
PROVENANCE Contract Number: 511085

Enabling and Supporting Provenance in Grids for Complex Problems

Copyright © 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

1

Title: Client Side Library Design and Implementation

Workpackage: WP9

Author: Sheng Jiang

Contributors: Luc Moreau

 Paul Groth

 Simon Miles

 Victor Tan

 Steve Munroe

Reviewers: All project partners

Identifier: D9.3.3a

Type: Deliverable

Version: 1.0

Date: 28 November 2006

Status: Public

PROVENANCE Contract Number: 511085

Enabling and Supporting Provenance in Grids for Complex Problems

Copyright © 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

2

1 Introduction

The purpose of this document is to present the architecture of the Client Side Library (CSL)
of a provenance system, its rationale, its implementation and a methodology guiding its use.
According to Kruchten [1], “this is a development architecture, which focuses on the actual
software module organisation.”

The CSL is a collection of functions, which allows provenance-aware applications to
communicate with provenance store services. It also provides functionality to help
application developers enforce architecture rules or organise provenance relevant data items
easier in their provenance-aware applications. In Section 2, we first enumerate the
requirements, which are selected from the provenance architecture document [2] according to
their relevancy to CSL design. In Section 3, we describe our implementation referring to
implementation requirements in the provenance architecture document. In Section 4, we
present a design of a layered model for the CSL and detail its implementation. In Section 5,
we describe the development history of our implementation and its current status. The
mechanism, which application developers can use for integrating the CSL, is introduced in
Section 6.

Application developers should follow the procedures described in Section 6 primarily, and
consult Section 4 for more details on the design when they need to.

2 Requirements

In this section, we enumerate the impact of various requirements on the CSL and explain how
we support them in the CSL. The requirements are selected from the Chapter 9 in the
provenance architecture document [2] because of their relevance to CSL.

ID Description Support Feature

[SR-1-1] The CSL should include recording and
query interfaces which are used
respectively to store and retrieve p-
assertions to/from the Provenance Store.

This requirement is supported by
provided record, xquery and
provenance query interfaces.

[SR-1-2] The CSL should allow the retrieval of a
provenance trace from the Provenance
Store. Either a complete trace or a subset
may be retrieved.

This requirement is support by
provided xquery and provenance
query interfaces.

[SR-1-3] The CSL may store query results for
future use.

This requirement may supported by
the tools built upon the CSL. The
CSL itself does not manage the
storage of result.

[SR-1-4] The CSL may allow comparisons to be
made across Provenance Records.

This requirement may supported by
the tools built upon the CSL.

[SR-1-9] The CSL should be accessible as an API,
which can be embedded into an existing
application.

This requirement is supported by
allowing our client side to be
wrapped into a jar file, which can be
easily embedded into applications.

[SR-1-10] The CSL should allow the specification This requirement is supported by

PROVENANCE Contract Number: 511085

Enabling and Supporting Provenance in Grids for Complex Problems

Copyright © 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

3

of the identity of the Provenance Store to
which data should be recorded, or which
queries should be made to.

allowing application to assign the
URL of the provenance store.

[SR-1-13] The CSL may support the migration of
provenance data among Provenance
Stores.

This requirement is supported by the
tools built upon the CSL.

[SR-1-16] The CSL should provide support for
maximum automation of the provenance
recording mechanism.

This requirement is supported by
providing a simpler Application API
and the use of a creation utility to
generate certain data items for users.

[SR-1-18] The CSL should not block an executing
workflow if any provenance services are
unavailable.

The CSL is designed to be thread-
safe so that its invocation by
applications can be performed in
separate threads.

[SR-2-1] The additional execution overhead of the
CSL should be kept to a minimum.

The CSL is designed and
implemented while keeping this in
mind.

[SR-3-1-
2]

The CSL should allow application
specific analysis and reasoning tools to
be built upon.

The CSL provides the API, which
tools can be built upon easily.

[SR-6-3] The CSL may allow the configuration of
different levels of security
communication.

This requirement is supported by
providing several security
mechanisms in different levels
within the CSL.

[SR-7-2] The CSL should be easily integrated into
applications. Integration costs for existing
applications should be minimal; ideally
existing system components should
remain unaffected.

The CSL has been designed in a
layer model, which exposes only a
relevant simple Application API to
applications.

[SL-2] The CSL should support data translation
with specific documentation styles,
including references to data,
anonymisation, security encryption, part
of message, reduced form, etc. Also
mentioned in [SL-4, OTM.1, OTM.2,
OTM.8, OTM-18, EHCR.4, EHCR.5,
AER-2, IR-APP-1, and IR-APP-2].

This requirement is supported by
providing a documentation style
function with certain implementation
styles, including verbatim, reference,
encryption, signing and replace. It
also allows third-party implemented
styles to be plugged in easily.

[SL-9] The CSL should have no affinity to a
Provenance Store.

The CSL is independent from
provenance stores since it only relies
on WSDL specification of their
interfaces.

[AER-7] The CSL should provide functionality to
generate unique IDs.

This requirement is supported by
providing create utilities for
LocalPAssertionId and InteractionId.

[TSR-1-9] The CSL should support a registry This requirement was regarded as

PROVENANCE Contract Number: 511085

Enabling and Supporting Provenance in Grids for Complex Problems

Copyright © 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

4

service to enable the software interfaces
for all Tools to be visible.

beyond the scope of the CSL, which
aims at interaction with provenance
stores (and not registration).

3 Implementation Recommendation

Besides the general user requirement, we also have a series of implementation
recommendations. In this section, we list these recommendations, suggest features and
explain how we support them in the CSL implementation.

