
PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Title: Configuration Tool Implementation
Work Package 6

Authors: Omer F. Rana, Arnaud Contes and Vikas Deora

Editor:

Reviewers:

Type: Deliverable (D6.3.1)

Version: Rev : 198 (svn)

Date: August 20, 2006

Status: Final

Class: Confidential

Summary
The purpose of this document is to define the configuration process and subse-
quently demonstrate its implementation within a provenance system. Particular
focus is placed on the configuration process required for the tool suite, such as
the configuration necessary for the analysis engine and the user portal. The
relationship between the setup protocol and the configuration process is also
described. Performance analysis of the analysis engine and the user portal is
reported based on p-assertions from OTM/EHCR and DLR applications.

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

1

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Members of the PROVENANCE Consortium

IBM United Kingdom Limited United Kingdom
University of Southampton United Kingdom
University of Wales, Cardiff United Kingdom
Deutsches Zentrum für Luft- und Raumfahrt e.V. Germany
Universitat Politecnica de Catalunya Spain
Magyar Tudomanyos Akademia Szamitastechnikai Hungary
es Automatizalasi Kutato Intezet

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

2

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Foreword

This document describes:

• Configuration management issues within the provenance system and the
tool suite.

• Configuration support provided for different user roles in the tool suite –
such as a System Administrator, an Application Administrator, an End
User, etc. These roles have also been defined in the document.

• User interface support provided for configuration management in the Por-
tal.

The primary audience of this document include: administrators of the prove-
nance system, application managers making use of the tool suite, and applica-
tion users (particularly those making use of a workflow engine) employing tools
to better understand the behaviour of their applications (based on previously
submitted p-assertions).

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

3

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Contents

1 Introduction 7
1.1 Purpose of the Document . 8
1.2 Document Overview . 8
1.3 Links to other Provenance Documents 9

2 Configuration Management 9

3 Tool Suite Configuration 10
3.1 Tool Suite Overview . 10
3.2 Configuration Types . 11
3.3 Relation to Setup Protocol . 13

3.3.1 Configuring the Provenance Store 13
3.3.2 Configuring the Client Side Library 14
3.3.3 Configuring Documentation Style Transformation 14
3.3.4 Configuring the VFS Documentation Style Plugin 15
3.3.5 Configuring the Security Architecture 18

4 Configuring the Query and the Analysis Tools 19
4.1 The Query Engine . 19
4.2 The Analysis Engine . 21

4.2.1 Template Rules . 26
4.2.2 P-assertion Conflict Detection 27

4.3 Extended Queries . 29

5 Configuring the Portal 31
5.1 User Interaction Types . 31
5.2 Portal Management . 36
5.3 Views Supported . 37
5.4 Performance . 43
5.5 Security Support . 45

6 Application Scenarios 46

7 Non-Provenance Aware Application 52

8 Conclusion 57

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

4

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

List of Figures

1 Components included within the Tool Suite 12
2 Virtual File System schema . 17
3 Detailed view of the Analysis Engine 23
4 Populating the engine memory 26
5 Conflict Detection : Computation Time 28
6 Conflict Detection : Memory Usage 29
7 Extended query . 30
8 Add new user . 32
9 Group Explorer . 33
10 Auditor Page . 34
11 Community Page without configuration 35
12 OTM group user page without community configuration 35
13 Community Page with configuration 35
14 OTM group user page with auditor community configuration . . . 36
15 Portal management configuration 37
16 Import User Data and sample content of User Data(vikasdeora) . 38
17 Export User Data . 39
18 Three configuration to allow customization of layout, navigation

and content . 39
19 Edit portal: Configuration of layout for main portal container . . 40
20 Navigation Configuration . 40
21 Portal view configuration through portlet registry for text view

portlet . 41
22 Portal view configuration through portlet registry for visualization

portlet . 42
23 Text only view . 43
24 visualization view . 43
25 Visualization Performance (File size) 44
26 Visualization Performance (Number of p-assertions) 45
27 Memory usage . 46
28 EHCR Process with “widget” expanded 48
29 EHCR Process . 49
30 OTM Process . 50
31 DLR Process . 51
32 EHCR Interaction Relationship configured with Thumbnail view . 53
33 OTM Interaction Relationship configured with thumbnail and cir-

cular view . 54
34 Cactus, AstroGrid-D RDF store and Provenance architecture. . . 56

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

5

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

List of Acronyms

• HTTP: HyperText Transfer Protocol.

• MIME: Multimedia Internet Mail Extension.

• URI: Uniform Resource Identifier.

• VFS: Virtual File System.

• OTM: Organ Transplant Management.

• EHCR: Electronic HealthCare Records.

• GUI: Graphical User Interface.

• PS: Provenance Store.

• CIFS: Common Internet File System.

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

6

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

1 Introduction

The operations necessary to support configuration management, the types of
configuration options that are made available within a particular provenance
system, and mechanisms for the use of these configuration options within an
application, are described in this document. Configuration management can be
supported for various components that make up a provenance system. These
range from:

1. Configuring the overall architecture – i.e. identifying the components in-
volved within a provenance system, such as the location and number of
Provenance Stores, the recording actors, the location of the tool suite, etc.

2. Configuration of individual components that make up a provenance sys-
tem, such as the Client Side Library, the tool suite, the Provenance Store,
etc.

3. Configuration of the security mechanism being employed within the prove-
nance system – such as role-based access control, use of digital certificates,
username/password-based access management, etc.

4. Configuration of components within the tool suite – such as the Analysis
and Navigation tools, etc.

5. Configuration of individual portlets within the Navigation tool – for in-
stance, allowing users to modify the “view” on particular p-assertions that
have been retrieved from one or more Provenance Stores.

6. Configuration of the setup protocol – identifying the number and types of
stages allowed for a particular provenance system (as described in Deliv-
erable D6.2.1 from WP6).

A given type of configuration may only be undertaken by a particular category
of user. For instance, application end users may not be allowed to modify the
security mechanism being used – whereas system administrators may be allowed
to modify any of the above configurations. The focus within this document is
primarily on configurations 4, 5, and 6 listed above. The following types of users
may be involved in configuration management:

• Provenance System Administrators: These individuals would be responsi-
ble for managing the overall configuration process. They are responsible
for acting as an overall coordinator for the configuration management
process.

• Application Administrators: These individuals are responsible for config-
uring the interaction between the application, the tool suite and the Prove-
nance Store. Such users must therefore provide configuration parameters
required within the setup process – in collaboration with application end

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

7

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

users. The outcome of the setup process is the creation of a configura-
tion file for use by application administrators to deploy on one or more
application instances.

• Tool Suite Administrators: These individuals are responsible for ensuring
that all the tools (navigation, analysis, etc) are ready and available for use.
They may be the same as application administrators – or may be part of
the overall Provenance system administration team. Any errors produced
during the setup process must be logged by the tool suite administra-
tors. The error messages may subsequently be analyzed by application
administrators.

• Application End Users: These individuals make use of the portal and the
rule engine to interact with a particular application. The portal may have
been pre-configured by the Application Administrators, but such users
would still be able to modify these configurations based on their pref-
erences. Such modifications are generally supported via a menu-based
interface.

This user classification is based on the description provided in Deliverable
D6.1.1. A new role has been identified by one of the application end users in
the Provenance project (DLR), which is that of a Project Manager. A project
manager is responsible for configuring the types of interactions that can take
place between an application user who belongs to the project, the tool suite and
the Provenance Store.

1.1 Purpose of the Document

The purpose of this document is to explain the configuration management
process (with particular focus on the tool suite) and its relationship to other
components in the Provenance system. A distinction is made between setup
and configuration:

• Setup involves identifying the operations that are necessary to enable an
actor to record or to query a Provenance Store. Such operations will make
use of functionality provided within a client application, the tool suite and
the Provenance Store.

• Configuration involves identifying the parameters that may be associated
with a setup process. Essentially, the setup protocol focuses on the set
of activities (or processes), whereas configuration focuses on specific in-
stances of these activities, with support for generating particular values
for the parameters associated with each activity in the protocol.

1.2 Document Overview

This document is structured as follows:

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

8

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

• Section 2 describes the overall configuration management process – iden-
tifying various components of a Provenance system that need to be con-
figured, and the possible period over which configuration changes are pos-
sible.

• Section 3 contains a description of configuration management for the Tool
Suite. An overview of the types of possible configurations being sup-
ported is provided in this section, followed by a detailed discussions in
sections 5 and 4. The relationship between the setup protocol (described
in deliverable D6.2.1) and configuration management is explained.

• Section 6 identifies how the configuration management process can be
applied in a non-provenance aware application. This section demonstrates
how the configuration process can be adapted for an application that does
not make direct use of a Client Side Library to submit p-assertions.

• Conclusion and possible further work is presented in section 8.

1.3 Links to other Provenance Documents

This document makes use of content in the following existing Provenance project
documents:

• WP2: Requirements identified in D2.2.1. In particular, the focus is on
requirements that impact the setup of the Provenance system – such as
SR-1-10, SR-1-11, SR-1-17, SR-1-18, SR-6-3, and SR-7-2. The last of these
is particularly significant, as it states that the Provenance system should
be loosely coupled to the application that makes use of it.

• WP3: The frozen architecture document D3.1.1. Configuration manage-
ment is discussed with reference to the architectural components discussed
in section 3.3 of “An Architecture for Provenance Systems” – such as the
relation between the client-side libraries and the Provenance Store.

