
Title: Tools Description Document

Author: Work Package 6 (“Tools and Setup”)

Editor: Omer F. Rana (UWC)

Reviewers: Luc Moreau (SOTON), Simon Miles (SOTON), Steven Willmott (UPC),
Guy Kloss (DLR), Javier Vazquez (UPC)

Identifier: D6.1.1

Type: Deliverable

Version: 6.0

Date: December 14, 2005

Status: Public

Summary

This document contains a description of different software libraries (“tools”) that may be used to
access a Provenance Store. Such tools make up an integral part of a “Provenance System”, and
enable an application to make queries, submit data and manage one or more Provenance Stores.
Relationships to the Software Requirements Document (D2.1.2) and the Logical Architecture are
also provided.  

Copyright © 2005 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Community’s Sixth Framework Programme 

File name: WP6-Tools-Doc-v6.sxw



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

Members of the PROVENANCE consortium:
IBM United Kingdom Limited United Kingdom
University of Southampton United Kingdom
University of Wales, Cardiff United Kingdom
Deutsches Zentrum fur Luft- und Raumfahrt s.V. Germany
Universitat Politecnica de Catalunya Spain
Magyar Tudományos Akadémia Számítástechnikai és 
Automatizálási Kutató Intézet Hungary

version 6, dated  
2



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

Foreword
This document has been compiled by Omer Rana (UWC). Other contributors to the document include:

•John Ibbotson and Alexis Biller 

•Luc Moreau, Paul Groth and Simon Miles 

•Arnaud Contes, Vikas Deora, Ian Wootten  

version 6, dated  
3



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

Table of Contents

Foreword............................................................................................................................................ 3

Table of Contents...............................................................................................................................4

Table of illustrations......................................................................................................................... 5

List of definitions and acronyms......................................................................................................6

 1 Introduction................................................................................................................................... 7
 1.1 Purpose of the document.......................................................................................................................7
 1.2 Overview of the document..................................................................................................................... 7

 2 Tool Requirements ....................................................................................................................... 8
 2.1 Relationship to Software Requirements Document  ........................................................................... 8
 2.2 Relationship to Logical Architecture ................................................................................................. 10
Table 1.........................................................................................................................................................19
 2.3 Types of Tools and Scope.................................................................................................................... 19

 3 Tool Suite Description and Implementation.............................................................................22
 3.1 Navigation............................................................................................................................................22
 3.2 Relationship Definitions......................................................................................................................22
 3.3 Analysis................................................................................................................................................ 23
 3.3.1 PAAM : Provenance Assertion Abstraction Mechanism................................................................ 24
 3.3.2 Assertion Engine ..............................................................................................................................25
 3.4 Comparison .........................................................................................................................................26
 3.5 Conflict.................................................................................................................................................26
 3.6 Temporal ............................................................................................................................................. 27
 3.7 Graphical Interface and Portlets ....................................................................................................... 27

 4  Tools and PS Interaction .......................................................................................................... 30

 5 Tools and Application Interaction............................................................................................. 31

 6 Types of Users.............................................................................................................................. 35

 6.1 Examples of Usage....................................................................................................................37

7Interaction with other Work Packages ...................................................................................... 39

8Summary and Future Plan .......................................................................................................... 40

References........................................................................................................................................ 42

version 6, dated  
4



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

Table of illustrations

Figures:
1. High level interaction between Tool Suite, Provenance Store and Application.

2. Comparison Plug-in Architecture. 

3. Assertion combining User and Provenance defined data.

4. UML Class diagram of the Tool Suite. 

5. UML Sequence diagram of the Tool Suite (on two pages). 

6. Tool Interaction.

7. eXo Portal Framework.

version 6, dated  
5



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

List of definitions and acronyms

•Actor: An individual or an organisation that is involved in a data  manipulation process.

•API: Application Programming Interface. 

•The provenance of a piece of data is the documentation of the process that produced that data.

•GUI: Graphical User Interface. 

•JSR: Java Specification Request. 

•WSRF: Web Services Resource Framework. 

•WSRP: Web Services for Remote Portlets. 

•PA: A p-assertion is an assertion that is made by an actor and pertains to a process.

•PS: Provenance Store.

•Process Documentation: The documentation of a process consists of a set of PAs made by the
actors involved in the process.

•Workflow: The process by which a series of tasks are executed in a specific sequence; including
the  specification  of  how outputs  of  tasks  are  routed  to  the  inputs  of  other  tasks  or  stored,
whichever action is required.

•Workflow enactment engine: A software program that conducts the execution of a workflow in
accordance with the specification of the workflow. In distributed computational environments the
workflow enactment engine is usually a service that makes use of and coordinates other services
in order to execute a given workflow submitted to the engine by a client.

•Validation Assertion (VA): An atomic query that must evaluate to either “True” or “False” based
on Provenance Assertions within one or more Provenance Stores.  Validation Assertions can be
chained together using AND or OR operators.

•Provenance Trace (PT):  A collection of PAs that have been retrieved as a result of a query.

•SRD: Software Requirements Document – produced by WP2. 

•URD: User Requirements Document – produced by WP2. 

version 6, dated  
6



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

 1 Introduction
WP6  is  aiming  to  produce  tools  for  navigating,  accessing  and  reasoning  over  process
documentation placed in one or more PSs. Such tools  are intended to be “generic”,  i.e.
application independent, and would interact with the PS using a Management, Query and
Submission  interface  provided  by  the  PS.  Functionality  provided  by  the  Tool  Suite  is
therefore expected to support extended capabilities to an application user, allowing ease of
query and analysis over process documentation which is currently not possible with the use
of PS Application Programming Interface (API). The PS API (in the Logical Architecture
document from WP3) may be too low level for applications to make use of conveniently. It
is  therefore  intended that  the functionality  provided by the  Tool  Suite  provides  a more
useful, higher level set of capabilities. 

A key deliverable  from this  WP will  be  the  “analysis”  tool  and the  assertion  checking
mechanism that  it  supports.  The  remaining tools  will  make use  of  this  mechanism. An
“interface” in this instance is assumed to be an API, that may be made use of by an external
program. As a simple definition, it is assumed that a PS contains a collection of PAs, that
follow some pre-defined schema. The approach used to store a PA in the PS is not made
public (hence,  a  number of  possible database  technologies could be used),  however  the
schema of each PA may be made public  via the Query or Management API. A schema
contains a set of elements that represent the structure of the PA, and each of the element
contains one or more data items associated with it. 

 1.1 Purpose of the document
The purpose of this document is to describe various components and their interactions, as
part of the software deliverable from WP6. A UML class and sequence diagram is  also
provided to  illustrate  this  interaction.  Further  sections  provide details  about  each  of the
tools forming part of the WP6 Tool Suite. 

 1.2 Overview of the document
This document provides a description of the tools that access data in the PS. Tools in this case
constitute a set of “helper classes” that can be accessed via an application program. A minimal
graphical interface is also discussed which makes use of these helper classes to enable a user
to view the contents of the PS. Section 2 describes relationships between the tools, the types of
tools  that  are  being  supported,  and  assumptions  being  made  about  the  architecture  within
which the tools are being deployed. Details about the content of the Tool Suite are provided in
Section 3, with specific information about each tool. Interaction between the tools and the PS
are  described  in  Section  4,  and between the  tools  and the  application  in Section  5.  Some
simple examples of use are provided in Section 6, along with a description of the types of
users who could most benefit from such tools. Section 7 relates the work being undertaken in
WP6 with other WPs in the EU Provenance project.  It may be useful to note that Sections 1
and 2 describe the design of the Tool Suite, whereas Section 3 is focused on implementation
aspects of it. 

version 6, dated  
7



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

 2 Tool Requirements 
     Three types of tools are envisioned as an outcome of WP6:

1.  Tools for accessing and analysing the contents of the PS. Such tools are expected to
provide  functionality  beyond  that  available  within  the  Management  and  Query
interface  made  available  at  the  PS.  In  the  simplest  case,  such  functionality  may
aggregate capability already available within the Management and Query interfaces.

2.  Configuration tools that allow a user to specify how they wish to view the PAs that
are returned as a response to a query. Configuration information in this context refers
to particular user preferences for properties associated with each tool. 

3. Tools  for setting up a Provenance recording session.  Such tools may be used by a
client  for  specifying:  (1)  the  collection  of  components/services  involved  in  the
recording of process documentation, (2) the type of security protocol to be used (in
collaboration with WP4), (3) the location of the PS, and (4) the type of data that must
be recorded for each component (in collaboration with WP7 and WP8). No recording
or submission support for PAs is being provided in the Tool Suite. 

The capability of tools available within each of these categories are described in more detail
below. Reference is also made to the Software Requirements Document (SRD) and the Logical
Architecture.  Access  to  the  Tool  Suite  is  made  available  only  via  the  Application
Programming Interface (API). A Graphical User Interface (GUI) and other components which
are part of the Tool Suite make use of these APIs to perform the required operation.

 

 2.1 Relationship to Software Requirements Document  
As described in [D2.2.1, section 2.5] the SRD, a provenance system should provide various
services to store, manage and query process documentation. Based on this description, th
Tool Suite from WP6 must provide query and analysis capabilities on the stored process
documentation (recorded as a set of PAs). 

Some of the examples of the capabilities offered by the tools that would be used by the
application services would include:

1. Capability  to  interact  with  the  provenance  system  to  analyze the  stored  process
documentation. This corresponds to retrieving a set of PAs that can be related to a
given process. Depending on the terms used to specify the query, a user may restrict
the number of PAs that are returned for a given process.

2. Query  capabilities  that  allow  navigation  on  process  documentation.  It  is  worth
mentioning that this capability should be independent of the query language used by
the application and should not be limited to the capabilities provided by an individual
PS on which  the  query  would  be performed.   The  general  notion  of  “navigating”
process documentation can range from simply viewing one or more PAs from the PS.
A user may view these in a graph format – whereby relationships between PAs are
explicitly  captured,  or  may view a  PA as  an  XML  document,  whereby  elements
contained in the document could be expanded to provided a greater degree of detail. It
can also imply comparing one PA with another (or group of other PAs).

 The  WP6 Tool  Suite  provides  an Application  Programming Interface  (API)  to  all  the
services offered as referenced in SRD [D2.2.1, section 2.5] to insulate from the details of

version 6, dated  
8



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

how the  provenance  system  is  implemented  and  also  to  provide  a  standardized set  of
operations that may be embedded within another system. 