ID Description Design Feature

IR-ASL-1 The CSL should allow for
identification of which
provenance stores to be used.
However, it should also ensure
that all p-assertions pertaining to
one interaction from a particular
actor must be recorded in the
same provenance store.

This recommendation is supported by
implementing a ProvenanceService
interface, which has an address parameter
pointing to the in use provenance store.
The CSL also helps applications in
obeying architecture Rule 8.4 (Recording
Consistency Rule) by adopting a boolean
recorded parameter in ViewRecordImpl.

IR-ASL-2 The CSL should provide re-usable
functionality to communicate and
interact with the assigned
provenance store.

This recommendation is supported by
providing a Server API, which
communicates to provenance store
services; independently of the
communication network (secure or not).

IR-ASL-3 The CSL may provide
functionality to mutually
authenticate with the assigned
provenance store.

This recommendation is supported by
combining the CSL with a security host
environment, such as GT4; we adopt the
GT4 security library in our
implementation.

IR-ASL-4 An actor should provide
functionality to record a view link
to the provenance store that
contains the corresponding actors
view of the interaction if the view
is in another provenance store.

This recommendation is supported by
providing a P-Header helper. When a
view is recorded in a provenance store,
its view link is passed to its
corresponding actors by using P-Header.
P-Header with the view link is recorded
at its corresponding actors.

IR-ASL-5 The CSL should provide
functionality for generation of
unique IDs.

This recommendation is supported by
implementing a
localPAssertionIdFactory, which enforces
unique IDs. This also helps applications
to comply with architecture Rule 8.1
(Unique Interaction Key Rule).

PROVENANCE Contract Number: 511085

Enabling and Supporting Provenance in Grids for Complex Problems

Copyright © 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

5

IR-ASL-6 The CSL may provide
functionality to add assigned
Interaction Keys into its asserting
message.

This recommendation is supported by
implementing a P-Header function. P-
Header can hold the assigned Interaction
Keys. We also provide utilities to help
applications to embed PHeader into a
message header. This also helps
applications to comply with architecture
Rule 8.2 (Interaction Key Transmission
Rule).

IR-ASL-7 The CSL may provide
functionality for the generation of
a new session tracer and add it
into the task message.

This recommendation is supported by
implementing a tracer function within the
PHeader function. This also helps
applications to comply with architecture
Rule 8.6 (Generation Rule).

IR-ASL-8 The CSL may provide
functionality to add any session
tracers received from a superior
actor to all requests it makes to
inferiors within the task started by
the superior's request. This also
complies with architecture Rule
8.7. (Propagation Rule: to
inferior)

We provide the function to extract and
inject session tracers from and into P-
Headers. However, the burden is on the
application to extract a tracer from a
superior’s interaction and inject it into the
inferior interaction.

IR-ASL-9 The CSL may provide
functionality to add session
tracers supplied by its superior to
its response to the superior. This
also complies with architecture
Rule 8.8 (Propagation Rule: to
superior).

We provide the function to extract and
inject session tracers from and into P-
Headers. However, the burden is on the
application to extract a tracer from a
superior interaction and inject it into the
response interaction.

IR-ASL-10 The CSL may support declarative
policy specifications that specify
what information needs to be
recorded and when.

This recommendation is supported by
implementing a policy function. This also
helps applications to comply with
architecture Rule 8.6 (Generation Rule).

IR-ASL-11 The CSL may be customised for a
specific actor hosting environment
to capture information
automatically from existing logs
or from the runtime environment.
It may also use security
functionality and credentials
provided by the hosting
environment.

This recommendation is supported by
combining the actor side library with a
security host environment, GT4.
However, users have to configure the
host environment themselves in order to
get log information or use the security
function and credentials provided by
GT4.

PROVENANCE Contract Number: 511085

Enabling and Supporting Provenance in Grids for Complex Problems

Copyright © 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

6

IR-ASL-12 The CSL may provide a range of
error handlers and other facilities
to desynchronise application
execution from execution
documentation recording.

This recommendation is supported by
implementing several exceptions.
DataConstructorException handles all the
data constructing errors on the client side.
RecordException handles error during the
recording process. This also helps
applications to comply with architecture
Rule 8.12 (Error Message Rule).

IR-ASL-13 The CSL may provide the
necessary access to cryptographic
functionality and material (such as
key stores) in order to accomplish
functionality such as signing or
encrypting.

This recommendation is supported by
implementing security-signing and
security-encryption documentation style.
(Note: the key store is expected to be
provided by users.) This also helps
applications to comply with architecture
Rule 8.9 (Signature Rule).

IR-ASL-14 The CSL may provide
functionality to transform
messages according to particular
documentation styles.

This recommendation is supported by
implementing documentation style
function. Verbatim, reference,
encryption, signature, replace and
complex documentation styles are
supported in our implementation. This
also helps applications to comply with
architecture Rule 8.5 (Link Recording
Rule).