• WP6: Tools Deliverables D6.1.1 and D6.2.1 – such as the operations neces-
sary to support the navigation and analysis tools. Configuration manage-
ment is related to the setup protocol, identifying how parameters needed
to configure various stages of this protocol are specified. Configuration of
the Portal, discussed in deliverable D6.2.1, is also described in this docu-
ment, along with examples of use in the context of the OTM/EHCR and
DLR application scenarios.

2 Configuration Management

In this document, configuration management refers to the ability of a user to
specify values to parameters associated with the Provenance system, using ei-
ther a Graphical User Interface (GUI) or a command-line based tool. The values

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

9

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

associated with parameters may be entered manually or they may be read from
an existing file. Where multiple possible values can be associated with a given
parameter, such values may be chosen using a pre-defined menu (or another
equivalent user interface mechanism). Constraints may be associated with such
values, to limit them to a pre-defined range or to a pre-defined type (such as
numeric, string, etc). Such constraints need to be defined by a System adminis-
trator at setup time. The following aspects of configuration management need
to be considered:

• User role: this aspect determines the types of configuration options that
should be made available to a particular user role. Such roles have already
been identified in deliverables D6.1.1 and D6.2.1 (and provided in section 1
of this document). The application administrator is provided with greater
configuration privileges than the application end user, for instance, when
making use of the tool suite.

• Time period: this aspect determines the time at which a particular type
of configuration should be allowed. For instance, it may be necessary to
identify the location of a Provenance Store at setup time only. Alter-
natively, the types of views available to an application end user on the
recorded provenance data may be configured by the end user involved.

• Type: this aspect identifies the “types” of configurations which are allowed
– i.e. what aspects of the provenance system may be configured, and
what components in the provenance system are potentially configurable.
A provenance system administrator may restrict the configuration of some
components in the system from being modified.

• Mechanism: this aspect identifies how configuration changes should be
supported, essentially identifying the method used to achieve a change in
configuration for a particular provenance system component, or for the
system as a whole. The mechanism used may range from uploading a
pre-defined text file, to making configuration changes using a pull down
menu.

It is assumed that an overall Provenance System Administrator is responsible
for the above aspects of a provenance system. Such individuals would also be
involved in setting up the system in the first instance (as discussed in deliverable
D6.2.1), and subsequently defining particular user roles within the system.

3 Tool Suite Configuration

3.1 Tool Suite Overview

The tool suite from WP6 is composed of different types of components as shown
in figure 1 – these include:

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

10

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

• The processing tools: these tools provide features accessible through an
Application Programming Interface (API). They are designed to be used
within larger applications. These tools include the following:

– The Analysis Engine provides reasoning capabilities over a set of p-
assertions,

– The Comparator Tool may be used to compare p-assertions that have
been submitted by an application,

– the Query Tool makes use of the Client Side Library to query one or
more Provenance Store(s).

• The visualisation tools: these tools provide Graphical User Interfaces
(GUI) for visualizing p-assertions that have been submitted by an ap-
plication (potentially making use of a workflow).

• User interaction is supported through the eXo portal to provide a standard
way to invoke the Setup protocol and the Configuration Tool.

• Various portlets have also been developed to provide different views to the
recorded p-assertions. Portlets can exchange data with each other via the
eXo portal container. New portlets may also be added – and are made
visible by publishing the portlets within a registry (that is part of the
portal framework).

3.2 Configuration Types

In order to provide a greater degree of flexibility in configuring the tool suite,
each tool is developed to be stateless. The use of this approach prevents the need
to bind the tool suite to a particular configuration architecture, and prevents
the introduction of new dependencies between the tools.

Nevertheless, as a demonstration of how such a configuration architecture
could be used, WP6 provides an example of a configuration architecture. This
architecture has been developed as a set of portlets, and can be used alongside
other portlets that are publicly available over the Internet or from commercial
vendors that support the JSR168 and WSRP portal standards (as discussed in
Deliverable D6.1.1).

The configuration portlet relies on a database to provide the configuration
settings requested by the tools. We describe several mechanisms of configuration
that could be implemented.

• a static configuration approach is by far the easiest, and involves specifying
the configuration within the source code of the program. Unfortunately,
it is also the least flexible and easy to update approach. Thus, this type of
configuration should only be limited for development/debugging purposes.

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

11

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Portal

Applications

Tools Suite

Process Visualisator

RelationShip Visualisator

Query
Portlet

Analysis
Portlet

Process
Visualisation
Portlet

Relationship
Visualisation
Portlet

Visualisation Tools :

Provide Graphical User
Interfaces to be embedded
within the target portlet or
application

Users

Comparator Tool

Analysis Engine

Query Tool
Processing Tools :

Provide APIs to be called
by the target portlet or
application

Configuration
Portlet

Setup protocol
Portlet

Configuration Tool :

Provide an API to configure others tools

Figure 1: Components included within the Tool Suite

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

12

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

• An alternative approach is to write the configuration into a file and pass
it to the tool suite at start-up. The storage format that could be used
can vary, and depends essentially on the application context. It could be
a simple set of key/value pairs, or may be a structured XML document,
or may be in a binary file format only readable by the application.

• An extended version of the previous approach would be to allow the file to
be remotely accessible, thereby allowing the sharing of the configuration
between the tools. This approach remains a read-only solution.

• The use of a database can be described as the recommended type of con-
figuration. A database is recommended when the configuration could be
updated during the execution of an application or when several parties
have access to a commonly shared configuration. The database approach
also provides a number of features such as concurrent access support, im-
mediate propagation of an update or deletion, etc.

3.3 Relation to Setup Protocol

The setup protocol document (D6.2.1) contains a description of the steps neces-
sary to make an application provenance aware. We now discuss the configuration
provided by an application manager for the tool suite at step S1 described in
D6.2.1.

In order to enable an application to use a provenance system, several pack-
ages of the Provenance Architecture have to be already installed:

• one or more Provenance Store(s) must be installed, see section 3.3.1;

• several instances of the Client Side Library, one per actor.

• any requested Documentation Style Transformations, the configuration is
done per actor, see section 3.3.3;

• the security sub-system, see 3.3.5;

• The portal server.

Note that the configuration of the portal and the tool suite are developed latter
in the document (sections 4 and 5).

3.3.1 Configuring the Provenance Store

The Provenance Store represents a key component of a provenance system, as
it is responsible for storing p-assertions submitted by an application. Thus, the
location of at least one Provenance Store must be included in any configuration
of a provenance-aware application. The location of a Provenance Store is rep-
resented using the Uniform Resource Location (URL) format.

The installation of a Provenance Store from WP9 includes the installation
of a number of dependent software packages:

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

13

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

• the eXist 1.0 XML database,

• the Globus Toolkit version 4.0.2 (Java WS Core).

The configuration of a Provenance Store is performed by individuals belong-
ing to the Provenance System Administrator role. It includes the creation,
modification and deletion of a Provenance Store, and the broadcasting of these
events to the Application Administrators. The notification can be achieved in
a number of different ways – from a manual process: sending an email to all
Application Administrators involved, to a more complex process that would in-
volve an update to the database of Provenance Stores shared by the Provenance
System Administrators (with read/write/update access) and by the Application
Administrators (with read-only access).

3.3.2 Configuring the Client Side Library

Each actor in a provenance system makes use of the Client Side Library (CSL)
to communicate with a Provenance Store. This communication could be either
a query or a submission of provenance-related data – such as a description of an
interaction, a snapshot of the actor state at a particular moment of time during
application execution, etc.

In order to be able to contact the Provenance Store, the CSL needs to know
the location of, at least, one Provenance Store. This is a mandatory parameter.
The list of available Provenance Stores is gathered by the Application Admin-
istrator from the Provenance System Administrators. It is worth mentioning
that an application could be publishing to, or retrieving data from, several
Provenance systems that make use of several Provenance Stores.

3.3.3 Configuring Documentation Style Transformation

When an actor documents an interaction, it constructs an interaction p-assertion
which states the content of a message received or sent by the asserting actor.
This message needs to be qualified by the asserting actor so that querying ac-
tors can understand the nature of the transformation that was applied to an
application message. This is the purpose of the Documentation Style. More
details about Documentation Style can be found in sections 6.5 and 8.5 of the
Logical Architecture document (D3.1.1).

The Documentation Style framework provides a set of basic transformations
for documenting a p-assertion. Each transformation can be configured by defin-
ing a transformation definition document. This is an XML file that provides
information on how a specific transformation is to be performed. An instance
of a transformation definition document is shown in listing 2 – explanations
of this document are given in section 3.3.4. Each transformation has a set of
parameters associated with it; the transformation is performed using the trans-
formation definition document as input to supply values for these parameters.
The transformed input is put into a p-assertion along with a URI pointing to

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

14

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

the transformation definition document, which should now be made available
at a publicly accessible site.

As describes within the PStruct schema, each p-assertion contains an element
named DocumentationStyle that describes the transformation used on this p-
assertion. The default value is called Verbatim, which means that the content
of the p-assertion contains the original message as it has been sent by the actor.
By default, a Documentation Style Transformation provides two operations:

• The forward transformation occurs when an actor submits a p-assertion
through the Client Side Library. This transformation modifies the con-
tent of the p-assertion submitted by the client by applying the configured
Documentation Style Transformation. This transformation is undertaken
within the Client Side Library and without any further interaction with
the actor. A field within the structure of the p-assertion is updated to de-
scribe the transformation used. Then the transformed p-assertion is sent
to the Provenance Store.