Some of  the  operational  capabilities  that  are  described  in  this  document  relate  to  the
following requirements captured in SRD:

1. Allow the  retrieval  of  a provenance trace  from the PS. Either  a  complete  trace  or  a
subset  may  be  retrieved  [D2.2.1,  section  3.4.1].  This  capability  is  provided  by  the
navigation tool in conjunction with the graph tool of the WP6 Tool Suite. The details of
these tools are explained further in Section 3.1 and 3.7 of this document. 

2. Allow the  back-up  of  a  Store  to  be  taken.  This  will  generally  include  an  archiving
facility that reads all the data from a PS, and records this as a disk file [D2.2.1, section
3.4.2]. This capability is provided by the navigation tool, which includes a trigger that is
either  initialized automatically over a particular time interval or manually triggered by
the application. The trigger will read the entire contents of the PS and would write it to a
remote location. Currently no support for back-up has been provided in the Tool Suite.
This constitutes work that will be considered in the future. 

3. Allow comparison to be undertaken with reference to a particular element (or groups of
elements)  within each PA [D2.2.1, section 3.4.3].  This capability is provided by the
comparison tool that performs the “similarity” check and the conflict tool that helps in
detection  of  any  conflict  between  PAs.  A  detail  description  of  both  these  tools  is
provided in Sections 3.4 and 3.5 respectively of this document.

4. Allow the results of a query to the PS to be recorded into a file. A query in this context
must be specified with reference to the XML schema used to specify the contents of a
PS. This schema may be different from the particular recording format used internally
within  the  PS.  Such  a  schema may be  a  combination  of  a  general  purpose  schema
(application independent) and an application specific schema. A query must use terms
specified in the schema, and may include conjunction or disjunction of terms (where this
is appropriate) [D2.2.1, section 3.4.4]. This capability is provided by the navigation tool,
which includes a logging function. 

5. Allow a user to access  a PA based on the time and date at  which the assertion was
stored. This assumes that each PA will  have an associated time stamp, and an XML
element that provides a suitable annotation for this. The exact source of this time stamp
is not of concern within the Tool Suite [D2.2.1, section 3.4.5]. The use of an available
time stamp is made by the temporal tool of the WP6 Tool Suite. The details of this tool
are  explained further in Section 3.6 of this document.   

6. Allow a user to specify a set of rules which can be verified with respect to the contents
of  a  PS.  Verification  in  this  instance  implies  that  the  rule  may be used  to  confirm
whether the contents associated with a particular schema element meets the constraints
defined in the rule. A script may therefore be used to encode a “policy”. This capability
is provided by the analysis tool in conjunction with the assertion tool of the WP6 Tool
Suite. A detail description on both of these tools is provided in Section 3.2 and 3.3 of
this document.   

7. Allow a user to specify a time period in the future at which a provenance query may be
submitted to a PS. A scheduler may be provided that allows queries to be stored to disk,
and  dispatched  to  the  store  in  the  future  [D2.2.1,  section  3.4.7].  This  capability  is
provided by the navigation tool which includes a simple scheduler that accepts queries
with time values, to allow the query to be run at a future time. This capability is based
on the assumption that the results would be retrieved instantly on the execution of the
query. 

8. Allow a service or user to specify the identity (this may be an address of the hosting
server or may be an identifier that is dynamically resolved) of the PS to which data must

version 6, dated  
9



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

be  recorded.  Allow  a  service  or  user  to  choose  the  level  of  security  they  wish  to
associate with the recording process. The level of security can range from no security,
encrypted  data,  to  more  complex  security  mechanisms.  Allow  a  user  to  specify  the
location of the archive to which data must be sent from a PS [D2.2.1, Sections 3.4.10-
3.4.12]. Such capability to determine where a PA may be submitted by an application,
and  for  an  application  to  initialize its  recording  process,  is  provided  by  the  set-up
protocol (provided in the next deliverable from WP6).  

9. Access to the capabilities provided by the tools should be made available as an API.
This is to allow such capabilities to be embedded within an existing application. This
capability is fulfilled by all the tools that form part of the WP6 Tool Suite.

10.Allow a user to visualize the contents of a PS. The visualization support may allow an
easier way to access the XML-based content accessible from the PS. The graphical user
interface is part of the navigation tool that allows a software application or a human user
to visually navigate and analyze the process documentation. A detailed description of the
navigation tool is covered in Section 3.1 of this document.

Figure 1: High level interaction between Tool Suite, PS and Application.

Figure 1 illustrates the interaction between the tools,  the PS and an application. This
identifies  that  an  application  user  can  make  a  direct  submission  to  the  PS.  A tools
relationship diagram is illustrated in Figure 6 (in Section 5). 

Schema Description
We assume in  this  document  that  each  PA follows  a  P-Structure  [WP3]  that  has  been
defined according to an XML schema. It is also assumed that some of the elements that
comprise  a  P-Structure  relate  to  data  that  is  specific  for  an  actor  within  a  particular
application – we refer to this as the application schema.

 2.2 Relationship to Logical Architecture 
The following requirement have been identified for the logical architecture:

1. A workflow description is provided by an application user. The representation should be
in some XML format – which describes the set of activities and dependencies between
the activities. It is assumed that each of these activities has corresponding PAs in the PS.
The workflow description can then be verified by retrieving records from the PS. Work is
underway with the applications (WP7) to specify this XML workflow representation. 

version 6, dated  
10

Conflict
Detection

Tool

Provenance
StoreM

Q

SAnalysis
Tool

Tool Suite

Application

Q: query,
M: Management,

S: Submission



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

2. A workflow can be derived by analyzing PAs stored in the PS. This assumes that there is
enough information within each PA to enable a workflow graph to be reconstructed. 

3. It  is  required  that  PS should  be  able  to  at  least  process  XPath queries.  Other  query
capability may also be made available at the PS beyond the use of XPath.

It  is  assumed  that  workflows are  pre-defined,  and  specified  by  the  application
user/developer. 

           

 Some of the operational capabilities that are described in this document are satisfied by the 
 following functionality provided by the logical architecture document.

1. The architecture provides a user interface which allows visualization of query results and
processing services’ outputs.   [WP3, Logical Architecture document v0.2, section 3.3].
The navigation tool  provided as part of the Tool Suite offers capability related to the
logical  architecture  to  perform browsing  over  PSs,  visualize differences  in  different
execution, and illustrate execution from a semantic viewpoint.

2. The architecture provides processing services for analyzing and reasoning over recorded
PAs [WP3, Logical Architecture document v0.2, section 3.3]. The analysis, comparison,
and conflict detection tool  provided as part of the Tool Suite offers this capability. The
tools may be used to compare the processes that generate several data items, and verify
that a given execution was semantically valid.

Based on overall  logical architecture diagram in Figure 3.1 [WP3] the graphical tools
provide support that can be added to an application GUI, the comparison tools provide
aspects  of  matchmaking  to  allow  comparison  between  PAs.  Similarly,  functionality
within  a  trace  comparator  is  supported  by both  the  comparison  tool  and the  conflict
detection tool. In general, the tools outlined in this document try to provide instantiations
of  some  of  the  capability  that  has  been  outlined  as  necessary  within  the  logical
architecture. 

Based  on the  application  requirements  identified  in  the  SRD, it  is  possible  to identify  the
following requirements  that  tools  would place  on the  architecture.  In Table  1 below,  each
functional requirement from the SRD (column 1) along with the basis for this  requirement
obtained  from  the  URD  (column  3)  is  listed,  followed  by  an  interpretation  of  these
requirements with reference to the tools being developed in WP6.

version 6, dated  
11



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

SRD
ID, flags

Text of Software Requirement
Text of Architecture Requirement

Source
(URD ID)

Functional requirements
TSR-1-1
essential,
critical
(OTM,
TENT)

The provenance architecture should provide for the  recording and
querying of interaction and actor provenance.

Source (URD ID):
AR-1-1, AR-1-2, AR-1-3, AR-1-5, AR-1-6, AR-1-7, AR-2-1, AR-2-
2, AR-2-3, AR-2-4, AR-3-1, AR-3-2, AR-3-3, AR-5-1, AR-5-4, AR-
5-5, AR-5-6, AR-5-7, AR-5-8, AR-5-9, AR-5-10, AR-5-12, AR-5-13,
AR-6-2, AR-7-1,
TR-1-1-A-1,  TR-1-1-A-2,  TR-1-1-A-3,  TR-1-1-A-4,  TR-1-1-B-1,
TR-1-1-B-2,  TR-1-1-B-3,  TR-1-1-B-4,  TR-1-1-C-1,   TR-1-1-C-2,
TR-1-1-C-3,  TR-1-1-C-3,  TR-1-1-C-5,   TR-1-1-C-6,   TR-1-1-D-1,
TR-1-1-D-2, TR-1-1-D-3, TR-1-1-E-1, TR-1-1-E-2, TR-1-1-E-3, TR-
1-1-F-1, TR-1-1-F-2, TR-1-1-F-3, TR-1-1-F-4, TR-1-1-F-5, TR-1-1-
G-1, TR-1-1-G-2, TR-1-1-G-3, TR-1-1-H-1, TR-1-1-H-2, TR-1-1-i-1,
CR-3-1, CR-3-2, CR-5-1, CR-5-4

Tools Requirement:
Provenance  architecture  should  support  a  Query  Interface  and  a
Submission/Recording Interface to the PS. Tools may make use of
this interface to retrieve one or more PAs from the PS. 

TSR-1-2
essential

The  provenance  architecture  should  allow  the  retrieval  of  a
provenance trace from the PS. Either a complete trace or a subset
may be retrieved. 

Source (URD ID):
AR-1-1, AR-1-2, AR-1-3, AR-1-5, AR-1-6, AR-1-7, AR-2-3, AR-2-
4, AR-3-2, AR-3-3, AR-5-1, AR-5-2, AR-5-3, AR-5-4, AR-5-5, AR-
5-6, AR-5-8, AR-5-10, AR-5-12, AR-5-13, AR-6-1,
TR-1-1-A-1,  TR-1-1-A-2,  TR-1-1-A-3,  TR-1-1-G-2,  TR-1-1-G-3,
TR-1-1-H-1, TR-1-1-H-2, TR-4-1,
CR-3-1

Tools Requirement:
Provenance architecture  should provide  support  for storing results
generated from a query locally at the PS. These results can then be
read from a temporary storage area by the tools.  