4 Layered Model and Implementation

The CSL provides essential functionality to enable the interaction between provenance-aware
applications and provenance store services. It also offers functions to help application
developers develop provenance-aware applications easily. It contains the interfaces as shown
in the following figure:

Figure 1: layered model of the CSL

 Client

 Side

 Library

Provenance-aware Applications

Application API

Utilities

Server API Provenance Store Services

PROVENANCE Contract Number: 511085

Enabling and Supporting Provenance in Grids for Complex Problems

Copyright © 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

7

In the above figure, we define three layers: the Server API (Application Programming
Interface) interacts with provenance store services. However, the data structure of the Server
API is too complicated to be used directly by application developers. Therefore, we have
defined an alternate, relatively simpler Application API. Some utilities are also implemented
in order to map the Application API to the Server API. Although application developers
could invoke the Server API directly, it is recommended that they use only the Application
API. Within the Application API layer, we also provide some helper functions that aid
application developers to enforce architecture rules (Chapter 8 Actor Behaviour, [2]) in their
provenance-aware applications. Helper functions are designed to be directly invoked by
application developers. Therefore, they are introduced as part of the Application API.

We describe our implementation of the CSL in the following sections. We start from the
bottom layer – the Server API, then the utilities layer, ending with the top layer – the
Application API. Each layer has its corresponding implementation(s). For each
implementation, we give the name of the Java package in which its primary interfaces are
found.

4.1 The Server API

In practice, we defined our provenance store interfaces in a set of Web Service Definition
Language (WSDL) files, according to our provenance specification [7, 8, 9, 10, 11, 12, 13].
Both server side and client side implementations are compatible with these WSDL
definitions. Therefore, they are compatible with each other.

We then generated stubs from these WSDL files using a JAX-RPC (Java API for XML based
Remote Procedure Call) [14] compliant tool, such as WSDL2Java [15] from the Globus
Toolkit version 4. Its structure exactly mirrors the defined WSDL interfaces of our Web
Service provenance store. We then use these stubs as our Server API (bottom layer).
However, the Server API mainly aims at low-level programming and testing. It is not
primarily intended to be used by application developers.

The Server API of the CSL is able to communicate with different types of provenance store
servers, which are compatible with the Provenance Store WSDL (PSWSDL [5]). As an
illustration, we have tested two implementations of provenance store services: a GT4-hosted
WSRF compliant provenance store [4] and a pure Web Service provenance store (Provenance
assertion Recording Services [3]).

Package: org.gridprovenance.client.generated

Implementation: The Server API is exactly the mapping of the WSDL to Java defined by the
JAX-RPC.

4.2 Utilities

The programming model of the Server API is too complicated for applications or users to
invoke directly. Instead, we designed utilities (middle layer) to hide the complexity of the
Server API from the upper-layer applications. It maps the relatively simpler Application API,
which we will describe in the next section, to the Server API.

4.2.1 Creation utilities

In order to simplify the user burden in creation provenance data, we provide several creation
utilities. They can automatically create some data items, such as LocalPAssertionId and
InteractionId, for provenance-aware applications or users. They also apply the relevant rules,

PROVENANCE Contract Number: 511085

Enabling and Supporting Provenance in Grids for Complex Problems

Copyright © 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

8

such as Rule 8.1 (Unique Interaction Key Rule), in order to make sure they obey the
provenance architecture and are accepted by the Server API.

Package: org.gridprovenance.client.utilities

Implementation: a LocalPAssertionIdFactory and an InteractionIdFactory, which create
unique LocalPAssertionIds and InteractionIds.

4.2.2 Data format converting utilities

We allow applications/users to input their data in simple format, mostly in String or Java
generic URI. Our data format converting utilities will check whether they are acceptable and
convert them into the formats that are accepted by Server API. These utilities also have
functions to construct certain type of new data items. They also provide functions to convert
certain type of data items into String or Element, which can be easily used by other functions.

Package: org.gridprovenance.client.utilities

Implementation: AsserterUtil, AddressUtil, DataAccessorUtil, DocumentUtil, ElementUtil,
EndpointReferenceTypeUtil, GlobalPAssertionKeyUtil, InteractionKeyUtil,
InteractionMetaDataUtil, LinkUtil, SecurityUtil, SignatureUtil, URIUtil and ViewKindUtil.

There are several new PAssertion() functions in the PAssertionFactory. They take necessary
parameters to create the corresponding PAssertions. They have multiple methods in order to
handle different combinations of parameters.

4.2.3 Error information utility

The client-side library is responsible for providing users with necessary error information.
Potential errors include: client-side library errors, communication errors between client and
server, and errors of the provenance store. In our implementation, every method has its own
errorMessage parameter, which includes the name of method and its belonged class. If any
error happens in a certain method, its errorMessage will be output alongside the Java error.
Then, the user can know precisely where the error happens.

Package: org.gridprovenance.client.exception

Implementation: errors are wrapped into four types of Exceptions:
DataConstructorException, PQueryException, RecordException and XQueryException.
DataConstructorException handles all the data constructing errors on the client side.
RecordException handles error during the recording process. XQueryException and
PQueryException handle error during the xquerying or pquerying process.

4.3 The Application API

The Application API (top layer) of the CSL provides a relatively simple interface to
applications. Ideally, the Application API is the only means by which application developers
access the CSL.

4.3.1 ProvenanceService

The ProvenanceService interface is designed to facilitate interactions with a single
provenance store at a given address. A ProvenanceServiceAddressingLocator is constructed
using the given provenance store address. Each ProvenanceService instance contains a set of
EndpointReference for record, xquery and pquery ports. When a ProvenanceService is
initialized, it loads policy parameters from user’s configuration. These policy parameters will

PROVENANCE Contract Number: 511085

Enabling and Supporting Provenance in Grids for Complex Problems

Copyright © 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

9

be used later in CSL. It also has methods to create new ViewRecord, XQuery or PQuery
instances using its default properties.