• The reverse transformation is used to reverse the effect of a Documentation
Style Transformation on the content of the p-assertion. It is usually used
on a p-assertion extracted from a Provenance Store. When a reverse
transformation is applied, the field describing the Documentation Style
Transformation used on the p-assertion is set to Verbatim and the content
of the p-assertion contains the message originally sent by the actor.

The transformation document has to be deployed by the Application Adminis-
trators on every actor involved in a particular application.

3.3.4 Configuring the VFS Documentation Style Plugin

The TENT application from DLR (aerospace engineering, WP7) does not send
contents during method calls, but rather stores the data to be transferred onto
an external storage location (a WebDAV server [6]) and only sends the location
of such data as part of a p-assertion. This behaviour is equivalent to the use of
a Documentation Style plugin that would upload the content of the interaction
to a remote server.

In order to allow the retrieval of the information stored on the remote server,
a Virtual File System (VFS) Documentation Style plugin has been developed
by the WP6 team. This plugin makes use of a Virtual File System architecture
to access the data stored outside the Provenance Store. The VFS architecture
used in this plugin comes from the Jakarta Commons [12] “Common Virtual
File System” [11] project. The Commons Project is dedicated to creating and
maintaining reusable Java components, enabling the collaboration and sharing
of code between developers from the Jakarta community.

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

15

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Commons developers make an effort to ensure that their components have
minimal dependencies on other libraries, so that these components can be de-
ployed easily. In addition, Commons components will keep their interfaces as
stable as possible, so that Jakarta users (including other Jakarta sub-projects)
can implement these components without having to worry about changes in the
future. This VFS has also been chosen due to the high numbers of file systems
supported within it – thereby ensuring that formats other than WebDAV can
also be accommodated. The following formats are supported:

• CIFS: provides access to the files on a CIFS server, such as a Samba server,
or a Windows share.

• Local Files: provides access to the files on the local physical file system.

• HTTP and HTTPS: provides access to files on a (non-)secure HTTP
server.

• FTP and SFTP: provides access to the files on a (non-)secure FTP server.

• WebDAV: provides access to files on a WebDAV server.

• Zip, Jar and Tar (uncompressed, tgz or tbz2), gzip and bzip2: provides
read-only access to the contents of Zip, Jar, Tar, gzip and bzip2 files.

All filenames are treated as URIs, i.e. the reference to a file located on a Web-
DAV server would be webdav://somehost:8080/file.xml

This plugin is provided as an add-on that could be used with any Client Side
Library, the only requirement is to include the provided jar (that contains the
plugin classes) and the jar from the Jakarta VFS project into the classpath
of the actor’s Java Virtual Machine. The plugin is used to reverse the virtual
forward transformation required by the TENT application. The forward trans-
formation is called virtual because it is not undertaken by the plugin or the
TENT application itself. The TENT application uploads the content directly
to the WebDAV server (external to the provenance system). Thus the forward
method does not alter the content of the p-assertions. The reverse transforma-
tion downloads the content from the remote server (in this case the WebDAV
server), and then replaces the location reference within the p-assertion with the
actual content from the server.

In order to facilitate the use of this transformation, an XML schema has
been defined to specify how to encode the location of the remote data and its
type. The schema is shown in figure 2 and an example defining a text content
location at the URL would be webdav://localhost/davfiles/text.txt on a
WebDAV server.

The type of the remote content can be specified by the application user.
According to the type used, the transformation plugin will import the content
differently. Possible values for the type attribute are:

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

16

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Figure 2: Virtual File System schema

• text or xml: if this type is specified, the content of the transformed p-
assertion is replaced by the content of the remote file.

• binary: this type specifies that the remote content is a binary file (PDF,
image, MS-Excel or MS-Word document, etc). In this case, as an XML
document cannot contain binary data, the content is first encoded using
a base64 algorithm and then inserted into the p-assertion instead of the
transformed content.

1 <vfs:remoteFile xmlns:vfs=”http://www.gridprovenance.org/schemas/tools/vfs.xsd”>
2 <vfs:path type=”text”>webdav://localhost/davfiles/text.txt</vfs:path>
3 </vfs:remoteFile>

Listing 1: VFS example : text content

As any Documentation Style transformation, the VFS transformation re-
quires a transformation definition document. An instance of this definition
document is shown in listing 2. Lines 7 and 8 define respectively the input
format, i.e. the document that is going to be transformed (XML in this case)
and the output format, i.e. the result of the transformation. Line 10 specifies
the Documentation Style Transformation to use, each transformation is defined
by a unique identifier. Lines 13 and 14 specify the namespace of the document
before and after the transformation. The key parameter in this definition doc-
ument is the <Accessor> element (line 16) that specifies how to find the nodes
that contain a reference to the remote content. In this example, the location
is encoded using the schema previously introduced. However, it would also be
possible for an Application Administrator to define their own schema and to
use it as long as the specified node contains the URL of the remote file, and an
attribute type specifying the type of the file.

1 <transformDefinition
2 xmlns=”http://www.gridprovenance.org/documentationstyle/transformdefinition.xsd”
3 xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
4 xmlns:ps=”http://www.gridprovenance.org/documentationstyle/transformdefinition.xsd”
5 xsi:schemaLocation=”http://www.gridprovenance.org/documentationstyle/transformdefinition.

xsd”>
6
7 <inputTechnology>http://www.gridprovenance.org/documentationstyle/dataTypes/XML TYPE

</inputTechnology>
8 <outputTechnology>http://www.gridprovenance.org/documentationstyle/dataTypes/

XML TYPE</outputTechnology>
9 <transformOperation>

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

17

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

10 <transformType>http://www.gridprovenance.org/documentationstyle/transformTypes/
webdav</transformType>

11 <webdav>
12 <nameSpaceMapping>
13 <ps:originalNameSpace>http://www.gridprovenance.org/schemas/tools/vfs.xsd</

ps:originalNameSpace>
14 <ps:transformedNameSpace>http://www.gridprovenance.org/schemas/tools/vfs.xsd<

/ps:transformedNameSpace>
15 </nameSpaceMapping>
16 <Accessor>//∗[namespace−uri() = ”http://www.gridprovenance.org/schemas/tools/vfs

.xsd” and local−name() = ”remoteFile”]</Accessor>
17 </webdav>
18 </transformOperation>
19 </transformDefinition>

Listing 2: VFS Transformation Definition Document

3.3.5 Configuring the Security Architecture

The Security architecture makes use of a Role-Based Access Control (RBAC)
[9] mechanism, as stated in section 4 of the Security Requirement deliverable
document D4.1.1.

RBAC is an approach for restricting system access to authorized users that
take on particular “roles” within a system. Hence, it makes use of roles that
have been created for various job functions within an organization. The per-
mission to perform certain operations (‘permissions’) are assigned to specific
roles. Members of staff (or other system users) are assigned particular roles,
and through those role assignments acquire permissions to perform particular
system functions.

Since users are not assigned permissions directly, but only acquire them
through their role (or roles), management of individual user rights becomes a
matter of simply assigning the appropriate roles to the user, which simplifies
common operations such as adding a user, or changing a user’s department.

RBAC differs from access control lists (ACL’s) used in traditional discre-
tionary access control systems, as it assigns permissions to specific operations
that have meaning in the context of a particular organization, rather than to
low level data objects. For example, an access control list could be used to
grant or deny write access to a particular system file, but it would not say in
what ways that file could be changed. In an RBAC-based system an operation
might be to create a ‘credit account’ transaction in a financial application or to
populate a ‘blood sugar level test’ record in a medical application. The assign-
ment of permission to perform a particular operation is meaningful, because the
operations are fine grained and themselves have meaning within the application.

Thus, in order to configure the Security architecture for an application, the
Application Administrators have to:

• create certificates for every actor of the application. By actors, we imply
both software components and users that make use of the application,

• define the security roles according to the application,

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

18

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

• bind all actors to their designated roles,

• define the authorization rules for each role defined before.

If several security domains are involved, the Application Administrator must
propagate this configuration to all security domains. In the case of a single
security framework shared by all the components involved (Provenance Stores,
eXo Portal, Client Side Library, etc) in the application, the configuration only
needs to be undertaken once. However, if the application crosses multiple se-
curity boundaries, such as in the Organ Transplant Management application
(WP9), the configuration must be propagated to all security subsystems in-
volved in the application. The way to propagate this configuration could be
by editing manually the configuration of each subsystem, or by making use of
tools that can maintain coherency between all the components. This aspect of
security (i.e. dealing with multiple types of security mechanisms) is not being
considered in the project, as we assume that a single security subsystem is in
place.

At a systems configuration level, inter-domain authentication is achieved
through the GT4 security framework. Each independent domain has to main-
tain its own root certificate (issued by some valid Certificate Authority); hence
incoming requests from clients in a different domain cannot be authenticated
properly as their certificates were signed or issued by a different Certification
Authority. In order to support inter-domain authentication at the level of the
GT4 message level security framework, it is possible to either install the re-
quired root certificates of other domains into the container environment of a
given domain or use “cross signed” certificates. Details about these two options
are provided within the CrossDomainCerts.txt file located under the docs
directory of the Provenance Store release.

4 Configuring the Query and the Analysis Tools

The Query engine is a stateless tool, hence its behaviour does not depend on
previous query executions — but only on the configuration used when executed.
This section describes the requested configuration data that such tools expect,
outlining when and how the configuration of these tools needs to be undertaken.

