP). Here the hyper-parameters THETA and EXP 

will be tuned across all design variables, rather than NVARS values of THETA and EXP 

corresponding to each design variable. The values of OBJ_EXP and OBJ_THETA, and 

of CST_EXP and CST_THETA (in the structures OBJHYPER and CONHYPER) will be 

scalar, rather than a vector of length NVARS.  

 

%Create an input structure to search an SPM RSM wit h quick 

tuning 

input10 = createBeamStruct; 

input10.OLEVEL = 0; 

input10.OBJMOD = 4.1; 

input10.CONMOD = 4.1; 

input10.RSM_QCK_HP = 1; 

 

output10 = OptionsMatlab(input10, output1); 

output10.OBJHYPER 

output10.CONHYPER 

 

 



 119 

ans =  

      OBJ_LAMBDA: -6 

    U_OBJ_LAMBDA: 3 

    L_OBJ_LAMBDA: -20 

       OBJ_THETA: 0.1548 

     U_OBJ_THETA: 3 

     L_OBJ_THETA: -10 

         OBJ_EXP: 2 

       U_OBJ_EXP: 2 

       L_OBJ_EXP: 1 

 

ans =  

      CST_LAMBDA: -6 

    U_CST_LAMBDA: 3 

    L_CST_LAMBDA: -20 

       CST_THETA: 0.1563 

     U_CST_THETA: 3 

     L_CST_THETA: -10 

         CST_EXP: 2 

       U_CST_EXP: 2 

       L_CST_EXP: 1 

 

6.11 Search a tuned stochastic process model RSM 

This example samples and then searches the stochastic process model RSM built 

using the quick tuned hyper-parameters. The scalar hyper-parameter values 

OBJ_THETA and OBJ_EXP are duplicated across the design variables of the problem 

and assigned to the field OBJHYPER of the input structure. 

 

% Duplicate the scalar hyperpameter values across t he design 

variables 

inputStruct = createBeamStruct; 

inputStruct.OBJHYPER.OBJ_THETA  = 

output10.OBJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1 ); 

inputStruct.OBJHYPER.OBJ_EXP    = 

output10.OBJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);  

inputStruct.OBJHYPER.OBJ_LAMBDA = output10.OBJHYPER .OBJ_LAMBDA; 
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%Sample the RSM surface 

input11a = inputStruct; 

input11a.OLEVEL = 0; 

input11a.OBJMOD = 4.1; %Evaluate SPM RSM objective function  

input11a.CONMOD = 0.0; %Evaluate constraint function directly 

output11a = optimisationSampleRSM(input11a, output1 , 400); 

 

%Create an input structure to search the SPM RSM us ing a GA 

input11b = input11a; %Copy the sampling input structure  

input11b.OMETHD = 4; %Genetic Algorithm  

input11b.NITERS = 500 %10 generations  

output11b = OptionsMatlab(input11b, output1); 

output11b = optimisationSearchTrace(output11b) %Retrieve 

optimum from the trace history 

 

output11b =  

 

        VARS: [2x1 double] 

      OBJFUN: 2.6948e+003 

        CONS: [5x1 double] 

      RSMTRC: [1x1 struct] 

    OBJHYPER: [1x1 struct] 

 

%Plot the RSM and optimum point 

optimisationTerrain(output11a, input11a, 5) 

hold on; 

plot3(output11b.VARS(1,1), output11b.VARS(2,1), ...  

 output11b.OBJFUN, 'ko' , 'MarkerFaceColor' , 'k' ) 

 

6.12 Search the root mean square error of a tuned s tochastic process 

model RSM 

This example samples and then searches the Root Mean Square Error of the stochastic 

process model RSM built using the quick tuned hyper-parameters. The scalar hyper-

parameter values OBJ_THETA and OBJ_EXP are duplicated across the design 

variables of the problem and assigned to the field OBJHYPER of the input structure. 

 

The RMSE surface is invariant to a change in the direction of search for the 
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underlying problem. This means that the surface can be searched in either direction 

for points of maximum or minimum error. The test first verifies that the RSM is 

identical when the direction of search is reversed. 