Implementation:

Interface: org.gridprovenance.client.ProvenancService

Implement: org.gridprovenance.client.impl.ProvenanceServiceImpl

4.3.2 PortFactory

Each port has its own interface. We have defined them as interfaces for extensibility
purposes. However, in order to reduce the programmer’s burden, we have defined a
PortFactory interface to create all relevant ports according to the different types of server. We
have three implementations: PortFactoryPSImpl creates the ports when CSL works against a
pure web-service provenance store; PortFactoryWSRFImpl creates the ports when CSL
works against a WSRF compatible provenance store; PortFactoryUnkownImpl has a test
function to decide the type of provenance store, and then creates the ports according to the
type, whether Web Service or WSRF based.

Implementation:

Interface: org.gridprovenance.client.PortFactory, org.gridprovenance.client.PQueryPort,
org.gridprovenance.client.RecordPort, org.gridprovenance.client.XQueryPort,

Implement: org.gridprovenance.client.impl.PortFactoryPSImpl,
org.gridprovenance.client.impl.PortFactoryWSRFImpl,
org.gridprovenance.client.impl.PortFactoryUnkownImp,
g.gridprovenance.client.impl.PQueryPortImpl,
org.gridprovenance.client.impl.RecordPortImpl,
org.gridprovenance.client.impl.XQueryPortImpl

4.3.3 ViewRecord & RecordResult

The ViewRecord interface is designed to hold the recording contents, i.e. PAssertions and
exposedMetadata. It has added PAssertion() methods, which call corresponding new
PAssetion() functions, also an addExposedMetadata() method. All the data within
ViewRecord instances will be recorded by the record() method. The RecordResult interface is
designed to hold the result of a recording.

Implementation:

Interfaces: org.gridprovenance.client.Record, org.gridprovenance.client.RecordResult;
Implements: org.gridprovenance.client.impl.RecordImpl,
org.gridprovenance.client.impl.RecordResultImpl

4.3.4 XQuery & XQueryResult

The XQuery interface is designed to hold the xquery parameters and carry out the xquery
fucntion. It has a setXQueryString() method. The search string describes the specific search
target. The XQuery is launched by the execute() method. The XQueryResult interface is
designed to hold the result of xquerying.

Implementation:

Interfaces: org.gridprovenance.client.XQuery, org.gridprovenance.client.XQueryResult

PROVENANCE Contract Number: 511085

Enabling and Supporting Provenance in Grids for Complex Problems

Copyright © 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

10

Implements: org.gridprovenance.client.impl.XQueryImpl,
org.gridprovenance.client.impl.XQueryResultImpl

4.3.5 PQuery & PQueryResult

The PQuery interface is designed to hold the provenance query parameters and carry out the
pquery function. It has a queryDatahandle and a relationshipTargetFilter alongside their
namespaceMapping. They give the provenance store detailed search information. The
PQuery is launched by the execute() method. The PQueryResult interface is designed to hold
the result of pquerying.

Implementation:

Interfaces: org.gridprovenance.client.PQuery, org.gridprovenance.client.PQueryResult

Implements: org.gridprovenance.client.impl.PQueryImpl,
org.gridprovenance.client.impl.PQueryResultImpl

4.3.6 Security Mechanisms

Security, an important concern of the client-side library, targets three elements:

1 Establishing an encrypted communication connection to the provenance store service;

2 Providing credentials for authentication purposes to the provenance store on this
communication path;

3 Creating a digital signature on p-assertions, which can subsequently be stored and verified.

In the Globus-Toolkit-hosted environments, the GT libraries can be employed to accomplish
all 3 aims.

Implementation: security of communication is dependent on the hosting environment. We
have integrated GT4 host security stubs into our client-side library. We also provide
configuration parameter (useGT4SSL) for user to choose whether to use security or not.

4.3.7 Documentation style helper

The CSL provides support for documentation style. We implement the message
transformation mechanisms that were initially defined in the architecture document [2]
(Chapter 6 Provenance Modelling, Section 6 Documentation Style Modelling).

The atomic documentation styles that are supported by the CSL are the following: Verbatim,
reference, encryption, signature and replace. Composite documentation styles that combine
one or more of the above atomic documentation styles are also supported.

Package: org.gridprovenance.documentationstyles

Implementation: The users, at design time, define the transformations that they want to
apply, and construct the related “transformation” files. Initially, the supplied atomic
transformations are all that are provided to the user. Then, the user uses these files at runtime
to apply the message transformation to the corresponding input file. To support this facility in
the CSL, we provide a “Transformer” class, which take as an input the transformation and
the input file (defined by the user), and produces the transformed output file. If more than one
transformation is applied (composite documentation style), the main function of the
Transformer Class is changed to call the appropriate Transformer (multiple times with
different input files).

PROVENANCE Contract Number: 511085

Enabling and Supporting Provenance in Grids for Complex Problems

Copyright © 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

11

4.3.8 Policy helper

In order for users of a provenance store to be able to record p-assertions, several parameters
of the store must be known and selected. To achieve this we adopt Apache’s WS Policy
implementation [16] to develop a policy framework, which allows users to discover a store’s
operational parameters their various options and to select those that are required (Shown if
Figure 2). The framework provides a set of default parameters that are adopted if the user
does not specify any policies in a policy document. If a user specifies a policy document, this
is process using the WS Policy implementation to produce a policy object, which is then
taken by a ConfigPolicies class that transfers these to the PolicyManager that sets the policies
contained in the policy object into the PolicyParamHolder. The WS Policy implementation
provides functions to merge different sets of policies and to discover common policy options
from different sets of policies. This functionality provides much flexibility for future
development of the policy framework and offers users significant opportunities for
configuring provenance stores in different ways.