4.1 The Query Engine

The Query engine is dedicated to retrieve information (p-assertions) located
within one or more Provenance Stores. It provides an API to query multiple
Provenance Stores with only one request.

Querying multiple Provenance Stores leads to the retrieval of several partial
results. Before delivering these results to the application, the Query engine
merges these into a single result. The merge process ensures that:

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

19

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

• all possible duplicated p-assertions are removed. Duplicated p-assertions
could occur when querying two Provenance Stores where the first one is
a backup of the second. The detection of duplicated p-assertions is done
using the Comparator Tool also provided by WP6.

• the version of the PStruct schema is the same for all the p-assertions re-
trieved. This restriction is imposed by the definition of PStruct which
can only contain p-assertions using the same version of PStruct, whereas
querying multiple Provenance Stores could return several p-assertions us-
ing different schema versions.

• merge all partial results into one single PStruct, as if there was only one
Provenance Store.

The final result can be manipulated later by other tools or external applications.
In order to perform a query, the engine requires two configurable inputs: (1)
a query, and (2) a list of Provenance Stores to which the query should be
submitted. The list to be used can be specified by:

• Provenance System Administrators: as these individuals are responsible
for managing the configuration process, they could provide the list of all
Provenance Stores that are going to be available in a particular Provenance
system.

• Application Administrators: these individuals are responsible of an appli-
cation, that is why they have full access to the list of Provenance Stores
used by this application in order to be able to create, modify or delete the
locations of Provenance Stores from this list.

• Application End Users: by default, these individuals can only use the pre-
defined list of Provenance Stores. However, the Application Administrator
is able to authorize them to add new Provenance Stores. Authorizing an
end user to add new Provenance Stores is achieved by adding this user to
the Personalized Provenance Store security role. Note that the end user
has full access to their own list of Provenance Stores, but they cannot
modify the list specified by the Application Administrator.

Similarly, the set of available queries can be specified by different types of users:

• Application Administrators: as these individuals are responsible for an
application, they have full access to the Query Engine for this application
in order to be able to create, modify or delete queries from a list.

• Application End Users: by default, these individuals can only execute
queries that are contained in a pre-defined list. However, the Application
Administrator is able to authorize users to insert their own set of queries.
Authorizing an end user to add new queries is achieved by adding this
user to the Personalized Query security role. Note that the end user has
full access to their own rules, but they cannot modify the rules specified
by the Application Administrator.

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

20

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Template Queries

The “template queries” mechanism allows the creation of a query in which some
parameters can be specified when the query is going to be executed. Thus, it is
necessary to only define a template query once, and to use it several times in dif-
ferent application contexts — simply by modifying its parameters. Configuring
the parameters of a template query is part of the configuration process.

This configuration can happen either during the application configuration
(i.e when Application Administrators define the available query) or at runtime
when using the query portlet within the eXo portal. Hence, if a template query
is selected to be submitted, and the requested parameters have not been defined,
the query portlet enters a special mode and waits for the definition of the query
parameters by the user executing the query. The content of the query itself
can be expressed using two formats: an XPath expression or an XQuery. An
example of a template query is shown in example 1

Example 1 Example of queries for retrieving the content of a Provenance Store
(1) XQuery format :

"<result>{for $n in ps:pstruct return $n}</result>"
(2) XPath format :

"/ps:pstruct"

(3) Template query:
"$query"

where the parameters $query could be
<result>{for $n in ps:pstruct return $n}</result> as in (1)

or /ps:pstruct as in (2)

The Query portlet gives access to the Query engine through the eXo portal.
The Query engine is able to analyse a query, and report if this query is a template
or a standard query. For a template query it can also return parameters that
need to be filled, or values of parameters that have already been filled. Thus,
when a query is selected from a pre-defined list and executed, the Query portlet
makes use of the Query engine to check if the given query is a template query
or not. If yes, before the execution of the query, the portlet displays a form
allowing the user to fill the parameters. Where parameters values have already
been set – a default value or value from a previous execution, for instance – are
shown.

4.2 The Analysis Engine

The Analysis tool encompasses several components to provide a reasoning frame-
work over a set of p-assertions. The relationship between the components is
shown in figure 3. These components are:

• The Java Expert System Shell (JESS),

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

21

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

• an XMLLoader module, a JESS extension written in Java that is in charge
of loading the p-assertions exposed as XML data into the JESS memory,

• XMLTemplates are JESS templates that specify the mapping between an
XML element and a JESS fact,

• a set of Helper functions, written in JESS, that help developers write rea-
soning rules by providing functions such as recursive deletion of an XML
node when exposed as JESS facts, conversion between an XML element ID
and its JESS facts, search function by element name, attributes, values,
etc.

• a Conflict Detection module, written in JESS that validates the p-assertions.
This module makes use of the Comparator Tool (another tool provided
by WP6 and written in Java) that performs XML document comparison.
The Comparator Tool makes use of the Documentation Style framework
in order to compare two p-assertions using different documentation styles
if the transformation from one documentation style to the other has been
documented.

In addition, the Analysis Tool makes use of the Query Engine (section 4.1
to query Provenance Stores and retrieve p-assertions.

The core of the analysis tool is based on the Java Expert System Shell
(JESS), a Java-based version of the CLIPS system. JESS uses the Rule Based
approached to implement a Knowledge-Based (Expert) System and is more cor-
rectly classified as a Production Rule System. It uses an enhanced version of
the Rete algorithm to process rules. Rete is an efficient pattern matching al-
gorithm for implementing rule-based (“expert”) systems. It is also an efficient
mechanism for solving the difficult many-to-many matching problem (see, for
example, [3]).

A production system is a computer program which consists of a set of rules,
or productions which are of the form “IF conditions THEN actions”, a database,
also called working memory, which maintains state data, and a rule interpreter.
The rule interpreter executes a forward chaining algorithm for updating and
producing data. The condition portion of each rule (left-hand side or LHS) is
tested against the current state of the working memory. If conditions are true,
the consequent actions (right-hand side or RHS) are executed — updating, re-
moving or adding data to the working memory.

The system stops processing either when the user interrupts the forward
chaining loop; when a given number of cycles have been performed; when a
“halt” RHS is executed, or when no rules have true LHSs. A Production Rule
System’s Inference Engine is stateful and able to enforce truthfulness - called
Truth Maintenance. A logical relationship can be declared by actions, which
means the action’s state depends on the inference remaining true; when it is no

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

22

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Analysis Engine

E
S
S

XMLLoader

XML
Templates

Helper
Functions

Conflict
Detection

Module

Query Engine

Client Side Library

Provenance Store

Comparator
Tool

Documentation
Style

VFS
Documentation Style Plugin

ABC
Documentation Style Plugin

ABC
Documentation Style Plugin

ABC
Documentation Style Plugin

Tools Suite

Make use of

A

P

I

Applications

J

Figure 3: Detailed view of the Analysis Engine

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

23

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

longer true the logical dependant action is undone. The “Honest Politician” is
an illustrative example of Truth Maintenance, which always ensures that hope
can only exist for a democracy while we have honest politicians. This example
could be defined using the following rules:

1. when an honest Politician exists then logically assert Hope

2. when Hope exists then print “Hurrah!!! Democracy Lives”

3. when Hope does not exist then print “Democracy is Doomed”

The equivalent JESS rules are shown in listing 3.

(defrule rule1
(honest ?Politician)

=>
(assert Hope))

(defrule rule2
(Hope ?)

=>
(printout t "Hurrah!!! Democracy Lives"))

(defrule rule3
(not (Hope ?))

=>
(printout t "Democracy is Doomed"))

Listing 3: Jess example: Democracy

The rule interpreter, or inference engine, cycles through two steps: match-
ing production rules against the database, followed by selecting which of the
matched rules to apply and execute the selected actions.

Production systems may vary on the expressive power of conditions in pro-
duction rules. Accordingly, the pattern matching algorithm which collects pro-
duction rules with matched conditions may range from the naive – trying all
rules in sequence, stopping at the first match – to the optimized, in which rules
are “compiled” into a network of inter-related conditions. The latter is illus-
trated by the Rete algorithm.

To sum up, the Analysis Engine expects two different types of input: (1) a
set of rules which represent the logic of the computation (also called production
rules) and (2) a set of facts which represent the data to be analysed (also called
working memory). As the rule engine is based on the JESS assertion engine, the
reasoning rule must be provided either under the default Lisp-based encoding
or under an equivalent XML-based format such as JESSML [15].

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

24

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

The data produced by the execution of a provenance-aware workflow is com-
posed of a set of p-assertions. Such a set of p-assertions provides the description
of the physical workflow. A p-assertion can be used to record one of the following
events:

• an interaction between two actors,

• the state of an actor with respect to an interaction at a particular moment,

• a relation between two events.

These p-assertions are stored within a Provenance Store. The set of p-assertions
to be analyzed is loaded into the analysis engine’s memory using XML (the ex-
posed format of the p-assertions) to facts (the format the analysis engine is able
to cope with) bridge. This bridge has been developed in WP6 and can be used
in a number of other contexts and JESS applications. In order to evaluate the
performance of XML loading into the rule engine, some benchmarks have been
performed to assess the overhead resulting from this rule loading process. They
consist in measuring the time spent by the bridge to convert the XML data into
facts. Obviously, the number of generated facts ties in with the length of the
XML document to load. The computer used for these benchmarks is a laptop
with Pentium M operating at 2.13GHz, 1GB of memory, a Linux fedora core
5 with kernel version 2.6.17. The hard disk is a Hitachi 5400RPM, ATA/100,
with an access time of 12ms. The data we have used have been provided by the
applications from WP7 and WP8.