TSR-1-3
essential

The provenance architecture should allow the back-up of a PS to be
taken. This will  generally include an archiving facility that allows
data within a PS to be saved for future use.

Tools Requirement:
Provenance Architecture should not impose constraints on access to
the store via the Query or Management interfaces. Tools may be able
to read all or part of the PS directly. 

TR-3-6

version 6, dated  
12



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

SRD
ID, flags

Text of Software Requirement
Text of Architecture Requirement

Source
(URD ID)

TSR-1-4
essential 

The provenance architecture should allow comparisons to be made
across Provenance Records within a PS with reference to particular
data attributes within a Provenance Record.

Tools Requirement:
The Query interface at the PS should allow search to be carried out
on a data attribute or value. For instance, the tools may generate an
XPath query that needs to be processed by the PS, and this query
would be defined with reference to one or more namespaces. 

AR-1-1,
AR-1-6,
AR-5-6,
TR-1-1-C-1,
TR-1-1-C-2,
TR-1-1-C-3,
TR-1-1-C-4,
TR-1-1-C-5

TSR-1-5
essential

The provenance architecture should allow the results of a query to
the PS to be captured for future use. A query in this context must be
specified with reference to the structure of the PS.

Tools Requirement:
Requirement covered by TSR-1-2. 

TR-2-1-C,
TR-2-1-D,
TR-3-1,
TR-3-3,
TR-3-7

TSR-1-6
desirable

The provenance architecture should allow a user to access a
Provenance Record based on the time and date (calendrical
information) at which the Record was stored. 

Tools Requirement:
If a time stamp already exists in a PA, the tools can make use of this.
Generally, no timestamp is produced by the tools.  

AR-3-3,
AR-5-1,
TR-1-1-D-2,
T-R-1-1-F3,
T-R-1-1-G1,
CR-3-1

TSR-1-7
desirable

The provenance architecture should allow a user to verify the
contents of a PS against a specified set of rules. Verification in this
context means that the contents of the PS meets the set of constraints
expressed by the set of rules.

Tools Requirement:
Requirement covered by TSR-1-3. 

AR-1-1,
AR-1-7,
AR-3-1,
AR-4-1,
AR-5-3,
AR-5-4,
AR-5-5,
AR-6-1,
AR-6-2,
TR-1-1-C-6,
TR-5-2

TSR-1-8
essential

The provenance architecture should allow a user to specify a time
period in the future at which a provenance query may be submitted
to a PS. A scheduler will be made available that allows queries to be
stored to disk, and dispatched to the store in the future.

Tools Requirement:
The Query interface at the PS should provide some indication to the
tools about the list of queries that are waiting to be answered by the
PS. Essentially, if a message queue exists at the PS, the contents and
size of this query should be accessible via the Management interface
at the PS. 

TR-4-2

version 6, dated  
13



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

SRD
ID, flags

Text of Software Requirement
Text of Architecture Requirement

Source
(URD ID)

TSR-1-9
essential

SR-1-9:The provenance architecture should allow capabilities
provided by the tools to be accessible as an API. This is to allow
such capabilities to be embedded within an existing application.

Tools Requirement:
The Provenance architecture should support a registry service to
enable the software interfaces for all tools to be visible. This is
particularly true for any visualisation tools that may be application
specific. Information about new tools, or updated versions of
existing tools should be accessible through such a registry. This
would be associated with “Processing Services” in the logical
architecture [WP3]. 

TR-4-3,
TR-5-3,
TR-6-1,
TR-6-4-A,
TR-6-4-B

TSR-1-10
essential

As part of the initialisation of the provenance recording process, the
provenance architecture should allow a service or user to specify the
identity of the PS to which data should be recorded.

Tools Requirement:
The Management interface at the PS should enable the identity of
the PS to be queried. 

Omer Rana

TSR-1-11
desirable

The system should support the multiple storage of a provenance
record, i.e. the system should provide a way to store copies of a
provenance record in more than one repository.

Tools Requirement:
Not applicable. 

TR-3-1

TSR-1-12
essential

The system should support the recording of different provenance
information views related to an event or an entity.

Tools Requirement:
Not applicable. 

TR-3-2

TSR-1-13
essential

The provenance architecture should support the migration of
provenance data among PSs.

Tools Requirement:
Covered by TSR-1-3.

TR-3-3

TSR-1-14
essential

The system should support the storage of recorded provenance data
for an indefinite period of time.

Tools Requirement:
Covered by  TST-1-3. 

TR-3-5-A,
TR-3-5-B,
TR-3-5-C

TSR-1-15
essential

The provenance architecture should support the storage of results of
analysis and reasoning operations performed on the provenance data
by tools that are not part of the generic architecture (3rd party tools
on the application layer).

Tools Requirement:
Not applicable. 

TR-4-3,
TR-1-2

version 6, dated  
14



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

SRD
ID, flags

Text of Software Requirement
Text of Architecture Requirement

Source
(URD ID)

TSR-1-16
desirable

The provenance architecture should provide support for maximum
automation of the provenance recording mechanism.

Tools Requirement:
Not applicable. 

TR-5-1,
CR-5-9

TSR-1-17
essential

The provenance architecture should be deployable as an integrated
part of a system, as a service within the same administrative domain
as the client system and as a 3rd (external) party operated service,
too.

Tools Requirement:
Some aspects of this are already covered by TSR-1-8 and TSR-1-9.
In addition, the provenance architecture should not assume the
existence of a particular set of services in the Tools Suite.

TR-5-3

TSR-1-18
desirable

Client side components of the provenance architecture should not
block an executing workflow  if any provenance services are
unavailable.

Tools Requirement:
The provenance architecture should not necessitate the submission
of a PA from a particular type of client. No requirements on
synchronous or asynchronous behaviour should be assumed. 

TR-5-4

Performance requirements
TSR-2-1
essential

The additional execution overhead for an application recording
provenance information should be kept to a minimum.

Tools Requirement:
Not applicable. 

CR-1-1-A,
CR-1-1-B,
CR-1-1-C,
CR-1-1-D

TSR-2-2
essential

Storage space requirements of the provenance architecture for
provenance information recording should be kept at a reasonably
low level.

Tools Requirement:
Not applicable.   

CR-1-2-A,
CR-1-2-B,
CR-1-2-C

TSR-2-3
desirable

The provenance architecture should guarantee reliable once-and-
once-only delivery of provenance information to and from a PS.

Tools Requirement:
Not applicable. 

CR-2-1,
CR-2-2

TSR-2-4
essential,
critical

The provenance architecture should be capable of handling large
amounts of provenance data submitted frequently by user
applications. The provenance architecture should not be the cause of
any bottlenecks in the overall system due to the processing of
provenance data.

Tools Requirement:
Not applicable. 

CR-5-3

version 6, dated  
15



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

SRD
ID, flags

Text of Software Requirement
Text of Architecture Requirement

Source
(URD ID)

Interface requirements
TSR-3-1-1
essential,
critical

All of the functions of the provenance architecture should be
accessible through its API so it can be used as an embedded
component in a system.

Tools Requirement:
The Provenance architecture should make no assumptions about the
contents of this API, or the particular protocol that is used to access
services made available through this API. 

CR-5-5,
CR-5-1,
TR-6-4-B

TSR-3-1-2
essential,
critical

The provenance architecture should support a rich set of published,
generic APIs that allow application specific analysis and reasoning
tools to be built upon.

Tools Requirement:
As TR-3-1-1. 

TR-6-1,
CR-5-1,
CR-5-7

TSR-3-1-3
essential,
critical
(eDiamond)

The provenance architecture should provide a programmatic
interface for the administration of the system.

Tools Requirement:
Not applicable. 

TR-6-4-A,
TR-6-4-B

TSR-3-1-4
desirable

The provenance architecture should support an XML-based API
format for provenance data.

Tools Requirement:
Not applicable. 

TR-2-1-B

TSR-3-2-1
essential,
critical

Export formats for provenance data should be non-proprietary to
allow tools and applications to be built without violating IPR rules.
A format based on an existing data representation standard (with
special focus on XML defined by XML schema) would be highly
preferred.

Tools Requirement:
Not applicable. 

TR-2-1-A,
TR-2-1-C,
TR-2-1-D

Operational requirements
TSR-4-1
essential

Provenance information displayed by the provenance architecture on
a HCI should be updatable on user request.

Tools Requirement:
The provenance architecture should make no assumption about the
types or modes of user interfaces being supported. 

TR-6-6-A

version 6, dated  
16



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

SRD
ID, flags

Text of Software Requirement
Text of Architecture Requirement

Source
(URD ID)

TSR-4-2
essential

HCIs presented by the provenance architecture for displaying the
contents of a PS should support continuous monitoring, i.e. the
displayed information should be updated automatically on every
change as soon as possible. 

Tools Requirement:
Such human accessible interfaces are to be provided as visualisation
tools in the Tool Suite. Additional visualisation “portlets” may be
added over time by an application user. 

TR-6-6-B

TSR-4-3
essential

The update frequency of provenance information displayed by the
system on a HCI should be configurable based on policies.

Tools Requirement:
The configuration facility made available in the Tool Suite should
support configuration of the update frequency. 

TR-6-6-D

TSR-4-4
essential

Human-computer interfaces presented by the provenance tools
should be designed to allow multilingual support.

Tools Requirement:
Tools should allow application users to adapt interfaces or add
additional portlets. 

TR-6-2

Documentation requirements
TSR-5-1
essential

Detailed documentation of the provenance architecture public
interfaces should be produced both for application programming
interfaces (APIs) and Human Computer Interfaces (HCIs).

Tools Requirement:
Not applicable. 

TR-7-1

TSR-5-2
essential

A detailed description of the administrative interface of the
provenance architecture should be produced.

Tools Requirement:
Not applicable.

TR-7-1

Security requirements
TSR-6-1
essential,
critical
(myGrid)

The provenance architecture should have a configurable access
control system over the resources it provides, with a granularity that
is sufficient to protect these resources.

Tools Requirement:
Tools should allow interaction with the security components on the
architecture, and enable initialisation of such security properties as
part of the “setup protocol”.  

CR-4-1

version 6, dated  
17



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

SRD
ID, flags

Text of Software Requirement
Text of Architecture Requirement

Source
(URD ID)

TSR-6-2
essential

The provenance architecture should allow both automated and
manual determination of access control rights.