Package: org.gridprovenance.client.policy

Implementation: We have constructed a policyParameterHolder class and a defaultParameter
class, which holds default policies. The PolicyManager handles PolicyObjects produced by
the WSPolicy Implementation that creates these objects from XML PolicyDocuments, which
are written by users to select the various different policy options provided by the provenance
store’s developers.

Figure 2: The Policy Framework

4.3.9 P-Header helper

The provenance architecture document [2], Section 3.4 introduces the concept of a P-Header
(Definition 3.1). In the CSL, there is a P-Header function that helps applications to create and
embed proper p-headers into the application messages. It also helps to extract the p-headers
from messages on the receiver side.

Package: org.gridprovenance.client.pheader

Implementation: P-Header itself is a complex object. In order to create a P-Header easily, we
have implemented InteractionContext, InteractionMetadata and tracer. We also implemented

PROVENANCE Contract Number: 511085

Enabling and Supporting Provenance in Grids for Complex Problems

Copyright © 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

12

a P-Header utility, which helps applications/users to embed a P-Header into a soap header
and export a P-Header from a soap message.

4.3.10 Relationship helper

The provenance architecture document [2], Section 2.4 specifies relationships and
relationship p-assertions (Definition 2.7). In the CSL, we implement a relation function that
helps the applications/users to create relationshipPAssertion easily.

Package: org.gridprovenance.client.relation

Implementation: there are a RelationObject class, a RelationSubject class and a
DataAccessor interface, which can implement different type of data accessors.

4.4 Tests and Examples

We provide examples to demonstrate how to use the CSL. We also implemented JUnit test
cases to test the CSL itself.

Package: org.gridprovenance.client.test, org.gridprovnenace.client.test.junittest

Implementation: The main example is ApplicationAPIExample, in which we demonstrate
how to use the CSL to record an interaction p-assertion, an actor state p-assertions and a
relationship p-assertion, and query the recorded p-assertions back. It is well explained in the
source code, and its execution is self explanatory.

There are also a few other examples listed below, with explanations provided in the source
code itself.

o DocumentationStyleExample, demonstrates the use of the documentation style API;

o PHeaderExample, demonstrates the PHeader helper and utilities;

o XQueryExample, demonstrates the XQuery separately;

o SecureCommunicationExample, is a modification of ApplicationAPIExample that is
capable of running in different security modes against a Provenance Service deployed
in a secure manner;

o PQueryexample, demonstrates how to use PQuery. It works only after using
RecordPQueryExampleData to record the example data.

A test suite (testCSL) has been implemented to test the CSL components independent of
testing against a Provenance Store. It includes test cases for TestImplements, TestPHeader,
TestRelationships and TestUtilities. They test each CSL components by creating testing
instances and comparing them with the expecting values.

PROVENANCE Contract Number: 511085

Enabling and Supporting Provenance in Grids for Complex Problems

Copyright © 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

13

5 Roadmap

This section describes the CSL development roadmap.

5.1 Development History

Jan-06 Nov-06

Feb-06 Mar-06 Apr-06 May-06 Jun-06 Jul-06 Aug-06 Sep-06 Oct-06 Nov-06

03/02/2006

Release 0.2

10/03/2006

Release 0.3

29/05/2006

Release 0.4

24/03/2006

R0.3.1

08/06/2006

R0.4.1

16/06/2006

R0.4.2

03/07/2006

R0.4.3

17/11/2006

Release 1.0

20/07/2006

Release 0.5

Figure 3: Release history of CSL

As shown in Figure 3, we started our design and implementation at the beginning of 2006.
For the initial version (v0.1), we generated stubs from designed WSDL and constructed the
implementation packages.

By 3rd February, we gave application developers our first release (v0.2). It includes only the
generated Server API and an example to use it directly.

We then implemented the basic Application API, which includes ProvenanceService,
ViewRecord and XQuery. Necessary utilities and the relation helper were implemented as
well in order to map the Application API to the Server API. By 10th March 2006, when we
had released v0.3, we also added an ApplicationAPIExample and an XQueryExample. In
order to fix several reported bugs and new application requirements, we made a minor release
v0.3.1 on 24th March 2006.

The next release (v0.4) we made on 29th May 2006. It was implemented against an improved
schema. This version was fully tested working with IBM WSRF-compatible provenance
store. In the mean time, we implemented documentation style and the P-Header helper.
PortFactory was introduced in order to simplify the usage of the CSL. After interaction with
application developers, we released a minor version (v0.4.1) for fixed bugs and new
requirements. V0.4.2 was released later with refined exception and better support documents
provided. V0.4.3 was provided with new ProvenanceLink functions and JUnit testcases for
CSL. V0.5.0 was release 21st July 2006. In it, we provide the Provenance Query function; we
introduce Policy Parameter, we also make secure communication available; alongside minor
improvements and bugs fixes.

The current version is 1.0, which will be described in the next section.

During the development period, it was our intent that changes to the Application API was
minimized to avoid affecting the development of provenance-aware applications. Whilst this

PROVENANCE Contract Number: 511085

Enabling and Supporting Provenance in Grids for Complex Problems

Copyright © 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

14

was desirable, changes could be made binary compatible and hence there would not be
noticeable impact on application.

5.2 Current Release

We released the current version 1.0 17th November. In it, we support XPathIterator port-type
and XPathQuery in Application API. We also provide a PortFactoryUnknownImpl, which
can automatically detect the type of provenance store then create ports according to it. We
adopted WS Policy in this release.