The “loading time” curve in figure 4 presents the average duration of the
populating process depending on the number of generated facts. The average
time is computed after 100 consecutive loadings. The “file size” curve presents
the size of the XML document depending on the number of generated facts. From
the performance evaluation performed, we can observe that:

• The loading process has a linear complexity O(n).

• The average loading rate is about 103,000 facts per second, or average
accepted throughput is about 7.2MB per second.

This indicates that the rule loading process is scalable, and may be used for
reasonable sized documents – the 103,000 facts (for instance) provides a repre-
sentable value within the two applications being considered in this project.

A rule may be specified by different types of users:

• Application Administrators: as these individuals are responsible for the
application, they can also specify the rules that can be run and that are
meaningful in the application context.

• Application End Users: by default, these individuals can only execute
rules available on the list of application rules set by the Application Ad-
ministrator. However, the Application Administrator is able to authorize
a user to insert their own set of rules by adding this user into the Person-
alized Rules security role.

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

25

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

 0

 100

 200

 300

 400

 500

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000
T

im
e

(m
s)

Fi
le

 s
iz

e
(K

B
)

Numbers of generated facts

Loading time
file size

Figure 4: Populating the engine memory

4.2.1 Template Rules

The “template rule” mechanism provided by the rule engine allows individuals
to create generic reasoning rules where some of the constraints can be specified
externally at runtime. The definition of these constraint parameters is part of
the configuration process.

Listing 4 shows how it is possible to change a standard rule into a rule
making use of the template rule mechanism. The rule “normalRule” and “tem-
plateRule” only differ by one line – line 5 has been modified into line 13. In line
13, the use of the command fetch means that the value of this element is no
longer fixed but varies according to the content of the variable “patientName”.

1 (defrule normalRule
2 "Rule looking for a patient name,
3 name is specified in the rule"
4 (Element (ElementID ?elementID) (LocalName "Patient")
5 (Text "Durand"))
6 =>
7 ; ... some actions)
8
9 (defrule templateRule

10 "Rule looking for a patient name,
11 the name is contained within a variable called patientName"
12 (Element (ElementID ?elementID) (LocalName "Patient")
13 (Text (fetch "patientName")))
14 =>

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

26

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

15 ; some actions)

Listing 4: Using template rules

The following Java example shows how to initiate a JESS engine instance
(line 2), load a file containing the JESS rules defined in listing 4 (line 5), load a
set of p-assertions into the JESS engine (lines 8-12), set the value of the variable
“patientName to “Durand” (line 14) and launch the computation (line 16), then
the value of “patientName” is set to “Dupont” and the computation is launched
again.

1 // Jess Engine creation
2 JessAssertionEngine jess = new JessAssertionEngine();
3
4 // Loading of the rules (including the template one)
5 jess.batch(new File("/path/to/a/file.clp");
6
7 // Set of Passertions
8 Document passertions = ...
9

10 // Loading of the p−assertions
11 jess.loadXML(passertions);
12
13 // Filling the template parameters
14 jess.store("patientName", new Value("Durand",RU.STRING));
15
16 jess.executeCommand("(run)");
17
18 // Modifying the patient name only requires to set the new
19 // value, there is no need to write another rule.
20 jess.store("patientName", new Value("Dupont",RU.STRING));
21
22 jess.executeCommand("(run)");

4.2.2 P-assertion Conflict Detection

In addition to providing a reasoning framework within the project, the analysis
tool is also used to detect possible conflicts in the p-assertions recorded. The
nature of detected conflicts can vary, from detecting a difference between the
data submitted by the sender and by the receiver for the same interaction (for
example in the OTM application, if the result of a blood test as reported by
the laboratory and the result available at a particular hospital differ) or the
detection of unexpected behaviour during the execution of a workflow (for in-
stance, an abnormally long duration between the extraction of an organ and the
scheduled transplant operation).

Some benchmarks have been performed in order to evaluate the performance
of the conflict detection module. The hardware and software environment is the

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

27

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(m

s)

Numbers of p-assertions

With conflict
Without conflict

Figure 5: Conflict Detection : Computation Time

same as before. The results are shown in figures 5 and 6. Each value represents
the average of 20 successive tests.

The performance of the conflict detection module has been tested on a set of
p-assertions without conflict, and also by introducing one conflict in a randomly
selected p-assertion. The introduction of the conflict has consisted in modifying
one of the integer values exchanged by two actors in the sender view of the
p-assertion. The results are shown in figure 5.

The memory usage has also been monitored and figure 6 shows the usage for
a set of p-assertions when stored on the file system and the amount of memory
used by its equivalent representation when loaded inside the analysis tool. Note
that the amount of memory shown represents the amount of Heap memory used
by the Java Virtual Machine executing the conflict detection code. The values
have been collected through the Java Management eXtension (JMX) [14]. The
maximum heap size of the JVM has been set to 512MB.

Figure 5 shows that the time spent on detecting a conflict is similar — with
or without conflict in the input data. There is a small difference in the computa-
tion time when the amount of p-assertions increase. We consider this difference
insignificant. As a possible explanation, it could be caused by the large amount
of memory used, and the use of Java’s garbage collection mechanism – which can
be launched at irregular intervals for the Java Virtual Machine. The fact that
the computer was not running only the performance code but also additional
programs (contributing to background workfload) could also contribute to this
value.

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

28

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600 700 800 900 1000
 0

 50

 100

 150

 200

 250

 300

 350

 400

F
ile

 s
iz

e
(M

B
)

M
em

or
y

U
sa

ge
 (

M
B

)

Numbers of p-assertions

File size
Memory usage

Figure 6: Conflict Detection : Memory Usage

Figure 5 shows that the memory used to represent a p-assertion remains
constant as the two curves increase in a similar manner. From the data, it is
possible to calculate the amount of memory used to represent a p-assertion.
Given that a set of 1000 p-assertions use 18MB on the filesystem and its repre-
sentation in memory uses 380MB, we can deduce that, on average, a p-assertion
use 18KB on the hard disk and its representation in memory is 380KB. The ratio
of memory representation divided by the file system space used is 21. This ratio
is explained by the fact that each XML element is mapped into a Java object
and that the data contained within one element rarely exceeds the size of 2 char-
acters. In [8], the author demonstrates that a plain Java Object takes 8 bytes,
an int uses 16-byte result, an empty String takes 40 bytes – enough memory
to fit 20 Java characters. So an empty XML element with a 4 characters-long
name uses: 2*4 characters + 2 * "<" + 2 * ">" = 12 octets whereas its repre-
sentation in memory uses at least: Object + 4 * String(element name, prefix,
namespace, content) = 168 bytes. The ratio is here already 168/12 = 14.

Both of the figures present linear curves that indicates a complexity of O(n).

4.3 Extended Queries

This mechanism was not initially planned to be provided inside the tool suite. Its
inclusion results from a request of the OTM team (WP8) to be able to perform
a verification (query of a Provenance Store + analysis of the result) as one single
action to check on a particular process during an organ transplantation.

In order to provide an easy and complete integration of the tools within ap-
plications like Organ Transplant Management (OTM), the two separate compo-

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

29

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Figure 7: Extended query

nents presented above (the query tool and the analysis engine) can be combined
in a all-in-one submission featuring also an XSLT based filtering and conversion
mechanism between the query engine and the rule engine. XSLT, the Exten-
sible Stylesheet Language Transformations, [4] is a language to transform the
format of XML data into other XML documents or into data of other formats,
on the basis of a set of well-defined rules. For example, XML files can be trans-
formed into HTML pages, or into WAP Mark-up Language (WML) for display
on Web-enabled mobile phones or in JPEG images.

An extended query is composed of four parts, as shown in figure 7:

1. a query that needs to be submitted to the Provenance Store. The query
could be defined using XPath, XQuery or a template query

2. an XSLT document to filter/render the results of the query. The result of
this rendering can be used to display the data retrieved from the Prove-
nance Store,

3. a set of rules compatible with the analysis engine (JESS),

4. another XSLT document to filter/render the results of the analysis engine.
This XSLT is used to render the results returned by the analysis engine
into the format wanted. This could be another XML document, an HTML
document, a PDF file, an image, etc.

Executing an extended query is only granted to those individuals who are
allowed to access both the query engine and the analysis tool. This means
that they have to belong, from the security point of view, either to the Query
group and to the Analysis group or to any group which has access rights to
both of these tools. In order to create an extended query, an individual must
belong to the Personalized Query and Personalized Rule security role. Only the
Application Administrator can grant these roles to a user.

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

30

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

5 Configuring the Portal

5.1 User Interaction Types

In this section, a description of configuration to support user interaction with
the portal server, various portlets, and configuration of groups and community-
based access to portlets is provided. Each of the above is discussed below:

• User Registration: The aim of this operation is to configure access for new
users to the eXo portal server. This would then allow new users to suc-
cessfully authenticate with the portal using the given username/password
pair. The list of new users to be added can be specified by:

– Provenance System Administrators: as these individuals are respon-
sible for managing the overall configuration process, they provide the
list of all users who are going to take the role of Tool Suite Admin-
istrators and Application Administrators.

– Tool Suite Administrators: as these individuals are responsible for
managing the tools, they provide the list of all users that are going
to be involved in maintenance, configuration and deployment of tools
(e.g. navigation, analysis, etc).