 

The reader will be aware that the root mean square error of the SPM falls to zero at all 

sampled points (since the values of the objective and constraints are known at these 

points) so searching for the minimum of the surface is of little value. To find the 

maximum error in the stochastic process model RSM the direction of search in the 

input field DIRCTN is always set to +1 regardless of the direction of search of the 

underlying problem. This is worth highlighting because this differs from the searches 

of the other stochastic process model properties. In the cases of expected 

improvement (OBJMOD=4.3), constrained expected improvement (OBJMOD=4.31), 

constrained feasibility of improvement (OBJMOD=4.32) and probability of 

improvement (OBJMOD=4.33) the RSM surface that is built is critically dependent on 

the direction of search of the underlying problem. Any searches of these surfaces are 

hard-coded within OPTIONS to build the surface according to the direction of search 

for the underlying problem and seek the maximum in that surface accordingly. Only 

in the case of RMSE must the direction of search be explicitly set to +1 to find the 

maximum in the root mean square error of the RSM.  

 

% Duplicate the scalar hyperpameter values across t he design 

variables 

inputStruct = createBeamStruct; 

inputStruct.OBJHYPER.OBJ_THETA  = 

output10.OBJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1 ); 

inputStruct.OBJHYPER.OBJ_EXP    = 

output10.OBJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);  

inputStruct.OBJHYPER.OBJ_LAMBDA = output10.OBJHYPER .OBJ_LAMBDA; 

 

%Sample the RSM surface 

input12a = inputStruct; 

input12a.OLEVEL = 0; 

input12a.OBJMOD = 4.2; %Evaluate RMSE of SPM RSM over 

objective function  

input12a.CONMOD = 0.0; %Evaluate constraint function directly  

input12a.ONAM = 'RMSE' ; %Label objective  

input12a.DIRCTN = +1; %The error surface should not change 

with DIRCTN  
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output12a = optimisationSampleRSM(input12a, output1 , 400);

 %Sample RSM 

 

input12b = input12a; %Copy the sampling input structure  

input12b.DIRCTN = -1; %The error surface should not change 

with DIRCTN  

output12b = optimisationSampleRSM(input12b, output1 , 400); 

 

%Check that the RMSE surface is invariant under cha nge of 

DIRCTN 

if  (sum(abs(output12a.RSMTRC.OBJFUN - output12b.RSMTR C.OBJFUN)) 

> 0) 

    error( '*** RMSE of Stochastic Process Model is not 

invariant under change of DIRCTN ***' ) 

end 

 

input12c = input12b; %Copy the sampling input structure  

input12c.DIRCTN = +1; %Search for maximum in RMSE of the SPM  

    %(NB. This value is set to +1 

regardless of the 

    % direction of the underlying problem) 

input12c.OMETHD = 4; %Genetic Algorithm  

input12c.NITERS = 500 %10 generations  

output12c = OptionsMatlab(input12c, output1); 

output12c = optimisationSearchTrace(output12c) % Search the 

trace history for optimum 

 

output12c =  

 

        VARS: [2x1 double] 

      OBJFUN: 746.8510 

        CONS: [5x1 double] 

      RSMTRC: [1x1 struct] 

    OBJHYPER: [1x1 struct] 

 

%Plot the RSM and optimum point 

optimisationTerrain(output12a, input12a, 5) 

hold on; 
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plot3(output12c.VARS(1,1), output12c.VARS(2,1), ...  

 output12c.OBJFUN, 'ko' , 'MarkerFaceColor' , 'k' ) 

 

6.13 Search the expected improvement of a tuned sto chastic process 

model RSM 

This example samples and then searches the Expected Improvement of the stochastic 

process model RSM built using the quick tuned hyper-parameters. The scalar hyper-

parameter values OBJ_THETA and OBJ_EXP are duplicated across the design 

variables of the problem and assigned to the field OBJHYPER of the input structure. 

Note that for a minimisation problem OPTIONS inverts the Expected Improvement 

calculation, returning a minimum value of the inverted problem, at the point of 

maximum expected improvement of the RSM. 

 

% Duplicate the scalar hyperpameter values across t he design 

variables 

inputStruct = createBeamStruct; 

inputStruct.OBJHYPER.OBJ_THETA  = 

output10.OBJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1 ); 

inputStruct.OBJHYPER.OBJ_EXP    = 

output10.OBJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);  

inputStruct.OBJHYPER.OBJ_LAMBDA = output10.OBJHYPER .OBJ_LAMBDA; 

 

%Sample the RSM surface 

input13a = inputStruct; 

input13a.OLEVEL = 0; 

input13a.OBJMOD = 4.3; %Evaluate EI of SPM RSM over objective 

function  

input13a.CONMOD = 0.0; %Evaluate constraint function directly  

input13a.ONAM = 'EI' ; %Label objective  

output13a = optimisationSampleRSM(input13a, output1 , 400);

 %Sample RSM 

 