By now, the CSL is stable and completed. There are no activated bugs on the CSL
implementation.

5.3 Support for Applications

We provide constant and solid support to the application developers in this project.

We have explained our design and implementation of the CSL to the application partners in
detail during the two project face-to-face meeting, (first in Cardiff 22-24 February 2006;
second in Cologne 31 May – 2 June 2006). We have provided well organized JavaDoc
alongside with other support documents (Readme, ChangeLog, JDK1.4-guide, Lightweight-
guide, SecureGuide, LinkingSupportGuide, DocumentationStyleReadme, and
DocStyleProgrammerGuide).

We have taken part in the developer teleconferences, which were held every two weeks. We
answered questions raised by application developers regarding to the usage of CSL. All the
bugs or new requirements raised are handled as soon as possible. (See project bugzilla [6]).
As described in earlier sections, minor releases were made for fixed bugs.

We have held two project Interop face-to-face meetings (Interop 1 19-21 July 2006 and
Interop 2: 21-24 August 2006) at the University of Southampton in order to resolve technical
problems for application developers, such as coding or library conflicts.

6 Integration Mechanism

The CSL provides application developers and users with generic support for using
provenance functions. Application developers only need to make their applications invoke
the Application API. They may embed the CSL into their applications. After integration with
applications, the CSL becomes a part of provenance-aware applications and should be
distributed with the applications.

In order to show how users use the CSL, we illustrate one recording example and one
querying example with sequence diagrams. Since we have hidden the utilities and serverAPI
from applications/users, we do not show detail of them except for the construction of these
necessary data items.

PROVENANCE Contract Number: 511085

Enabling and Supporting Provenance in Grids for Complex Problems

Copyright © 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

15

6.1 Recording P-Assertions

Application

17. RecordPortType.record (PAssertions)

Application API Utilities

19. return RecordResult

Server API

6. return ps (instance of ProvenanceStore)

7. ps.newViewRecord (sink, source, asserter, viewKind)

10. viewRecord.addInteractionPAssertion (message)

9. return viewRecord (instance of ViewRecord)

12. record.addActorStatePAssertion (states, documentationStyle)

14. viewRecord.addRelationshipPAssertion(object, relationship, subject)

16.viewRecord.record()

18. return RecordAck

11. localPAssertionIdFactory.newInstance()

13. localPAssertionIdFactory.newInstance()

15. localPAssertionIdFactory.newInstance()

1. new PortFactoryWSRFImpl (Address)

4. return portFactory (instance of PortFactory)

2. Call ProvenanceStoreFactory Service

5. portFactory.newProvenanceService()

3. Return EndpointReferences of RecordPort

8. InteractionIdFactory.newInstance()

Figure 4: Recording sequence diagram

In Figure 4, we demonstrate how a provenance-aware application starts recording an
interactionPAssertion. It calls the PortFactoryWSRFImpl with a given address (step 1). By
calling the ProvenanceStoreFactory on the provenance store server (step 2), all relevant ports
are created, including RecordPort (step 3). A portFactory instance, which holds all these
ports, will be returned to the application (step 4). Then, the application needs to create a new
ProvenanceService instance – ps (step 5, 6). After that, the application creates a new
ViewRecord instance – viewRecord (step 7, 9). Its viewKind, sink, source and asserter
parameters are used for all PAssertions that associate with the same view. IteractionId is
auto-constructed by our InteractionIdFactory (step 8). In step 10, an interactionPAssertion is
added in the viewRecord. In order to create a unique ID, the localPAssertionFactory is called
(step 11) in background. A similar process is applied in order to add an ActorStatePAssertion
to the record instance (step 12, 13). The difference is that the application provides actor states
instead of messages. Before the application can add a relationshipPAssertion (step 14, 15),

PROVENANCE Contract Number: 511085

Enabling and Supporting Provenance in Grids for Complex Problems

Copyright © 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

16

the application should construct object and subject instance using the relation helper. In step
16, the record() method is called to record all these PAssertions. Behind it, RecordPortType
of the Server API is called to communicate with provenance store service (step 17).
RecordAck is returned from the Server API to the Application API. A RecordResult, which
provides several methods to access the record result, is returned to the application. The
recording process ends.

6.2 Querying for P-Assertions

Compared with the above recording process, the querying process is simpler, see Figure 5.
The application constructs a new PortFactoryWSRFImpl instance (step 1, 2, 3, 4); then
constructs ProvenanceService instance – ps (step 5, 6). It creates a new instance of XQuery
with given xquery string (step 7, 8).

Figure 5: querying sequence diagram

In step 9, the execute() method launches the xquery to a provenance store. Behind it,
XQueryPortType of the Server API is called to communicate with the provenance store
service (step 10). XQueryAck is returned from the Server API to the Application API.
XQueryResult, which provides several methods to access the xquery result, is returned to the
application. The xquerying process ends.

7 Conclusion

In this document, we have presented a design for the CSL of provenance systems and our
implementation details. The CSL allows provenance-aware applications to communicate with
provenance store services. It also provides functionality to help application developers
enforce architecture rules in their provenance-aware applications. We have enumerated the
requirements in Section 2; and presented our supported functionalities referring to

PROVENANCE Contract Number: 511085

Enabling and Supporting Provenance in Grids for Complex Problems

Copyright © 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

17

implementation recommendations in Section 3. In Section 4, we have introduced our layered
model and implementation details. We give the status of our current release and our future
plan in Section 5. Finally, Section 6 gives indications how provenance-aware applications
should use the CSL.