– Application Administrators: these individuals are responsible of spec-
ifying the list of application end users (for example doctors), allowing
application end users to make use of the portal.

– Application End Users: by default, these individuals have no rights
to add new users.

Figure 8 displays an abstract user sergioalvarez being added to the por-
tal by a Provenance System Administrator, who belongs to an abstract
organ transplant management(OTM) group and Application Administra-
tors group. Discussion on group configuration is covered next. In figure 8
the banner and logo can be customized for each application.

• Group Membership: The aim of this configuration is to allow creation of
groups and membership. This process allows the allocation of users to
groups and giving them a membership type. This configuration restricts
only certain users in a group to perform any edit on page content. For
example, a user (doctor) in one of the OTM group can also be the head of
a department and can thus be in a department head group. Department
head group in this instance is an abstract group representing a hierarchial
status in an organization (OTM application). The “edit” function on the
page can be configured to restrict only members of department head group
to perform any modification on the content relevant to this OTM group.
This provides secure and efficient means to manage a portal configuration
and layout.

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

31

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Figure 8: Add new user

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

32

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Figure 9: Group Explorer

This form of configuration eases the definition of layouts for all users that
require similar content by grouping them together. Group configuration
page is shown in figure 9. Groups can be specified by different types of
users:

– Provenance System Administrators: as these individuals are respon-
sible for managing the overall configuration process, they would be
responsible for creation of Tool Suite Administrator and Application
Administrator groups and assigning appropriate users to the respec-
tive groups.

– Application Administrators: these individuals are responsible for spec-
ifying application specific groups. For example, an abstract depart-
ment head group for OTM application or project manager as identi-
fied by DLR application Section 1.

– Application End Users: by default, these individuals have no rights
to add groups.

• Community Group: The aim of this configuration is to allow a group
to inherit the portal and navigation properties from the community with
which it has been associated. For example, users in department head
group (OTM application) and users in Application Administrators group

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

33

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Figure 10: Auditor Page

requiring auditing on recorded p-assertions to ascertain if any anomalies
exist. This can be achieved by either individual configuration of each users’
portal page to include the navigation links, developing a portal page and
required portlets, or by mapping the two groups into an auditing commu-
nity. In this case an auditing community would consist of a portal page
containing the analysis tool configured with auditing rules. By mapping
to the auditing community, all users in the group will inherit the audit-
ing pages and navigation links in their portal. The steps involved in this
process are:

1. A template page is required for auditors. Groups can inherit pages
from this template. Figure 10 displays the portal page for owner
auditor which contains the template “Auditor Tool page”.

2. We select a single user (sergioalvarez) from OTM group, for demon-
stration. This group would be configured to inherit the “Auditor Tool
page” and navigation links.

3. By default, community configuration for OTM group would be empty.
Figure 11 displays the community configuration for OTM group with-
out any reference to any community.

4. figure 12 displays the portal page for user (sergioalvarez) from OTM
group. As seen from figure 12 the portal only contains the home
page. By default, all users in portal have the most basic portal
template, with only their home page content and navigation link
made visible. Application Administrators or Application End Users
can later configure the pages to better suit their individual needs.

5. In the next step, the community configuration for OTM group is set
to include auditor community as seen from figure 13.

6. On revisiting the user (sergioalvarez) portal page (figure 14), it can
be noticed that in addition to the home page the “Auditor Tool page”
is also added.

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

34

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Figure 11: Community Page without configuration

Figure 12: OTM group user page without community configuration

Figure 13: Community Page with configuration

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

35

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Figure 14: OTM group user page with auditor community configuration

5.2 Portal Management

Portal management involves identifying the operations that are necessary to
configure Application End Users portal pages and perform backup of these con-
figuration. Each of these is discussed below:

• Application End Users’ portal page management: Application Admin-
istrators are often required to make changes to user and group portal
pages. This would normally require a user to login first, perform neces-
sary changes and logout. The same procedure would be carried out for
each user. However the portal management configuration allows an ad-
ministrator to login remotely to all user pages, perform the changes and
come back to the configuration page. This provides a quick and efficient
way to manage changes to portal pages. Figure 15 displays the portal
management configuration page – as seen from figure 15 an “edit” icon is
displayed next to each owner of the portal pages. On selecting the ”edit”
icon (for example, auditor) a “Welcome: auditor” page is displayed as seen
from figure 15 making the auditor workspace now accessible for editing.
Once the necessary edit is completed, pressing the back button next to
the welcome message as seen in figure 15, will redirect the administrator
to the original portal management page.

• Configuration file import/export: Important data such as user account
information and portal customization configuration are stored as a com-
pressed file in the portal. A compressed file is created for each user in
the portal. Figure 16 displays the portal page to import/download com-
pressed user data. Figure 16 also displays a snapshot of content present
inside the configuration file of a user(vikasdeora). The import function
allows a backup of the user data on the portal server, while the download
allows the user data to be archived to a local store. The recovery of user
data can be either performed using the portal, or by uploading a local
copy of the user data as shown in figure 17.

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

36

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Figure 15: Portal management configuration

5.3 Views Supported

Various views are used in order to enable customization of portal pages for Ap-
plication Administrators and Application End Users. This process also includes
identifying the configuration necessary to restrict certain views (text, visualiza-
tion) based on role based access. Each of these is discussed below:

• Customization mode: as seen in figure 18, on the upper right hand side
is the customization configuration starting with edit portal, edit naviga-
tion, and edit page. These configurations allow the customization of the
portal environment. The edit portal configuration allows customization
of the complete portal layout, the edit navigation configuration allows
customization of navigation links, and the edit page configuration allows
customization of the content to be displayed on the portal page.

As seen from figure 19, edit portal allows configuration of the overall layout
of the portal. Edit portal configuration allows customization of banners,
footer, and portlets within the portal. Since the edit portal configuration
affects the layout for all users of the portal, access to this is restricted only
to Application Administrators.

The navigation configuration as seen in figure 20 allows configuration of
navigation menu that references portal pages. This configuration allows
new pages to be added and referenced with navigation links. Navigation
configuration also allows categorization of contents, so that high priority
pages appear first in the navigation menu.

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

37

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Figure 16: Import User Data and sample content of User Data(vikasdeora)

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

38

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Figure 17: Export User Data

Figure 18: Three configuration to allow customization of layout, navigation and
content

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

39

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Figure 19: Edit portal: Configuration of layout for main portal container

Figure 20: Navigation Configuration

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

40

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Figure 21: Portal view configuration through portlet registry for text view portlet

• Restricted view access: two main views are provided within the tool suite:
the text navigation view and the visualization mode view (containing
process view and the relationship view). Since Application End Users
are allowed to manage their own content, they can add or edit content as
required. However this needs to be restricted, so that only relevant con-
tent is displayed. In case of Application Administrators, Tool suite Ad-
ministrators and Provenance System Administrators the portlet registry
contains a list of all deployed portlets. This list is created by the portal
automatically at startup time by adding portlets in “webapps folder”.

Application Administrators would be responsible for configuring the Port-
let registry to allow role-based access to portlets. Figure 21 displays the
text visualization portlet configured to be accessible by OTM and depart-
ment head user and figure 22 displays access to the visualization portlet
made available only to the department head user.

Figure 23 displays a user (sergioalvarez) from OTM group adding a new
portlet to his portal page. As seen from figure 23 only the text view portlet
is exposed to this user, as visualization mode portlets were configured only
to be accessible by the department head. Figure 24 displays a department
head (javiervazquez) adding a new portlet, both text and visualization

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

41

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Figure 22: Portal view configuration through portlet registry for visualization
portlet

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

42

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Figure 23: Text only view

Figure 24: visualization view

mode portlets are available for this user to add.

5.4 Performance

The set of p-assertions to be visualized is first loaded into memory as a jgraph
[7] model. The input p-assertions to the jgraph model are loaded as an XML
(the native format of the p-assertion) document. The visualization component
uses the jgraph model to render the visualization on screen. In order to evaluate
the performance of rendering a visualization for any given set of p-assertions,
some benchmarks have been performed — they consist of measuring the time
spent by the visualization component to convert the p-assertions into the jgraph
model and to subsequently complete the process of visualization/rendering on
screen. The time taken to create and render the model ties in with the length of
the XML document containing p-assertions. The computer used for these bench-

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

43

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 500 1000 1500 2000 2500 3000 3500

T
im

e
(s

ec
)

File Size (KB)

process visualization
relationship visualization

Figure 25: Visualization Performance (File size)

marks is a desktop with Pentium 4 operating at 2.23GHz, with 1GB of memory,
running Windows XP with service pack 2. The hard disk is a Western Digital
7200RPM, ATA/100. The p-assertions we have used have been provided by the
applications in WP7 and WP8.

The first curve (process visualization) in figure 25 presents the time taken
by the process visualization portlet for rendering a process graph depending
on the size of the XML document containing p-assertions. The second curve
(relationship visualization) similarly presents the time taken by the relationship
visualization portlet. It is important to note that the XML document containing
p-assertions used for the experiment contains a random mixture of interaction
and relationship p-assertions. Experiments to test performance in presence of
only either of the p-assertions is displayed in figure 26.

The curves in figure 26 presents the time taken by the process and relation-
ship visualization portlets for rendering a graph depending on the number of
p-assertions. Note that only interaction p-assertions are used for the first curve
(process visualization) and relationship p-assertions for second curve (relation-
ship visualization).

From the performance evaluation performed in figure 25 and figure 26, we
can observe that:

• Both of the figures present linear curves that indicates a complexity O(n).