Tools Requirement:
The provenance architecture should allow such access control to be
supported (and configured) through the Management interface of the
PS, and a specialist credentials management service (or similar). 

CR-4-2

TSR-6-3
essential

The provenance architecture should allow a service or user to
request the level of security they wish to be associated with the
recording process. The level of security can range from no security
through encrypted data transfer to more complex security
mechanisms.

Tools Requirement:
As TSR-6-2. 

Omer Rana

TSR-6-4
essential

The provenance architecture should provide a way to map access
rights information of embedding systems into its security subsystem.

Note: For examples on user groups and their required access rights
in two application scenarios refer to user requirements CR-4-4-A
and CR-4-4-B.

Tools Requirement:
As TSR-6-2. 

CR-4-3,
TR-1-1-B-5,
CR-4-4-A,
CR-4-4-B

TSR-6-5
desirable

Security related procedures for accessing the provenance system
should be subsumed under the existing security related procedures
for the embedding system if possible, so that changes or additions to
the existing procedures are minimized.

Tools Requirement:
Not applicable. 

CR-4-6,
CR-4-5

TSR-6-6
desirable

The provenance architecture should provide a mechanism for
recording provenance data in an unmodifiable form and also
ensuring that the party responsible for the recording process cannot
deny having recorded that provenance data.

Tools Requirement:
The provenance architecture should make no assumption about the
recording format used. 

CR-4-7,
CR-3-2,
AR-2-3,
AR-7-2,
AR-4-1,
AR-4-2,
AR-5-2,
AR-5-10

TSR-6-7
desirable

The provenance architecture should provide a mechanism for the
authentic timestamping of provenance records. Authenticity should
be guaranteed by the mechanism on a level that is enough even for
the use in legal procedures.

Tools Requirement:
Covered by TSR-1-6. 

CR-3-2,
AR-4-1

Other requirements

version 6, dated  
18



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

SRD
ID, flags

Text of Software Requirement
Text of Architecture Requirement

Source
(URD ID)

TSR-7-1
essential,
critical

The provenance architecture should have the properties of cost
efficiency and robustness versus an in-application hand-engineered
logging system.

Tools Requirement:
Not applicable. 

CR-5-2

TSR-7-2
desirable,
critical

The provenance architecture should be loosely coupled and
independent from the applications as much as possible. Integration
costs for existing systems should be minimal, ideally existing system
components should remain unaffected.

Tools Requirement:
Not applicable. 

CR-5-6,
CR-5-8

Table 1

 2.3 Types of Tools and Scope
2.3.1.   Tools for Accessing and Analysing PS Contents
This first category of tools only read data stored in the PS, primarily through the use of the
query interface available at the PS. A PT in this instance is defined as a collection of PAs
that have been retrieved as a result of a query. Two extreme conditions include: (1) only a
single PA matches the query, (2) all PAs match the query. The following capabilities are
provided: 

Navigating a Provenance Trace
Navigation may involve simply retrieving all the PAs based on a query specified by the user
in  the  navigation  tool,  or  it  may involve  displaying  PAs  using  a  graphical  format  that
demonstrates  some  relationships  between  the  PAs  visually.  A  user  may  specify  some
constraints on the number of PAs to be retrieved, or the type of PAs of interest.

A query in this instance is expected to be specified according to the schema made public
through the Query API of the PS. Queries may be specified using XPath expressions, for
instance. Retrieval of PAs from the PS may involve issuing a set of repeated queries via the
PS Query API.

Analysing a Provenance Trace
Analysis in this instance may involve specifying:

• a relationship between PAs, and using this as a constraint for determining what should
be retrieved,

• a constraint on the type of data that must be contained within a PA, 

• a constraint on schema elements that may form part of a PA. This is to be undertake in
collaboration with WP7 and WP8, 

• a relationship between schema elements that form part of a PA (defined with reference
to the P-Structure of the PA), 

• a relationship between PAs based on their schema elements, 

• a relationship between PAs based on their data.

version 6, dated  
19



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

Analysis in this instance would be undertaken based on the definition of a set of rules to
specify “relationships” or “constraints” mentioned above. Such an analysis will also form
the basis for comparing two traces, for detecting conflicts between traces, and for checking
whether a trace is up-to-date. 

Analysis in this  instance would correspond to verifying a set  of  “assertions” on the PS,
using the navigation tool also developed in the WP. An assertion can evaluate to true or
false, depending on the contents of the PS. Each of the six analysis modes defined above
should  be  specified  through  this  assertion  mechanism.  Furthermore,  assertions  may  be
applied over elements of a PA schema, or over the data contained within these elements. 

A key aspect will be to identify how assertions may be specified using a language that is
easy to use and adapt for the two application scenarios outlined in WP7 and WP8. As an
example, consider the analysis of two traces which encode a particular “process”. In this
instance, a user may be interested to know whether a particular activity, or set of activities,
have  been  undertaken  in  a  particular  order.  The  analysis  in  this  instance  will  involve
identifying a set of assertions, which if found to be valid, indicate that either a particular
activity has occurred or not. Some examples are provided in Section 6.1.

The tool will therefore only provide the capability to specify a set of assertions that can be
verified, in some order,  by issuing queries to the PS. Describing an application specific
requirement as a set of assertions will not be undertaken by the tool. It will therefore be
necessary to work alongside WP7 and WP8 to identify some mechanism whereby a user can
translate their higher level, application specific requirement, into a set of assertions that can
then be confirmed using this tool.

Assertion  definitions  are  currently  being  investigated.  Two  candidate  technologies  are
being investigated: (1) The Java Expert System Shell, (2) DROOLS, or (3) OpenRules. The
choice  of  these  technologies  are  based  on  their  suitability  to  the  particular  application
scenarios outlined in WP2 (as part of Deliverable D2.2.1). Alternative query mechanisms
such  as  those  based  on  databases  (using  the  SQL  language)  do  not  easily  allow
representation of analysis rules. Furthermore, such approaches do not enable such rules to
be executed over an XML document easily. A number of alternative approaches, such as
those  based  on  Web  Services  Relationships  Language  [WSRL]  do  not  have  suitable
implementations, and are often very restrictive in the type of reasoning support that they
provide. 

2.3.2.   Comparing Provenance Traces 
The comparison tool makes use of the analysis capability described above. Comparison in
this instance involves verifying if two PTs are (1) identical, or (2) “similar”. Considering
traces T1 and T2, the comparison tool will perform the following operations:

• Loosely identical: T1 and T2 are identical if they contain the same document structure
(defined with reference to a PA schema). 

• Exactly identical:  T1 and T2 are exactly identical  if  they contain the same document
structure (defined with reference to a PA schema), and the same data associated with
these elements. 

• Similar: T1 and T2 are similar if some “semantic” similarity can be found between the
elements contained in T1 and T2. Semantic similarity in this instance must be defined
with reference to a domain specific ontology, for instance (interaction with WP7 and
WP8 will be necessary to describe this). 

A comparison performed between PAs assumes that they are defined according to the
same schema.  It is  possible that  a single PS may contain PAs that are specified with
reference to different schemas, or make use of different formats for recording data. In

version 6, dated  
20



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

this instance, it is necessary for the user to encode the contents of a PA in a uniform way
to allow comparison to be supported. 

2.3.3.Detecting Conflicts in Provenance Traces
Conflict detection in this instance is used to determine if two PAs submitted either by a client
and  a  service  provider,  for  the  same  interaction,  contain  differences.  A  conflict  in  this
instance  is  therefore  used  to  identify  differences  observed  in  the  recording  of  the  same
interaction  by  different  actors  (such  as  the  client  requesting  a  service,  and  the  service
provider).  For instance, if the interaction consists of exchange of a float value, the sender
might record a float value in its PA, and send it to the PS. However if the recipient is not
designed to receive float value but only integer value, in this case, it will store within its PA
an  integer  value.  As  these  two  PAs  are  recorded  for  the  same  interaction,  the  conflict
detection  mechanism is  able  to detect  this  discrepancy.  The conflict  detection  mechanism
therefore  needs to evaluate  the contents  of  a minimum of  two PA – each coming from a
different actor. 

This example was rather simple and the conflict detection was easy mainly because of  the
type of the data we have chosen. However, data type stored can be application specific types,
so  the  conflict  detection  tool  also  uses  the  data  comparison  architecture  provided  by the
analysis tool being developed in this WP. 

2.3.4.   Checking that a trace is up-to-date
This check will be undertaken by examining the time stamps associated with a PA –  how
such a time stamp is generated is dependent on the particular application submitting the PA.
This tool will therefore identify when a PA was last recorded for a given actor, and use this
as a basis to determine if a submission has been made by an actor recently. The tool may
also enable a user to determine how many submissions have been made by an actor over a
given time period, or the time interval between a given number of submissions. This tool
will  also  make  use  of  the  analysis  tool  being  developed  in  this  WP.  Such  an  analysis
assumes the existence of some time information with a PA – further discussion about this
issue is provided in Section 3.6.

Figure 1 illustrates the interaction between the Tool Suite (WP6) with other components
within a provenance system. A key component within the Tool Suite is the analysis tool,
which  is  made use  of  by all  the  other  tools.  Interaction  with  the  PS is  via  the  Query,
Management and Submission APIs. The Tool Suite may contain both an API to allow other
application to interact with the PS, or it may contain a graphical interface (in the case of the
navigation tool, for instance). An application may submit data to the PS, but must make use
of the the capability provided in the Tool Suite to interact with the PS.

version 6, dated  
21



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

 3 Tool Suite Description and Implementation
The two main tools that form the core of WP6 are the navigation and analysis tool. Others
include the graph tool, comparison tool, and conflict detection tool. Each of these tools plus
their relationship with each other is described below. Figure 4 lists the methods available
within each tool. 

 3.1 Navigation
The main objective of the navigation tool is to provide interfaces to retrieve and display
PAs. The getAll() public method accepts XPath query as one of the inputs and provides a
link  between  the  application  and  the  navigation  interfaces.  The  getAll()  method  is
supplemented with either an option to retrieve a graphical representation of the resultant
PAs  or  to  restrict  the  total  number  of  PAs  retrieved  from  the  query.  The  tool  offers
capability  to  perform repeated  queries  on the  PS to  retrieve specific  PAs that  meet  the
constraints defined by an application user. The navigation tool is linked to a graph tool that
provides visualization capability, and the analysis tool that allows application users to test
relationships between the retrieved PAs. 