8 Bibliography

[1] Philippe Kruchten. Architecture blueprints – the “4+1” view. model of software
architecture. IEEE Software, 12(6), November 1995.

[2] Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, Victor Tan, Sofia Tsasakou, and
Luc Moreau. D3.1.1: An Architecture for Provenance Systems. Technical report,
University of Southampton, February 2006.

[3] PReServ (Provenance assertion Recording Services).
http://twiki.pasoa.ecs.soton.ac.uk/bin/view/PASOA/SoftWare

[4] John Ibbotson. EU Provenance Project Deliverable 9.3.2. Provenance Store (Server)
Implementation Design, February 2006.

[5] Provenance Service WSDL. http://www.pasoa.org/schemas

[6] EU Provenance project Bugzilla: http://gridprov.cs.cf.ac.uk

[7] Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, Victor Tan, and Luc Moreau.
Data model for Process Documentation. Technical report, University of Southampton,
2006. http://eprints.ecs.soton.ac.uk/13047

[8] Steve Munroe, Victor Tan, Paul Groth, Sheng Jiang, Simon Miles, and Luc Moreau. A
SOAP Binding For Process Documentation. Technical report, University of
Southampton, 2006. http://eprints.ecs.soton.ac.uk/13056

[9] Steve Munroe, Victor Tan, Paul Groth, Sheng Jiang, Simon Miles, and Luc Moreau. A
WS-Addressing Profile for Distributed Process Documentation. Technical report,
University of Southampton, 2006. http://eprints.ecs.soton.ac.uk/13057

[10] Paul Groth, Victor Tan, Steve Munroe, Sheng Jiang, Simon Miles, and Luc Moreau.
Process Documentation Recording Protocol. Technical report, University of
Southampton, 2006. http://eprints.ecs.soton.ac.uk/13053

[11] Simon Miles, Luc Moreau, Paul Groth, Victor Tan, Steve Munroe, and Sheng Jiang.
XPath Profile for the Provenance Query Protocol. Technical report, University of
Southampton, 2006. http://eprints.ecs.soton.ac.uk/13051

[12] Simon Miles, Luc Moreau, Paul Groth, Victor Tan, Steve Munroe, and Sheng Jiang.
Provenance Query Protocol. Technical report, University of Southampton, 2006.
http://eprints.ecs.soton.ac.uk/13050

[13] Victor Tan, Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, and Luc Moreau.
Basic Transformation Profile for Documentation Style. Technical report, University
of Southampton, 2006. http://eprints.ecs.soton.ac.uk/13049

[14] JAX-RPC. http://java.sun.com/webservices/jaxrpc/

[15] WSDL2Java. http://www-unix.globus.org/api/javadoc-3.9.0-
core/org/globus/wsrf/tools/wsdl/WSDL2Java.html

[16] WS Policy Implementation. ws.apache.org/commons/policy/index.html

PROVENANCE Contract Number: 511085

Enabling and Supporting Provenance in Grids for Complex Problems

Copyright © 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

18

Appendix: Example code

package org.gridprovenance.client.test;

import org.w3c.dom.Element;
import java.security.Principal;
import javax.security.auth.x500.X500Principal;
import java.net.URI;
import java.net.URISyntaxException;

import org.gridprovenance.client.PortFactory;
import org.gridprovenance.client.ProvenanceService;
import org.gridprovenance.client.ViewRecord;
import org.gridprovenance.client.RecordResult;
import org.gridprovenance.client.XQuery;
import org.gridprovenance.client.XQueryResult;
import org.gridprovenance.client.GlobalPAssertionKey;
import org.gridprovenance.client.ViewKind;

import org.gridprovenance.client.exception.DataConstructorException;
import org.gridprovenance.client.exception.RecordException;
import org.gridprovenance.client.exception.XQueryException;
import org.gridprovenance.client.impl.PortFactoryPSImpl;
import org.gridprovenance.client.impl.PortFactoryWSRFImpl;
import org.gridprovenance.client.impl.SenderViewKindImpl;

import org.gridprovenance.client.relationships.DataAccessor;
import org.gridprovenance.client.relationships.RelationSubject;
import org.gridprovenance.client.relationships.RelationObject;
import org.gridprovenance.client.relationships.XPathDataAccessor;

import org.gridprovenance.client.utilities.ElementUtil;

/**
 * Demonstrates how to use the Client Side Library (CSL) record<p>
 * interaction p-assertions, actor state p-assertions, relationship<p>
 * p-assertions and query the recorded p-assertions back.<p>
 * CSL of EU Provenance
 *
 * @author Sheng Jiang, Paul Groth
 * @version $Revision: 1.9 $
 */

public class ApplicationAPIExample {

 /**
 * Execution body.
 * @param args args[0] is the address of provenance store;
 */
 public static void main(final String[] args) {
 if ((args.length < 1) || args.length > 2) {

PROVENANCE Contract Number: 511085

Enabling and Supporting Provenance in Grids for Complex Problems

Copyright © 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

19

 System.out.println(" Usage:\tjava org.gridprovenance.test."
 + "ApplicationAPIExample <provenance store url>\n"
 + "\t\texample url: http://localhost:8080/wsrf/"
 + "services/ProvenanceStoreFactory (IBM WSRF ProvenanceStore)");
 System.exit(0);
 }
 try {
 new URI(args[0]);
 } catch (URISyntaxException e) {
 String errorMessage ="User input args 1 is not a valid URI";
 System.out.println(errorMessage);
 System.exit(0);
 }