• The average visualization rate is about 1 MB of p-assertion data per second
(figure 25).

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

44

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500

T
im

e
(s

ec
)

Number of p-assertions

process visualization
relationship visualization

Figure 26: Visualization Performance (Number of p-assertions)

• The process and relationship visualization portlet have negligible differ-
ence in performance.

The curve in figure 27 presents the memory usage of the portal as new
portlets are initialized. The memory usage represents the amount of Heap mem-
ory used by the Java Virtual Machine (JVM) initializing a portlet. The values
have been collected through the Java Management eXtension (JMX) [14]. The
maximum heap size of the JVM has been set to 512MB. Note that a higher than
normal increase in memory usage was noticed during initialization of portlets
for a very short period (one second), however this was ignored and only the
stable figure was used in figure 27. One possible reason for this could be due to
the fact that Java’s garbage collector is triggered after initialization of portlets.

From the performance evaluation performed in figure 27, we can observe
that:

• The memory usage has a linear complexity O(n).

• The average memory used is about 4 MB per portlet.

5.5 Security Support

The Security framework [1, 2] needs to correctly interpret the role based access
control (RBAC) configured using the portal. The configuration process involves
synchronization of role information between the security framework and the
portal, assuming a common semantics exist for the roles. The synchroniza-

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

45

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10

M
em

or
y

U
sa

ge
 (

M
B

)

Number of portlets

no. of portlets

Figure 27: Memory usage

tion would be the responsibility of Application Administrators as the roles are
application specific.

The process involves downloading the role information that needs to be
synchronized as shown in figure 16 and transferring this information to the
security framework. Its is assumed that the security framework can interpret the
conveyed data and update the role information accordingly. It is also assumed
that the security framework is active before the configuration process is initiated.

The aim of this configuration is to allow fine grained security support for
query operations performed within the portlets. The security framework would
be notified of the role information along with the certificate of a user performing
any query on the Provenance Store. This configuration allows query results to
be customized depending on the current role of the user.

6 Application Scenarios

Our visualization portlets allow p-assertions retrieved from a query, using the
navigation tool, to be visualized as a graph. The visualization portlet displays
two graphs: a process graph and a relationship graph that are based on inter-
action and relationship p-assertions respectively. Each of these, in the context
of the EHCR, OTM and DLR application is discussed below:

• Process graph: By capturing all the interactions that take place between
actors involved in the computation of some data, one can replay an execu-
tion, analyze it, verify its validity or compare it with another execution.
A crucial element of an interaction p-assertion is information to identify

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

46

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

a message uniquely. Such information allows us to establish a flow of
data between actors. Indeed, let us consider two interaction p-assertions:
an actor A making an assertion αA that it sent actor B a message with
identity i, and actor B making an assertion αB that it received from A a
message with the same identity i. Such a pair of interaction p-assertions
αA, αB is said to be “matching”; it identifies a flow of data from actor A
to B.

The process of visualization is performed using the process portlet made
available as part of the Navigation tool. Figure 28 displays a re-constructed
process history using interaction p-assertions. In this case, the actors are
represented as boxes and the edges represent the interactions between
the actors. Multiple edges between two actors represent multiple in-
teractions. Figure 29 displays the recreated process for EHCR applica-
tion [10], figure 30 displays the reconstructed process for the OTM ap-
plication [13] and figure 31 displays the recreated process for DLR ap-
plication [5]. We describe the created graph based on EHCR applica-
tion scenario. As can be seen from Figure 29, six actors are involved
in the process. The “OTM:CollectPatientData”, “OTMA3”, “ehcrauth”,
“EHCR1”, “EHCR2” and “EHCR3”. Figure 29 displays all interaction
between actors as part of collecting patient data. In EHCR graph (Figure
29) the data from the p-assertions that lead to the creation of the boxes
and the edges is shown next to each actors. This data has been directly
extracted from the submitted p-assertions.

The visualization can be configured using “widgets” made available on
the top right hand corner (figure 28). “Widgets” are small containers
which contain a collection of common set of operations to be performed on
the visualization. Widgets allow Application Administrators to configure
only certain operations to be active, in order to better suit an application
context. For example, for an application that does not involve iterative
processing of data, a widget to “handle iteration” might not be useful.
In this case Application Administrators can disable this widget. The dis-
abling of particular widgets is undertaken to reduce the complexity of the
screen layout.

• Relationship graph: While matching interaction p-assertions denote a flow
of data between actors, relationships explain how data flows inside actors.
Relationship p-assertions are directional since they explain how some data
was computed from other data. The relationship visualization is per-
formed using the relationship portlet made available as part of the Navi-
gation tool. Figure 32 and figure 33 displays the interaction relationship
visualization for EHCR and OTM applications respectively. Figure 32
displays the relationship graph that illustrates the relationship between
the interactions that took place as part of a process (figure 29). In this
case, an interaction is represented as boxes and the edges represents the
relationship between the interactions. The relationship graph helps a user

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

47

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Figure 28: EHCR Process with “widget” expanded

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

48

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Figure 29: EHCR Process

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

49

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Figure 30: OTM Process

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

50

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Figure 31: DLR Process

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

51

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

understand “Why” and “How” an interaction happened. Relationship
view also allows a user to analyze critical interactions.

For example, it can be observed from Figure 32 that some interactions
are critical within the process, as they are the reason that many other
interaction is caused by. This is important to observe, as a problem within
such interaction can falsely lead to a chain of interaction that should not
have been present. For example (in the OTM scenario - upon receipt of the
“serology test”, many other interactions are initiated to either start the
operation and complete the organ transplant process or reject the donor,
a mistake in this test, can cause a wrong set of interactions to be fired). In
Figure 32, interactions 8347 and 8349 (local p-assertion id) are caused by
8345 (local p-assertion id). Making 8345 a critical interaction. A further
investigation on such interactions can now be performed to trace how a
treatment decision was made. Such analysis also helps in auditing; for
example, to verify if all necessary interactions were performed before a
decision was made. Other critical interactions include “caused by” which
is based on many other interactions happening. For example, in OTM
scenario, a decision request is caused by several interactions happening
such as test, lab result, brain death, etc., visualization of the “caused by”
relationship allows users to, for example, trace back how import decisions
were made.

The visualization can again be configured using the “widgets” made avail-
able on the top right hand corner of the portal page. Figure 32 and
figure 33 displays two different configuration for visualization of relation-
ship. In figure 32 the user can visualize all interaction relationships as
small thumbnails laid on top of the visualization panel. This allows a
user to see the complete picture, while at the same time investigate crit-
ical interaction by pulling them to the empty region and zooming into
subsets.

7 Non-Provenance Aware Application

In order to use provenance tools with applications that are not provenance-aware
(i.e. do not make direct use of the Client Side Library), there are two possible
approaches: to modify the application to be provenance aware, or to provide a
set of tools which enable provenance data about applications to be stored. The
former approach may be appropriate when the source code of the application is
available and when the application runs on resources which are able to contact
a Provenance Store. The latter approach is necessary if the application cannot
be modified, and if it is unable to contact the Provenance Store.

The application considered here is the simulation of the collision of two black
holes using a code implemented in the Cactus Framework [17, 18, 19]. The
Cactus Framework is an open source, modular, highly portable, programming

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

52

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Figure 32: EHCR Interaction Relationship configured with Thumbnail view

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

53

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Figure 33: OTM Interaction Relationship configured with thumbnail and circular
view

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

54

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

environment for collaborative HPC computing, now primarily developed at the
Center for Computation & Technology at Louisiana State University. Cactus
has a generic parallel computational toolkit with modules providing e.g. parallel
drivers, coordinates, boundary conditions, elliptic solvers, interpolators, reduc-
tion operators, and efficient I/O in different data formats. Generic interfaces
are used, (e.g. an abstract elliptic solver API) making it possible to develop im-
proved modules which are immediately available to the broad user community.
Cactus is used by numerous application communities internationally, including
Numerical Relativity e.g. [20, 21], Climate Modelling [22], Astrophysics [23],
Biological Computing [24] and Chemical Engineering [25]. It is a driving frame-
work for a number of computing infrastructure projects, particularly in Grid
Computing, including GrADS [26], GridLab [27], MicroGrid [28], GriKSL [29],
and the ASC [23, 30].

The standard Cactus distribution contains modules for many common tasks
in computational science, such as coordinate systems, physical and symmetry
boundary conditions, parallelism and parallel I/O, along with standard toolkits
for numerical relativity and a sample toolkit illustrating its use for the standard
wave equation. Additionally, work is underway to develop toolkits for such
fields as computational fluid dynamics, climate modeling and earthquake mod-
eling. Cactus has many advanced features; e.g. parallel, platform-independent
checkpoint/restart, dynamic parameter steering, portability across a plethora
of architectures, an HTTP interface to allow remote users to monitor and steer
their simulation using any web-browser, output in several widely deployed bi-
nary formats such as HDF5, and performance monitoring. Additional modules
are available allowing the simulation meshes to be refined in selected regions to
allow greater accuracy or resolution where required, i.e., adaptive mesh refine-
ment.

Cactus users generally run large jobs, on a number of different machines —
some users have accounts on upwards of seventeen different computer systems.
Each of these jobs may generate its own initial data or use initial data generated
by previous Cactus runs or by other codes, or from instrument readings. Track-
ing such runs is an increasingly difficult problem, both in locating the data and
in recording the details of each run, so that it may be reproduced if necessary,
and also to make manifest the processes leading to results published in papers
or data passed to other applications. The Provenance tools created within this
project provide a way to achieve these goals.