The analysis tool interacts with the navigation tool to also retrieve PAs. This interaction
however represents  two different  aims: (i)  the analysis tool formulates rules that  can be
directly converted to XPath queries – thus being able to evaluate the rules based on the
query  results  returned  by  the  navigation  tool;  (ii)  the  analysis  tool  interacts  with  the
navigation  tool  repeatedly to retrieve results  for  multiple  XPath queries,  which are then
processed by the analysis tool using the help of an assertion engine.   

 3.2 Relationship Definitions
Data recorded within a PA can be either a simple data type like string or integer, or can also
represent application specific data types like a sound or an image. In the former case, data
type are well-know and supported in virtually all programming languages, thereby allowing
us to compare them easily. However, in the latter case, we cannot make any supposition
how to compare these data.  Hence, the aim of this tool is to: 

• provide a mechanism to compare arbitrary data types by providing an interface that
may be used by other tools;

• allow the comparison of application specific data by providing a plug-in enabled
architecture.  An application should provide one or more plug-ins according the
type of data it handles. Each plug-in provides a data type specific mechanism to
compare between two entities that are of that type. 

version 6, dated  
22



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

Figure 2 Comparison Plug-in Architecture

When a new data type needs to be handled, the corresponding plug-in must be registered
using the relationship tool. The relationship tool stores all plug-ins in a comparison store. At
registration time, a plug-in provides the comparison tool with the type of data it can handle.
The name associated with a given data type must be defined within the application schema. 

Each plug-in contains only one method with the following signature: 

int compare(in String data1, in String data2)

The two parameters (data1 and data2)  represent the data recorded within the PA we want to
compare. According to the application and the plug-in logic, this data could represent a URI
(a file on a local hard disk, on a Web page, on a FTP server), or the actual data object that
needs to be compared. The String in the Comparator description above corresponds to the
type of data being analyzed. 

The returned value type is  an integer  (because this  data  type is  widely supported).  The
semantics of the returned value are (in this instance, <, > and = are assumed to have some
meaning based on the plug-in being used):  

• -1 if  data1 < data2 

• 0 if data1 == data2

• 1  if data1 > data2

 3.3 Analysis
The main objective of the analysis tool is to provide an assertion checking interface for use
by all the other tools. The analysis tool returns a boolean outcome, indicating whether the
particular  condition  being  analysed  holds  or  not.  The  analysis  tool  provides  two  main
methods recordMatch() and recordSchemaMatch() to the comparison and the conflict tools.
The first method provides an interface to check if two PAs are similar, and the other checks
if  a  PA conforms to a given schema.  The first  method will  be  used via the navigation
interface,  while  the  second  method  would  primarily  be  used  through  the  application
interface. All of the methods in this tool assume that the reference to the PA is sent as part
of the string argument – indicating therefore that each of the methods here apply to a PA
that  has already been defined.  Other methods in the analysis  tool provide the following
functionality:

a) check(in  element:  String)  - checks  if  the  element  exists  within  a  PA schema.  For
example, checks if an element “temperature” exists within a PA schema. 

version 6, dated  
23



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

b) check(in  data:  String)  - checks  if  a  particular  data  value  exists  within  a  PA.  For
example, checks if a data value of “34” exists within a PA.

c) check(in element: String, in data: String) -  checks if the element and data exist within
a PA. For example, checks if an element “temperature” consisting of a data value “34”
exists within a PA.

d) checkRelation(in data: String, in relation: String) - checks if data exists within a PA
that meets the required relationship constraint.  For example,  checks if a data value of
greater than “34” exists within a PA. In this example the data string would consist of “34”
and the relation string would consist of “greater than”.  

e) checkRelation(in element:  String, in data:  String, in relation:  String) -  checks if  an
element and data exist  within a PA that meets the required relationship constraint.  For
example, checks if an element “temperature” consisting of a data value greater than 34
exists within a PA.

f) checkSubsumption(in element1: String, in element2: String) -  checks if two elements
within a PA schema are linked by a “subsumption” relationship. A subsumption relation
in  this instances relates child and parent elements in a schema. A child element in this
instance subsumes the properties of the parent element. This type of analysis is used for
similarity assessment between a query and one or more PAs.

 3.3.1 PAAM : Provenance Assertion Abstraction Mechanism
This mechanism provides a generic set  of rules that will be manipulated by an assertion
engine through specific wrappers. An assertion engine here represents an interpreter that
can process rules applied on a PA. These rules allow us to verify a set of constraints on a
PA.  A rule must return true or false when evaluated against a PA. 

Several kinds of rules can be used :

• Basic rules validate a condition on a particular data located in the application specific
part of a PA. These condition are: equality, greatherThan, lesserThan, exists, notNull.

• Meta rules check a condition on the provenance specific part of a PA, such as  date
and invocation time, date of received results, actor name, client ID, service ID, etc.

• Operator rules combine basic rules and meta rules using operators  like AND, OR,
NOT.

An example  of  an  assertion  combining  user-  and  provenance-defined  rules  is  shown in
figure  3.  This  assertion  requires  that  for  application  data,  data  val1  equals  3,  data  val2
equals 1.xx.E34 (val2 is an application specific data) – and for provenance related data, the
actor of this record could be either  “Arnaud” or “Omer”.

version 6, dated  
24



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

Figure 3 Assertion combining User and Provenance defined data

As we want to create a mechanism that has a general applicability, a given rule should be
able to handle various kinds of data. For example, the rule which checks the equality of two
data values is not designed to know how to compare these data.  For this action, PAAM
relies on the relationship tools we introduced previously.

Hence, when a rule is instantiated with an XPath string, the first thing it does is to look for
the type of the value intended to be associated with the string inside the schema. Next, it
asks the relationship service for a comparator tool matching the type. Finally it checks the
value according its own behavior and returns a boolean.

 3.3.2 Assertion Engine 

The  assertion  engine  provides  input  to  the  analysis  tool.  Hence,  the  main  task  of  the
assertion engine is to provide an interface to accept assertions obtained from the navigation
tool and provide an appropriate boolean output. Many candidate technologies are currently
being investigated for assertion definitions: (1) The Java Expert System Shell [JESS], (2)
DROOLS  [DROOLS],  or   (3)  OpenRules  [ORULES].  A  comparison  between  these
different assertion engines has been conducted based on their ease of use in defining and
using rules, and support for the Java Specification Request 94 [JSR94]. 

JSR94 defines a simple API to access a rule engine from a Java client. It provides APIs to
(i) register and unregister rules; (ii) parse rules; (iii) inspect rule metadata (this specifies the
format used to define the rules); (iv) execute rules; (v) retrieve results, and (vi) filter results.

version 6, dated  
25

JESS DROOLS Openrules
Language Java Java Java

JSR 94 compliant Yes Yes Yes

Rule : 

 - format Clips XML + code Excel

 - readability +++ --- ---

Engine :
 - Flexibility +++ + +
 - Adaptability +++ + +
 - Extensibility +++ ++ +
Documentation + ++ ++
Community +++ +++ ++
License Commercial GPL GPL

Result 1st 2nd 3rd



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

JSR94 does  not  standardize the  following:  the  rule  engine itself,  the  execution flow for
rules,  the  language used to describe the rules,  and the particular  deployment  mechanism
being  used  for  the  rules.  JSR94  therefore  does  not  standardize  the  semantics  of  rule
execution.  This  is  particularly  useful  as  rules  defined  in  JESS (for  instance)  which  are
executed  using  the  Rete  algorithm  may  be  ported  to  another  engine.  Based  on  this
comparison, the JESS engine was selected.  Currently, rules are designed as standard Java
classes.  

 3.4 Comparison 
The  comparison  tool  makes  use  of  the  analysis  capability  described  in  Section  3.3.
Comparison in this instance involves verifying if two PAs are (1) identical, or (2) “similar”.
The comparison tool consists of two main types of analysis: one that accepts a particular
type of match and the PAs to provide a boolean result, and the second that accepts PAs and
compares them to return a string that specifies what type of match exists between the PAs.
A method is also provided within the comparison tool that allows an application user to
specify  a  plug-in  algorithm  using  the  navigation  interface.  The  plug-in  algorithm  will
represent an application users' understanding of similarity, and based on this the analysis
will be performed for PAs. 

To illustrate the use of a comparison tool, consider the following example: 

• A user issues a query, which returns a number of PAs from one or more PSs. 

• A user may store a subset of these PAs in his/her file space, or may select one PA that may
be of interest and only record this.  

• The selected PA is then used to undertake a comparison with other PAs that have been
retrieved as a result  of the query, or PAs that  have been recorded previously. It is also
possible  for  a  user  to  generate  a  PA and use  this  to  compare  with  PAs returned  as  a
response to a query.

The use of such a comparison technique may be beneficial to reduce the number of PAs
that a user may wish to analyze further.

 3.5 Conflict
Conflict tool interfaces with the analysis tool to provide a conflict detection mechanism.
Conflict detection in this instance is used to determine if two PAs submitted by a client and
a service provider, for the same interaction, contain differences. A conflict in this instance
is therefore used to identify differences observed in the recording of the same interaction by
different actors. For instance, an actor A may send a message to actor B, and both record
this interaction. The conflict detection tool could be used to identify if the contents of this
message are the same (based on what A has sent, and what B has received). To support such
detection, it would be necessary to ensure that PAs corresponding to the same interaction in
one or more PSs can somehow be related. Conflict tool provides similar functionality as
mentioned  in  the  comparison  tool  in  terms  of  analysing  either  an  (1)  identical,  or  (2)
“similar” conflict has occurred and providing plug-in mechanism for user defined conflict
detection. This assumes that the recording format used by the two actors is the same. If the
recording format is different, an additional step may be necessary to convert the contents of
the message for comparison. A user would be responsible for performing the conversion
prior to  the use of the conflict tool. 

version 6, dated  
26



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

 3.6 Temporal 
This is a particular tool that may be used by the analysis and conflict tools, and deals with
providing methods that can analyse information on time relationships between PAs. This
check will be undertaken by examining the time stamps associated with a PA. This tool will
therefore identify when a PA was last recorded for a given actor, and use this as a basis to
determine if a submission has been made by an actor recently. The tool will also enable a
user to determine how many submissions have been made by an actor over a given time
period, or the time interval between a given number of submissions. No assumptions are
being made here about who generates the time stamp, or whether a time stamp provides a
true reflection about when a PA was generated. The temporal tool primarily makes use of a
time stamp if one is already provided.