 System.out.println("ApplicationAPIExample\n"
 + "The scenario():\tWe simulate a sender sending a "
 + "message to a receiver.\n\t\tThe sender uses part of its state in"
 + " the the message so\n\t\tit makes a relationship p-assertion "
 + "between its actor\n\t\tstate p-assertion and its interaction "
 + "p-assertion.\n\nPress any key to continue...");

 /**
 * The following parameters should be set up / provide by applications,
 * either from the configure files or generated during application
 * executing. Here, as a simple example, we use the pre-set values
 * instead.
 */
 PortFactory portFactory = null;
 try {
 portFactory = new PortFactoryWSRFImpl(args[0]);
 } catch (DataConstructorException e) {
 String errorMessage = "Error during create Ports!";
 System.out.println(errorMessage);
 System.exit(0);
 }
 //Create a ProvenanceService for recording and xquerying.
 ProvenanceService ps = portFactory.newProvenanceService();

 try {
 ViewKind vk = new SenderViewKindImpl();
 String sourceString = "http://www.sender.com/sender";
 String sinkString = "http://www.receiver.com/receiver";
 Principal asserter = new X500Principal(
 "CN=Sheng, OU=ecs, O=soton, C=UK");
 Element message = ElementUtil.newElement("<hello>Sheng</hello>");
 Element actorStates = ElementUtil.newElement("<cpu>1.2 GHz</cpu>");
 /**
 * In order to create a new record object, message source, message sink,
 * asserter and viewKind should be given by application.
 */
 ViewRecord viewRecordInstance = ps.newViewRecord(sinkString, sourceString,
 asserter, vk);

 /**

PROVENANCE Contract Number: 511085

Enabling and Supporting Provenance in Grids for Complex Problems

Copyright © 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

20

 * In the following two PAssertion, since no documentationStyle given,
 * Verbatim will be applied; for other, see DocumentationStyleExample.
 */
 GlobalPAssertionKey gpakAPA = null, gpakIPA = null;
 try {
 gpakIPA = viewRecordInstance.addInteractionPAssertion(message);
 } catch (DataConstructorException e) {
 System.out.println("error when adding an InteractionPAssertion");
 }

 try {
 gpakAPA = viewRecordInstance.addActorStatePAssertion(actorStates);
 } catch (DataConstructorException e) {
 System.out.println("error when adding an ActorStatePAssertion");
 }

 /*
 * We create a "usage" relationship between the above 2 PAssertions.
 * This relationship says message represented by InteractionPAssertion
 * used the actor state represented by ActorStatePAssertion. In order
 * to do so, there are a few more parameters that should be given by
 * applications. Applications may use relation helper to get or set
 * right relationships.
 *
 * In order to create the relationship PAssertion, the following
 * parameters should be set up / provide by applications. DataAccssor
 * are optional. It points to a certain element inside PAsserter.
 */
 DataAccessor subjectDA = new XPathDataAccessor(
 "/soap:envelope/soap:body/message:hello");
 URI subjectPAParameterName = null;
 URI objectPAParameterName = null;
 URI relationship = null;
 try {
 subjectPAParameterName = new URI("http://www.pasoa.org/schemas/"
 + "ontologies/relationships/usage.user");
 objectPAParameterName = new URI("http://www.pasoa.org/schemas/"
 + "ontologies/relationships/usage.usedItem");
 relationship = new URI("http://www.pasoa.org/schemas/ontologies/"
 + "relationships/use");
 } catch (URISyntaxException e) {}
 DataAccessor objectDA = new XPathDataAccessor("/server:cpu");
 String objectLinkString = "http://www.pasoa.org/xquery";
 //where objectPA can be queried back

 //Magic number 1, only because we know there are one object
 RelationObject [] relationObject = new RelationObject [1];
 relationObject [0] = new RelationObject(objectDA, objectPAParameterName,
 gpakAPA, objectLinkString);
 RelationSubject relationSubject = new RelationSubject(subjectDA,
 subjectPAParameterName, gpakIPA);

 try {
 viewRecordInstance.addRelationshipPAssertion(relationObject,
 relationship, relationSubject);

PROVENANCE Contract Number: 511085

Enabling and Supporting Provenance in Grids for Complex Problems

Copyright © 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

21

 } catch (DataConstructorException e) {
 System.out.println("error when adding an RelationshipPAssertion");
 }
 System.out.println("Recording the p-assertions in provenance service "
 + ps.getRecordPortEPRType().toString());
 RecordResult rResult = viewRecordInstance.record();
 rResult.printOut();
 System.out.println("One Interaction PAassertion recorded");
 } catch (DataConstructorException e) {
 String errorMessage = "error when constructing data for ViewRecord";
 System.out.println(errorMessage);
 } catch (RecordException e) {
 String errorMessage = "Error during recording";
 System.out.print(errorMessage);
 }

 System.out.println("**\n"
 + "Querying the content of the provenance store\n"
 + "The entire content of the store will be displayed\n"
 + "Press any key to continue...");

 /**
 * Create a XQuery Instance
 */
 String xQueryString = "<result>{for $n in $ps:pstruct return $n}</result>";

 XQuery xQueryInstance = ps.newXQuery(xQueryString);
 try {
 XQueryResult xqResult = xQueryInstance.execute();
 xqResult.printOut();
 System.out.println("\nDone\nThanks for using ApplicationAPIExample"
 + " of this Client Side Library!\nHave fun creating your own"
 + " provenance aware application!\n");
 } catch (XQueryException e) {
 String errorMessage = "Error during xquerying";
 System.out.print(errorMessage);
 }
 }
}