The specific application considered, the simulation of the collision of two
black holes, is a standard test case which exemplifies the use of the code and
the features of the code that are relevant to provenance. There are three possible
approaches to using provenance with cactus:

1. As Cactus is a modular system, it would be possible to write a module
which uses the Client Side Library (CSL) to store provenance information
about the run. This approach was not taken as the CSL is a Java library
and Cactus is often run on machines where Java is not available.

2. A module could be written which uses the Web Service interfaces to the

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

55

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Figure 34: Cactus, AstroGrid-D RDF store and Provenance architecture.

Provenance Store to store the provenance information. This approach
was not taken as many machines used for such computations are behind
firewalls or NATs which prevent outgoing communication. Moreover, if
the provenance store has security enabled, the lack of GSI on many such
machines would prevent the use of the module.

3. The final approach is to develop tools using the CSL which can read in
data provided by the simulation and any associated tools and upload these
to the provenance server from the command line or from scripts. This was
the approach taken. It also provides a general solution for non-provenance
aware applications.

The most readily available data for a simulation is the configuration state
of the simulation itself — i.e. the parameters with which it was configured and
the location of input and output files. These can be encoded as actor state
p-assertions and can be searched by the appropriate tools. For astrophysical
simulations such data is readily available through the work of the German As-
troGrid project [31] which has written a module to upload data about Cactus
runs to an RDF store. This data is queried and processed into a set of p-
assertions which are uploaded to the provenance store. This is illustrated in
figure 34.

This is a very primitive use of the provenance infrastructure and does not

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

56

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

allow the full power of the provenance tools to be used. A more sophisticated
approach is to record the interactions between different components in the sim-
ulation as separate p-assertions in the Provenance Store. An end user seeking
to determine the provenance of a result obtained from the simulation then has
a clear representation of the flow of data between different components and can
use the provenance tools described earlier to analyze the data flow.

In order to facilitate this a tool has been written which takes the schedule
from a cactus run and converts it into a set of p-assertions which can be uploaded
by the standalone tool mentioned above. The combination of these tools allows
a user to store the complete workflow of the application: data source, internal
cactus workflow and state, and location of resulting data.

Using these tools it is possible to determine which Cactus runs were started
using a particular data set, and the chain of previous runs which lead to a final
data set.

8 Conclusion

This document has discussed the types configurations necessary within a gen-
eral provenance system, and subsequently within the tool suite. Configuration
management issues are discussed – such as the role of a user undertaking the
configuration, the period over which the configuration is undertaken, the type
of configuration being undertaken, and the mechanism used to support the con-
figuration.

Some configuration needs to be supported during system setup time – such as
the location of the Provenance Store or the tool suite etc – whereas other forms
can progress during p-assertion submission or access. The relationship between
the setup protocol and configuration management has also been discussed in
section 3.

The configuration mechanisms employed within the analysis engine and the
navigation tool are discussed in particular. The analysis engine involves:

• A description of the configuration of queries that can be made to retrieve
p-assertions from a Provenance Store.

• The configuration of the rule engine, and subsequently the rules required
to undertake analysis on the p-assertions that have been retrieved.

• Configuration support for integrating the rule engine and the query mech-
anism for supporting “extended queries”.

Performance analysis for various types of configuration options within the analy-
sis engine have also been presented. The navigation tool configuration involves:

• Identifying user registration and group access to the portal server.

• Identifying the types of portlets a particular user should be allowed to
access.

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

57

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

• Identifying the types of “views” that should be supported on the retrieved
p-assertions (from a user query). This involves identifying particular op-
tions that an application end user has for modifying how the returned
p-assertions are displayed.

Performance analysis for various types of configuration options within the nav-
igation tool have also been presented.

Both the analysis engine and the navigation tool configuration has then
been demonstrated in the context of the OTM/EHCR and DLR applications
– based on p-assertions obtained from them. Finally, the use of configuration
management approaches within a non-provenance aware application (i.e. one
that does not make direct use of a Client Side Library) is also presented. This
demonstrates how the tool suite can be used alongside applications that require
use of provenance tools, but which have not been modified to work with the
Client Side Library. The limitations of this approach have also been discussed
in section 7.

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

58

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

Note on References: Some of the references are restricted documents and
only accessible to participants in the EU Provenance project.

References

[1] Liming Chen, Paul Groth, Simon Miles, Victor Tan, Fenglian Xu, Luc
Moreau, “Security Architecture Strawman”, from EU-Provenance project
– WP4, May 2005.

[2] John Ibbotson, Victor Tan, “Towards implementing a Security Architecture
for Provenance Systems”, from EU-Provenance project – WP4, Feb 2006.

[3] C. L. Forgy, “Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem”. Artificial Intelligence, 19:17–37, 1982.

[4] James Clark, “XSL Transformations (XSLT) Version 1.0”, Available at:
http://www.w3.org/TR/xslt, 1999.

[5] Frank Dannemann, “Outline Aerospace Scenario”, from EU-Provenance
project – WP7, January 2005.

[6] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. “HTTP
extensions for distributed authoring – WEBDAV”, 1999.

[7] JGraph. Available at: http://www.jgraph.com/, January 2006.

[8] Vladimir Roubtsov, “Do you know your data size?”. Available at:
http://www.javaworld.com/javaworld/javatips/jw-javatip130.html.

[9] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. “Role-Based
Access Control Models”. Computer, 29(2):38–47, February 1996.

[10] Kifor Tams, “EHCR store”, from EU-Provenance project – WP8, July
2005.

[11] The Apache Software Foundation, “Commons Virtual File System”. Avail-
able at: http://jakarta.apache.org/commons/vfs/, August 2006.

[12] The Apache Software Foundation, “Jakarta Commons”. Available at:
http://jakarta.apache.org/commons/, August 2006.

[13] Javier Vazquez, “ OTM application system work/data flow”, from EU-
Provenance project – WP8, June 2005.

[14] Sun Microsystems, “Java Memory eXtensions (JMX)”. Available at:
http://java.sun.com/products/JavaManagement/, August 2006.

[15] JESSML. Available at: http://www.jessrules.com/jess/docs/70/xml.html,
August 2006.

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

59

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

[16] M. Ripeanu, A. Iamnitchi, and I. Foster. Performance predictions for a
numerical relativity package in Grid environments. International Journal
of High Performance Computing Applications, 15(4):375–387, November
2001. http://people.cs.uchicago.edu/∼matei/PAPERS/ijsa.ps.

[17] Cactus computational toolkit. http://www.cactuscode.org.

[18] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel,
and J. Shalf. The Cactus framework and toolkit: Design and applica-
tions. In Vector and Parallel Processing - VECPAR’2002, 5th International
Conference, Lecture Notes in Computer Science, Berlin, 2003. Springer.
http://www.cactuscode.org/Papers/VecPar 2002.pdf.

[19] G. Allen, T. Goodale, G. Lanfermann, T. Radke, D. Ride-
out, and J. Thornburg. Cactus Users Guide, 2004.
http://www.cactuscode.org/Guides/Stable/UsersGuide/UsersGuideStable.pdf.

[20] Apples with apples: Numerical relativity comparisons and tests.
http://www.ApplesWithApples.org.

[21] EU Astrophysics Network home page. http://www.eu-network.org/.

[22] B. Talbot, S. Zhou, and G. Higgins. Review of the Cactus framework:
Software engineering support of the third round of scientific grand challenge
investigations, task 4 report - earth system modeling framework survey.
http://sdcd.gsfc.nasa.gov/ESS/esmf tasc/Files/Cactus b.html.

[23] Astrophysics Simulation Collaboratory (ASC) home page.
http://www.ascportal.org.

[24] Illinois BioGrid. http://www.illinoisbiogrid.org/.

[25] K. Camarda, Y. He, and K. A. Bishop. A parallel chemical reactor simula-
tion using Cactus. In Proceedings of Linux Clusters: The HPC Revolution,
NCSA, 2001. http://www.cactuscode.org/Papers/Camarda01.doc.

[26] G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu, T. Radke,
E. Seidel, and J. Shalf. The Cactus Worm: Experiments with
dynamic resource discovery and allocation in a grid environment.
Int. J. of High Performance Computing Applications, 15(4), 2001.
http://www.cactuscode.org/Papers/IJSA 2001.pdf.

[27] GridLab: A Grid application toolkit and testbed project home page:
http://www.gridlab.org.

[28] H.J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura,
and A. Chien. The MicroGrid: a scientific tool for modeling
computational grids. In Proceedings of SC2000, Dallas, TX, 2000.
http://www.sc2000.org/techpapr/papers/pap.pap286.pdf.

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

60

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number:

511085

[29] DFN-Verein project “Development of grid based simulation and visualiza-
tion techniques” (GRIKSL) home page. http://www.griksl.org.

[30] R. Bondarescu, G. Allen, G. Daues, I. Kelley, M. Russell, E. Sei-
del, J. Shalf, and M. Tobias. The Astrophysics Simulation
Collaboratory portal: a framework for effective distributed re-
search. Future Generation Computer Systems, 2003. Accepted.
http://zeus.ncsa.uiuc.edu/∼ruxandra/asc.pdf.

[31] AstroGrid-D project http://www.gac-grid.de.

Copyright c© 2006 by the PROVENANCE Consortium
The PROVENANCE Project receives research funding from the European Commission’s
Sixth Framework Programme

61