It is useful to note that time stamps may be provided by the PS – although in some instances
it may also be possible for actors submitting a PA to generate a time stamp. This issue is
still being discussed in the project, and no consensus has been reached. The reason for this
is that it cannot be assumed that actors making PA to a given PS have synchronised clocks.
Also,  due to  the  asynchronous  nature  of  the recording protocol,  a  time stamp may not
indicate when a PA was actually produced and submitted by an actor. A current point of
discussion  is  whether  it  would  be  useful  to  assume,  in  the  context  of  a  restrictive
application domain, that clocks are synchronized and some deduction can be made based on
time  stamps  generated  by  an  actor.  It  is  more  likely,  therefore  that  a  PA  is  only
acknowledged after it has been recorded within the PS, and has been given a time stamp.
However, this also leads to concerns similar to those with actor generated time stamps, if
submissions may be made by a given actor into multiple PSs (each of which attaches its
own time stamp).  

 3.7 Graphical Interface and Portlets 
The  graph  tool  is  used  for  displaying  PAs  using  a  graphical  format  that  demonstrates
relationships between the PAs visually. The GUI tool provides an interface that is used by
the navigation tool to retrieve the graphical object. In the first instance, the graph tool will
simply provide a mechanism to view the structure of a PA – by plotting the tree associated
with  a  PA schema,  and  mapping  data  values  associated  with  each  PA to  this  schema.
Subsequent versions will  also contain additional  methods,  that would allow a navigation
tool to send in a “graph type” request (the type corresponding to different visual), which
would then allow application users to visualize different types of graphs. 

A portal  is  a  Web application  which  typically  provides  personalization,  single  sign-on,
content  aggregation from different  sources,  and hosts  the  presentation layer  of different
backend  systems.  The  main  task  of  a  portal  is  to  allow  different  applications  to  be
aggregated into a single Web page that may be accessed by an application user. A portal
may also provide personalization features which provide customized content to users. The
degree to  which  such customization is  supported  can vary – from the ability  to  simply
change the colour or sizes of fonts, to the ability to configure interaction that takes place
between two portlets. Portal pages may have different sets of portlets to create content for
different users. Portlets perform different tasks and create content according to their current
function.  A portlet  “mode” indicates the function a portlet  is  performing, at  a particular
point  in time.  When invoking a portlet,  the portlet  container  provides the  mode for  the
current request to the portlet. Portlets can programmatically change their portlet mode while
processing an action request. The notion of a container is very significant in the context of
portal  development,  as  a  container  provides  the  necessary  interaction  infrastructure
allowing portlets to communicate with each other. 

version 6, dated  
27



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

There are a number of different ways in which workflow may be displayed to a user. Each
makes use of a process graph that demonstrates how a collection of processes are executed
in a sequence. An example of such an approach for displaying workflow can be found at:
http  ://www.ilog.com/products/jviews/workflow/  

A PT can be displayed graphically. Two main representations are available:

• Workflow hierarchy (default) displays all the PAs contained within a PT. If one PA has
been  generated  after  another  (based  on  some  relationship  assessment),  an  arrow  is
displayed  from  the  ancestor  to  the  child.  This  description  is  also  dependent  on  the
workflow graph that has been supplied by a user (Section 6). 

• An  alternative  representation  technique  would  make  use  of  a  time  line.  This
representation may be used to compare two similar PTs. The duration of each step can
also  be  compared  using  this  approach.  A  user  may  interact  with  this  time  line
representation by clicking on a trace and deriving information about the PAs associated
with a particular trace. This assumes that a time stamp has been provided with a PA.  

To  support  the  navigation  tool,  we  have  undertaken  a  comparison  of  different  Portal
Frameworks based on a set of criteria that represent requirements identified in the SRD, and
also taking account  of the ease of deployment when making use  of  such a framework. To
enable as wide a user base as possible for the navigation tool, it is necessary to ensure that the
graphical interface capabilities conform to existing standards. This is also important to allow
users to add their own portlets, or to connect portlets with user interfaces that have already
been  implemented  as  part  of  an  existing  application.  Although  the  later  is  unlikely  to  be
followed in this  project,  the  adoption  of  standards  such as  the  Java  Specification  Request
(JSR) 168 [JSR168] and the Web Services for Remote Portlets (WSRP) [WSRP] provides a
useful basis to enable such interoperability in the future. 

The JSR 168 defines a portlet specification, including a contract between the portlet container
and the portlet. JSR 168 is defined by the Java Community Process (JCP). The JSR 168 was
co-led by IBM and Sun and had a large Expert Group that helped to create the final version
which is now available.  This  Expert  Group consisted of Apache Software Foundation,  Art
Technology Group Inc.(ATG), BEA, Boeing, Borland, Citrix Systems, Fujitsu, Hitachi, IBM,
Novell,  Oracle,  SAP, SAS Institute,  Sun,  Sybase,  Tibco,  Vignette.  JSR 168 supports  three
modes for a portlets:  view mode – allows displaying of portlet output;  help mode – allows
viewing of help files associated with a portlet; and edit mode – this allows personalization of a
portlet  to be undertaken by a user. The editing capability is a  particularly strong point of a
portal framework. JSR 168 defines different mechanisms for the portlet to access transient and
persistent data [JSR168-IBM]:

The portlet can set and get transient data in the following scopes: 
Request The request has attached data, such as request parameters and attributes, similar to a  Java

servlet request. The request can contain properties to allow extension, and client header
fields being transported from the portal to the portlet and vice versa. 

Session The portlet can store data in the session with either global scope, to let other components of
this Web application access the data, or portlet scope, which is private to the portlet. 

Context The portlet can store data in the Web application context, similar to servlets
The portlet can access persistent data with these scopes:
Per
portlet

The portlet can store configuration and personalization data in the portlet preferences to
enable the portlet to create personalized output. The portlet can define which data the user is
allowed to change in the edit mode (for example, stock quotes), and which data are
configuration settings can only be changed by an administrator in configuration mode (for
example, the stock quote server).

Per
user

User profile information can be read by the portlet to tailor its output towards the user (for
example, show the weather of the city where the user lives).

version 6, dated  
28



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

JSR 168 therefore  provides  a basis  for  developing portlets  that  support  a  particular  set  of
functionality  –  allowing  portlets  to  interact  with  each  other  and  support  for  user
personalization.  WSRP  [WSRP]  specification  on  the  other  hand  is  aimed  at  providing  a
standard for embedding plug-in capability into portlets that can be supported through specialist
Web Services. The aim of this specification is to allow Web Services to interact with portlets.
This  standard  allows  a  portlet  to  be  published  as  a  WSRP producer,  which  can  then  be
consumed by one or many compliant portals (WSRP consumers). The standard also provides
ease of adding remote portlets on a portal page just like adding any other local portlet.

Based on these two standard specifications, we have compared a number of portal frameworks
to assess their validity with reference to the SRD. The comparison (and the criteria used) are
described  in  the  table  below.  Based  on this  investigation,  we have chosen the  eXo Portal
Framework [eXo]. 

version 6, dated  
29

6. Ease of developing new 
portal pages and linking to a 
navigation portlet

11. Portal management tasks 

10. Security setup

7. Ease of portlet deployment –
A interface to achieve this can 
considerably save 
development time, specially 
during debugging stage 

JBossuPortalJetspeed 1GridsphereLiferayeXoCriteria

181822182329Final Conclusion


(crashes 

a lot)

9. Performance

8. Dependency on servlet 
container – compatibly with 
only single server environment 
is very restrictive for web 
deployment

6. Ease of developing new 
portal pages and linking to a 
navigation portlet

11. Portal management tasks 

10. Security setup

7. Ease of portlet deployment –
A interface to achieve this can 
considerably save 
development time, specially 
during debugging stage 

JBossuPortalJetspeed 1GridsphereLiferayeXoCriteria

181822182329Final Conclusion


(crashes 

a lot)

9. Performance

8. Dependency on servlet 
container – compatibly with 
only single server environment 
is very restrictive for web 
deployment








Setup is easy 

but lack of 
documentation

 (not truly 
compliant)

JBoss

5. Sample portlets – this is 
quite essential due to lack of 
documentation linked to most 
free portal software

4. IDE integration – this 
allows ease of development 
and debugging

3. Community – how popular 
the portal tool is in various 
forums and blogs to share 
knowledge 


Difficult to 

setup


Average


Average


Difficult to 

setup initially 
and lack of 

documentatio
n

2. Ease of initial setup and 
documentation – ease of 
initial start-up from download 
to first running of portal 

 (no WSRP 
compliance)

 (no WSRP 
compliance)

1. JSR 168 and WSRP 
compliance

uPortalJetspeed1GridsphereLiferayeXoCriteria








Setup is easy 

but lack of 
documentation

 (not truly 
compliant)

JBoss

5. Sample portlets – this is 
quite essential due to lack of 
documentation linked to most 
free portal software

4. IDE integration – this 
allows ease of development 
and debugging

3. Community – how popular 
the portal tool is in various 
forums and blogs to share 
knowledge 


Difficult to 

setup


Average


Average


Difficult to 

setup initially 
and lack of 

documentatio
n

2. Ease of initial setup and 
documentation – ease of 
initial start-up from download 
to first running of portal 

 (no WSRP 
compliance)

 (no WSRP 
compliance)

1. JSR 168 and WSRP 
compliance

uPortalJetspeed1GridsphereLiferayeXoCriteria

Average -  Good -  Very Good - 



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

Figure 4: UML Class Diagram of the Tool Suite

 4  Tools and PS Interaction 
The sequence diagram in Figure 5 illustrates the communication between the Tool Suite
(WP6) and the PS. Interactions between the tools and the PS consist of either: (1) query for

version 6, dated  
30

+getAll(in Query : String, in graph : Boolean) : Object
+getAll(in Query : String, in numOfRec : Integer) : Vector
+getSchema() : String
-getAll() : Vector
-getAll(in element : String) : Vector
-getAll(in data : String) : Vector
-getAll(in element : String, in data : String) : Vector
-getAllRecodsSubsuming(in element : String) : Vector
-getAllRelated(in data : String, in relation : String) : Vector
-getAllRelated(in element : String, in data : String, in relation : String) : Vector