%Create an input structure to search the SPM RSM us ing a GA 

input13b = input13a; %Copy the sampling input structure  

input13b.OMETHD = 4; %Genetic Algorithm  

input13b.NITERS = 500 %10 generations  

output13b = OptionsMatlab(input13b, output1); 
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output13b = optimisationSearchTrace(output13b) %Search the 

trace history for optimum 

 

output13b =  

 

        VARS: [2x1 double] 

      OBJFUN: 115.1293 

        CONS: [5x1 double] 

      RSMTRC: [1x1 struct] 

    OBJHYPER: [1x1 struct] 

 

%Plot the RSM and optimum point 

optimisationTerrain(output13a, input13a, 5) 

hold on; 

plot3(output13b.VARS(1,1), output13b.VARS(2,1), ...  

 output13b.OBJFUN, 'ko' , 'MarkerFaceColor' , 'k' ) 

 

6.14 Search the probability of improvement of a tun ed stochastic 

process model RSM 

This example samples and then searches the Probability of Improvement of the 

stochastic process model RSM built using the quick tuned hyper-parameters. The 

scalar hyper-parameter values OBJ_THETA and OBJ_EXP are duplicated across the 

design variables of the problem and assigned to the field OBJHYPER of the input 

structure. Note that for a minimisation problem OPTIONS inverts the Probability of 

Improvement calculation, returning a minimum value of the inverted problem, at the 

point of maximum probability of improvement of the RSM (this is why this 

calculation may return negative value for the probability when searching a 

minimisation problem). 

 

% Duplicate the scalar hyperpameter values across t he design 

variables 

inputStruct = createBeamStruct; 

inputStruct.OBJHYPER.OBJ_THETA  = 

output10.OBJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1 ); 

inputStruct.OBJHYPER.OBJ_EXP    = 

output10.OBJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);  

inputStruct.OBJHYPER.OBJ_LAMBDA = output10.OBJHYPER .OBJ_LAMBDA; 
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%Sample the RSM surface 

input14a = inputStruct; 

input14a.OLEVEL = 0; 

input14a.OBJMOD = 4.33; %Evaluate PI of SPM RSM over objective 

function  

input14a.CONMOD = 0.0; %Evaluate constraint function directly  

input14a.ONAM = 'PI' ; %Label objective  

output14a = optimisationSampleRSM(input14a, output1 , 400);

 %Sample RSM 

 

%Create an input structure to search the SPM RSM us ing a GA 

input14b = input14a;  %Copy the sampling input structure  

input14b.OMETHD = 4;  %Genetic Algorithm  

input14b.NITERS = 500 %10 generations  

output14b = OptionsMatlab(input14b, output1); 

output14b = optimisationSearchTrace(output14b) %Search the 

trace history for optimum  

 

output14b =  

 

        VARS: [2x1 double] 

      OBJFUN: -1.0776e-042 

        CONS: [5x1 double] 

      RSMTRC: [1x1 struct] 

    OBJHYPER: [1x1 struct] 

 

%Plot the RSM and optimum point 

optimisationTerrain(output14a, input14a, 5) 

hold on; 

plot3(output14b.VARS(1,1), output14b.VARS(2,1), ...  

 output14b.OBJFUN, 'ko' , 'MarkerFaceColor' , 'k' ) 

 

6.15 Search the constrained expected improvement of  a tuned 

stochastic process model RSM 

This example samples and then searches the constrained Expected Improvement of 

the stochastic process model RSM built using the quick tuned hyper-parameters. The 
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scalar hyper-parameter values OBJ_THETA, OBJ_EXP, CST_THETA and CST_EXP 

are duplicated across the design variables of the problem and assigned to the fields 

OBJHYPER and CONHYPER of the input structure. Note that for a minimisation 

problem OPTIONS inverts the constrained Expected Improvement calculation, 

returning a minimum value of the inverted problem, at the point of maximum 

expected improvement of the constrained RSM. 

 

% Duplicate the scalar hyperpameter values across t he design 

variables 

inputStruct = createBeamStruct; 

inputStruct.OBJHYPER.OBJ_THETA  = 

output10.OBJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1 ); 

inputStruct.OBJHYPER.OBJ_EXP    = 

output10.OBJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);  

inputStruct.OBJHYPER.OBJ_LAMBDA = output10.OBJHYPER .OBJ_LAMBDA; 

inputStruct.CONHYPER.CST_THETA  = 

output10.CONHYPER.CST_THETA*ones(inputStruct.NVRS,1 ); 

inputStruct.CONHYPER.CST_EXP    = 

output10.CONHYPER.CST_EXP*ones(inputStruct.NVRS,1);  

inputStruct.CONHYPER.CST_LAMBDA = output10.CONHYPER .CST_LAMBDA; 