-listProvenanceRec : Vector
Navigation

+setID(in id : String)
+getID()

+activationID : String
ProvenanceRec

+paint()
-drawDocument()

Graph

+traceExactMatch(in PR1 : Object, in PR2 : Object) : Boolean
+traceIdenticalMatch(in PR1 : Object, in PR2 : Object) : Boolean
+traceSimilarMatch(in PR1 : Object, in PR2 : Object) : Boolean
+traceMatch(in PR1 : Object, in PR2 : Object) : String
+traceMatchPlugin(in PR1 : Object, in PR2 : Object, in algorithm : String) : String
+traceMatch(in PR : Object, in Schema : String) : String

Comparison

+checkAssertion (in assertion : String) : Boolean

AssertionEngine

+lastRecorded(in actor : String) : Date
+numberOfSubmission(in actor : String, in start : Date, in end : Date) : Integer
+timeElapsed(in actor : String, in noOfSub : Integer) : String
+checkRecent(in actor : String, in recentlimit : Date) : Boolean

TemporalCheck

+traceExactConflict(in PR1 : Object, in PR2 : Object) : Boolean
+traceIdenticalConflict(in PR1 : Object, in PR2 : Object) : Boolean
+traceSimilarConflict(in PR1 : Object, in PR2 : Object) : Boolean
+traceConflict(in PR1 : Object, in PR2 : Object) : String
+traceConflictPlugin(in PR1 : Object, in PR2 : Object, in algorithm : String) : String
+traceConflict(in PR : Object, in Schema : String) : String

Conflict

+check(in element : String) : Boolean
+check(in data : String) : Boolean
+check(in element : String, in data : String) : Boolean
+checkRelation(in data : String, in relation : String) : Boolean
+checkRelation(in element : String, in data : String, in relation : String) : Boolean
+checkSubsumption(in element1 : String, in element2 : String) : Boolean
+recordMatch(in PR1 : ProvenanceRec, in PR2 : ProvenanceRec) : Boolean
+recordSchemaMatch(in PR : ProvenanceRec, in schema : String) : Boolean

-analysis : Boolean
Analysis

+compare(in data1 : String, in data2 : String) : Boolean

Relationship

+compare(in data1 : String, in data2 : String) : Boolean

LessThan

+compare(in data1 : String, in data2 : String) : Boolean

GreaterThan

+compare(in data1 : String, in data2 : String) : Boolean

Equals



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

data contained within a PA,  or (2) query to determine the schema for a PA. Below we
detail different interactions taking place between the Tool Suite and PS.

Navigation – PS interaction:    The  navigation  tool  provides  browsing capabilities  for
content maintained in the PS. This capability extends that already provided by the query
API of the PS. For instance, the Query API is generally intended to manage XPath queries,
whereas the navigation tool can allow visualization of results from such XPath query, or
specialist conditions (generally specified as a set of rules) that need to hold over the results
that have been returned. 

Once  a  query  has  been  received  by the  navigation  tool,  it  is  divided  into  sub-queries,
converts each into an XPath query, and submits these to one or more PSs. The number of
PSs involved is based on the configuration provided by a user during the setup process.
Subsequently, the navigation tool interacts with the PS Query API to retrieve the required
results for each of the sub-queries. This process would be repeated several times until all
the  sub-queries  have  been  processed..  Once  all  results  have  been  received,  a  final
processing  is  performed  by  the  navigation  tool  to  generate  a  response   based  on  the
collected information from the PS. The two methods that may be used by the navigation
tool  to query the PS are:  a)  getAll(in  Query String, in graph boolean)  and b) getAll(in
Query String, in numOfRec Integer). Both of the these accept queries in different formats
from the  application,  these  are  then  converted  to  the  XPath  query  format,  so  that  the
available Query API at the PS can be used from this point onwards. 

Most  of  the  interactions  taking place  between  the  Tool  Suite  and  the  PS are  therefore
through the navigation tool. The outcome of a query generated to the PS may be therefore
be passed on to other tools for analysis, or may be stored for delivery to the end user.

Analysis  –  PS  interaction:    The  analysis  tool  provides  capabilities  to  compare
relationships between a PA and the current schema used to specify the structure of content
within one or more PSs. In most cases, the analysis tool may also use results generated
through  the  navigation  tool.  However,  some  specialist  interactions  are  also  provided
between  the  analysis  tool  and  the  PS  to  enable  faster  operation.  One  such  interaction
involves retrieval  of the  schema of a PS in order  to perform either similarity checks or
conflict detection. 

The  interaction  between  the  PS  and  the  Tool  Suite  are  limited  to  just  the  above  two
interaction for now, but in future new tools may be added to the Tool Suite.

     

 5 Tools and Application Interaction
The sequence diagram in Figure 5 also illustrate the communication between the Tool Suite
(WP6) and other components within a provenance system. Key components are the analysis
and  the  navigation  tools,  which  are  made  use  of  by  all  the  other  tools,  namely  the
comparison  conflict  and  temporal  tools.  Below  we  describe  interactions  taking  place
between these tools.

  Application-Navigation interaction:  Communication starts between the two components
with the application tool issuing a query to the navigation tool.  This query may include
retrieving PAs with or without  a graphical representation option.  One of the  graph type
would include the option of “no graph”, this would result  in retrieval  of PAs only. The
navigation tool interacts with the PS Query API using the query preference to retrieve the
required results. The navigation tool then interacts with the graph creation tool, to create
appropriate visualisation of these returned result. 

version 6, dated  
31



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

Application-Analysis interaction: An application could interact directly with the analysis
tool to check assertions. These assertions can either be on an XML element, a data or a
combination of an XML element and data. Assertions can also include relationships based
on some constraints over the data contained within the XML element. Once a method call is
initiated by the application with appropriate  input  parameters,  the analysis  tool  uses  the
assertion engine to perform the analysis. Once results are retrieved on a group of assertions,
the analysis tool may need to aggregate the results to formulate the final boolean result that
needs to be returned to an application.

Application-Comparison interaction: The interaction between the application tool and the
comparison tool could either be initiated directly if the comparison is taking place between
a  PA  and  a  schema  or  could  be  via  the  navigation  tool,  once  the  user  has  acquired
appropriate PAs to compare. Interaction between the application and the comparison tool
for each of the above two cases are displayed in the sequence diagram in figure 5. The
comparison tool upon receipt of a call for either of the two cases, initiates a further call to
the  analysis  tool  to  analyse  the  relationship.  Analysis  tool  as  always uses  the  assertion
engine to analyse relationships between the PAs, upon completion, the analysis tool sends
the result to the comparison tool which in turn forwards the result to the application.

    Application-Conflict interaction: The interaction between the application and the conflict
detection tool is exactly the same as the  interaction between the application tool and the
comparison tool, except that in case of comparison tool the aim of the analysis tool is to
compare similarity, while in the later case it is to detect conflicts.

Application-Temporal  interaction:  The  temporal  tool  allows  two  main  types  of
interactions.  One  that  retrieves  temporal  information  about  an  actor  and  a  second  to
ascertain some facts regarding time information that an actor has submitted. In the first case,
the temporal tool  interacts  with the PS using the navigation tool to retrieve the required
information, which is then sent to the application making the initial call. For the later case,
the temporal tool uses the analysis tool which in turn interacts with the assertion tool to
analyse a fact. The temporal tool sends the results obtained from the analysis tool back to
the application initiating the call.

version 6, dated  
32



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

Figure 5: UML Sequence Diagram of the Tool Suite

version 6, dated  
33

Navigation Analysis Compare Conflict TemporalApplication Assertion Provenance store

query PAs with or without Graph

query store

results from store

if Graph selected - create graph

return graph

Results

check relationship

check assertion

result boolean

case 1: application compares between a PA and a Schema

Graph

change graph type

updated graph

Aggregate results

case 2: retrieve PAs using navigation tool

query store

results from store

Result PAs

case 2: compare relationship between PAs

once received with case 1 or 2 initiate analyses of relationship

result boolean

check assertion

Aggregate 
results

result boolean

return boolean result for case 1

return boolean result for case 2

check provenance store using navigation to retrieve PAs

query store

results from store
resultant PAs meeting required constraints

result boolean

if required to perform similarity assessment - query store using navigation tool to retrieve schema

query store for the schema

result schema

result schema returned to the assertion engine



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

Figure 5 - continued: UML Sequence Diagram of the Tool Suite

version 6, dated  
34

Navigation Analysis Compare Conflict TemporalApplication Assertion Provenance store

case 1: retrieve temporal information on a actor

analyse constraints

check assertion

query navigation to retrieve PAs
query store

query store through navigation to retrieve PAs

query store

result boolean

Aggregate 
results

result boolean

case 2: boolean result on temporal analysis

result PAs

case 2: analyse temporal information on a actor

case 1: application checks for conflict between a PA and a Schema

case 2: retrieve PAs using navigation tool

query store

results from store

Results PAs
case 2: check conflict between PAs

once received with case 1 or 2 initiate analyses of conflict

result boolean

check assertion

Aggregate 
results

result boolean

return boolean result for case 1

to detect conflict - query store using navigation tool to retrieve schema

query store for the schema

result schema

result schema returned to the assertion engine

return boolean result for case 2

resultant PAs based on temporal class request

case 1: result provides temporal data on actor

results
resultant PAs sent to requesting temporal class



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

Figure 6: Tool Interaction

Figure 6 illustrates the interaction between the tools. Each arrow illustrates a “makes use of”
relationship. Hence, the navigation tool makes use of a visualization (or graphing) tool. The
analysis tool is a significant component within the system as explained previously. 

 6 Types of Users
It is useful to provide some discussion about the potential user base for the tools. The intention
of such a discussion is to provide some context for the tool operations discussed in Section 3
above. Tools are primarily intended for following types of users: 

• Provenance System Administrators: These individuals are responsible for configuring,
deploying  and  managing  the  overall  provenance  system.  For  instance,  they  may  be
responsible for configuring a PS and manage the security policy associated with reading or
submitting to a PS.  

Provenance System Administrators are likely to make use of the setup protocol  and the
configuration tool. 