 

%Sample the RSM surface 

input15a = inputStruct; 

input15a.OLEVEL = 0; 

input15a.OBJMOD = 4.31;  %Evaluate constrained EI of SPM 

RSM over objective function  

input15a.CONMOD = 4.1;  %Evaluate constraint function 

using SPM RSM 

input15a.ONAM = 'CST-EI' ; %Label objective  

output15a = optimisationSampleRSM(input15a, output1 , 400);

 %Sample RSM 

 

%Create an input structure to search the SPM RSM us ing a GA 

input15b = input15a; %Copy the sampling input structure  

input15b.OMETHD = 4; %Genetic Algorithm  

input15b.NITERS = 500 %10 generations  

output15b = OptionsMatlab(input15b, output1); 

output15b = optimisationSearchTrace(output15b) %Search the 
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trace history for optimum  

 

output15b =  

 

        VARS: [2x1 double] 

      OBJFUN: -7.5469 

        CONS: [5x1 double] 

      RSMTRC: [1x1 struct] 

    OBJHYPER: [1x1 struct] 

    CONHYPER: [1x1 struct] 

 

%Plot the RSM and optimum point 

optimisationTerrain(output15a, input15a, 5) 

hold on; 

plot3(output15b.VARS(1,1), output15b.VARS(2,1), ...  

 output15b.OBJFUN, 'ko' , 'MarkerFaceColor' , 'k' ) 

 

6.16 Search the constrained feasibility of improvem ent of a tuned 

stochastic process model RSM 

This example samples and then searches the constrained Feasibility of Improvement 

of the stochastic process model RSM built using the quick tuned hyper-parameters. 

The scalar hyper-parameter values OBJ_THETA, OBJ_EXP, CST_THETA and 

CST_EXP are duplicated across the design variables of the problem and assigned to 

the fields OBJHYPER and CONHYPER of the input structure. Note that for a 

minimisation problem OPTIONS inverts the constrained Feasibility of Improvement 

calculation, returning a minimum value of the inverted problem, at the point of 

maximum feasibility of improvement of the constrained RSM. 

 

% Duplicate the scalar hyperpameter values across t he design 

variables 

inputStruct = createBeamStruct; 

inputStruct.OBJHYPER.OBJ_THETA  = 

output10.OBJHYPER.OBJ_THETA*ones(inputStruct.NVRS,1 ); 

inputStruct.OBJHYPER.OBJ_EXP    = 

output10.OBJHYPER.OBJ_EXP*ones(inputStruct.NVRS,1);  

inputStruct.OBJHYPER.OBJ_LAMBDA = output10.OBJHYPER .OBJ_LAMBDA; 

inputStruct.CONHYPER.CST_THETA  = 
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output10.CONHYPER.CST_THETA*ones(inputStruct.NVRS,1 ); 

inputStruct.CONHYPER.CST_EXP    = 

output10.CONHYPER.CST_EXP*ones(inputStruct.NVRS,1);  

inputStruct.CONHYPER.CST_LAMBDA = output10.CONHYPER .CST_LAMBDA; 

 

%Sample the RSM surface 

input16a = inputStruct; 

input16a.OLEVEL = 0; 

input16a.OBJMOD = 4.32;  %Evaluate constrained FI of SPM 

RSM over objective function  

input16a.CONMOD = 4.1;  %Evaluate constraint function 

using SPM RSM  

input16a.ONAM = 'CST-FI' ; %Label objective  

output16a = optimisationSampleRSM(input16a, output1 , 400);

 %Sample RSM 

 

%Create an input structure to search the SPM RSM us ing a GA 

input16b = input16a;  %Copy the sampling input structure  

input16b.OMETHD = 4; %Genetic Algorithm  

input16b.NITERS = 500 %10 generations  

output16b = OptionsMatlab(input16b, output1); 

output16b = optimisationSearchTrace(output16b) %Search the 

trace history for optimum  

 

output16b =  

 

        VARS: [2x1 double] 

      OBJFUN: 0 

        CONS: [5x1 double] 

      RSMTRC: [1x1 struct] 

    OBJHYPER: [1x1 struct] 

    CONHYPER: [1x1 struct] 

 

%Plot the RSM and optimum point 

optimisationTerrain(output16a, input16a, 5) 

hold on; 

plot3(output16b.VARS(1,1), output16b.VARS(2,1), ...  

 output16b.OBJFUN, 'ko' , 'MarkerFaceColor' , 'k' ) 
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