• Application Administrators: These individuals would be responsible for configuring the
tools for use within a particular application. We consider such individuals to be members of
the systems administration team at a particular end user site, or specialist IT experts who
are responsible for implementing or managing software applications  at an end user site.
Configuration parameters would include identifying the location of the PS, identification of
any  particular  visualization capability  that  would  be  required  by  users  of  a  particular
application,  checking  security  policy  and  identifying  suitable  security  checking
mechanisms that need to be in place before an end user can submit a PA or retrieve a PA
from a PS. Such users are likely to have access to the application end users at a particular
site,  and therefore  must  understand  constraints  on access  control  within  their  particular
organization. It is expected that where security domains have already been specified and
defined for information access, these are made use of also for accessing provenance data. 

Application  administrators  are  also  responsible  for  specifying  queries  that  must  be
submitted to the PS. Such queries should make use of terms used within an application
specific schema, but formatted in a form that the tool could then execute over a PS. If a set
of commonly used queries can be found, these may be bundled into a library for use by an
application end user. An application administrator would also be responsible for generating
specialist  plug-ins that could be used for comparing different type of data.  This may be

version 6, dated  
35

Navigation

Relations

Comparison Conflict

Analysis Assertion
Engine

Visualisation



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

achieved by identifying how specialist  “documentation styles” may be specified that  are
relevant for a particular application. 

Application administrator could make use of all the functionality in the Tools Suite,  the
Setup  protocol  and  the  Configuration  tool.  The  software  deliverables  from  WP6  are
primarily intended for these types of users.

• Application End Users: We consider “end users” to be the decision makers or evaluators
who  either  need  to  record  PAs  into  the  PS,  or  analyze existing  PAs  that  have  been
submitted  previously.  In  the  DLR application,  these  individuals  may be  computational
scientists responsible for running a particular workflow scenario. In the OTM application
these may be particular  clinicians or  administrators responsible for tracking a particular
case (identified as the Implant Team, the Duty/Consultant Transplant Surgeon or members
of the Regional Organ Transplant Authority for instance – from WP8 deliverable D8.1.1). It
is  also  envisioned  that  application  end  users  may  make  use  of  tools  that  have  been
configured by Application Administrators. Such individuals may already be using existing
specialist application specific interfaces to undertake their work. For instance, in the DLR
application, computational scientists are currently presented with the interface provided by
the TENT system (these  users are  identified as Application Actors  in WP7 Deliverable
D7.1.1). These interfaces or access mechanisms will not be modified – instead additional
“portlets” will be provided that can be accessed through a Web browser or as a standalone
Java  application  to  allow  navigation  over  the  PS.  The  portlet  client  may  however  be
embedded  within  an  existing  graphical  interface  (as  outlined  in  Section  4.2.2.2  of
Deliverable D7.1.1), or it could be invoked by a call that launches an external application.
(There are a number of reasons for supporting this separation: (1) the application interface
does not have to be modified – this is particularly useful if the interface is tightly coupled
with the existing application implementation; (2)  access to the PS can be made by end
users who may not be involved in the experiment  that  led to the PAs; (3)  interfaces  to
applications may not allow remote access (such as in the existing TENT application). The
portal framework allows the provision of remote navigation support for data contained in
the PS; and (4) the types and language for defining queries to the PS may be different to
those being made within the application interface.  

Application  End  Users  are  likely  to  make  use  of  the  navigation,  comparison,  conflict
detection and analysis tools.

version 6, dated  
36



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

Figure 7: eXo Portal Framework 

An example of the portal interface is provided in Figure 7. This demonstrates the interface that
would be provided to Application Administrators. The portlets on the the right hand side of the
figure provide support for registering new portlets, registering a user to access existing portlets
etc.  The  middle  frames  demonstrate  application  specific  portlets  that  provide  a  navigation
portlet providing a tree view of a PA – while the other portlets allow visualization of a PA as
an XML document. 

 6.1 Examples of Usage
Some queries that may be handled by the tools include the following (in this description
<e> refers to an element in the PA, and d:<e> refers to data value associated with element
<e>) are discussed below. It is assumed that the PA schema already exists and is specified
as part  of  the setup protocol  by the application user.  The examples below are based on
query descriptions in D8.1.1 (Section 5.1.4). 

 

• Find all PAs submitted by actor <a> 

• The result of this query is a PT containing all the PA that contain the element <a>. The
query makes use of the navigation tool.

version 6, dated  
37



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

• Find a PA submitted at/over time <t> 

• The result  is  a PA or a PT which may be ordered based on the some start  time also
specified by an application user. This query makes use of the navigation tool, and the
results can then be ordered using the analysis tool. 

• Find n PAs containing element <e> 

• Returns the first “n” PA that can be found in the PS. This is to restrict the total number
of PAs returned. Makes use of the navigation tool. 

• Find n PAs containing data d:<e> 

• Returns the first “n” PAs. This is to restrict the total number of PAs returned. Makes use
of the navigation tool. 

• Is condition <X> on PS valid. Where <X> is defined using an application schema and the
set of relationships that must hold on <X>. 

• Returns True/False. Makes use of the navigation and the analysis tools. 

Based on the Organ Transplant Management (OTM) application, it is possible to specify
the following queries:

 

Query 1: Retrieve metadata and references to all actions/events associated with a case. 

In this instance, the navigation tool is used, with the query <e>=CaseID, with the subsequent
retrieval of all PAs which have CaseID as a schema element. It may be necessary to combine
results from different case identifiers (as described in Section 5.1.4.3 of Deliverable D8.1.1) –
in which case the associations between different CaseIDs  need to be made by the Application
End User. 

In some instances, it is possible that CaseIDs may be encoded, or perhaps need to be extracted
by referral to a particular format for recording the data contained in a PA. In this instance, it
would be necessary to extract a PA, apply the appropriate plug-in, and then return results back
to the end user. 

Query 2: Determine decision tree for a particular case. 

In this instance, the navigation tool would be used with the query: Given <e>=CaseID, retrieve
all PAs associated with <e>. The results of the navigation tool are then compared based on a
<time stamp> on each PA, which may be used to order the PA. Elements of the P-Structure
identified as part of WP3 may be used to inform which PAs are associated with a given case.
Using the workflow portlet  in the navigation tool,  a workflow graph may be constructed as
PAs are retrieved, and by making use of “relationship” information contained within each PA. 

The level of detail  presented within the workflow graph may be configured by a user.  For
instance, in the first instance, a user may not need to expand and see all the data contained
within a PA, only that a PA had been recorded. A user may then interact with the workflow
graph to either retrieve additional PAs, or retrieve the full data contained within a PA. 

version 6, dated  
38



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

Query 3:  Determine if a particular medical staff  member was involved in a particular
decision.
In this instance, the navigation tool is used to first retrieve PAs that contain the CaseID and the
particular staff member. The analysis tool is then used to check whether a given PA contains
both  the  CaseID  and  the  mentioned  individual.  Hence,  Given  (<e1>=CaseID  &&
<e2>=PersonX) does this evaluate to True? This would be equivalent to undertaking a validity
check on a subset of PAs that have been retrieved a response to a query.

With  reference  to  the  DLR  application,  a  tracer  mechanism  (Deliverable  D7.1.1,  Section
4.2.2.2) is being used to refer to a “simulation set”. In this instance, a query would reference a
“tracer” rather than a CaseID (as in the OTM application). There is also a requirement in the
DLR application to present the retrieved PA graphically (as a tree structure) or as a text file.
The use of portlets that allow different views on the same data would provide a useful basis for
achieving this. Similar to the OTM Query example 2 above, it is also required to manage how
much information must be presented to a user in response to a query. This would correspond to
a  configuration  parameter  that  a  user  needs  to  specify  to  limit  the  level  of  detail  to  be
presented. 

7 Interaction with other Work Packages 
The Tools and Setup WP has interacted with the other WPs in the following way: 

• WP2:  Understanding  of  requirements  from  the  applications  surveyed,  and  subsequent
production of the SRD. The division of requirements into “essential” and “desirable” has
provided the basis  for the development  of  the navigation  tool.  In the first  instance,  the
intention  is  to  develop portlets  that  primarily address the  “essential”  requirements.  The
URD and SRD have formed the basis for identifying tools in WP6, and an assessment is
provided in Section 2.1. 

• WP3: The tools being implemented can be related directly to the logical architecture (the
relationship as understood at this  stage has been described in Section 2.2). Determining
exactly how workflow mechanisms should be described and subsequent reconstructed, is
still being evaluated through discussion between WP3, WP6, WP7 and WP8. No consensus
on this  has yet been reached,  although it  is  clear  that  support  for  workflow remains an
important requirement.  It is also outlined here how tools place particular requirements on
the architecture itself (based on interpretation of SRD). 

• WP4: Security support being implemented in this WP is being used in the Setup protocol. 

• WP7 and WP8: Application scenarios identified in these WPs have formed the basis for
defining the navigation tool (such as support for workflow derivation from submitted PAs).
The choice of the Portal framework (described in Section 3.7) has also been informed based
on requirements from the DLR and OTM application scenarios. 

The overall interaction with WP3 has been to better understand the PA structure and possible
query formats that could be supported at the PS based on the PA structure. One example of
this is the need to support a particular “documentation style” to allow encoding of data stored
in the PS through the use of an application-specific plug-in. The types of plug-ins are being
identified by WP7 and WP8, and WP6 is providing an API to specify application specific
plug-ins in a common way. 

version 6, dated  
39



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

8 Summary and Future Plan 
The  focus  of  this  WP  has  been  on  the  design  and  development  of  tools  to  support
Application Administrators (Section 6) in the first instance. Such tools may be adapted for
use by an Application End User, but this has not been the aim in the first instance. The tools
being provided  include:  (1)  navigation  tool:  that  allows retrieval  of  PAs based  on user
defined queries,  and subsequent  visualization of these PAs through a set of portlets.  An
important role of the navigation tool would be to assess how to retrieve all PAs that have
been made about the processes leading to a particular result. In the same context, it would
be useful to determine how much detail should be retrieved and presented to a user – for
instance, would be sufficient to simply return a list of PAs that have been made, or would
the  full  content  of  a  PA also  need  to  be  made visible.  This  is  clearly  a  configuration
parameter that needs to be specified; (2) analysis tool that makes use of an assertion engine:
primarily for defining relationships between PAs and for checking for the validity of certain
data in a particular set of PAs. Such validity checking is supported through a set of rules
that  are  application  specific;  (3)  the  comparison  tool:  allows  two  or  more  PAs  to  be
compared, and identifies the degree of similarity (exactly or loosely similar, or similar to a
certain “distance”); (4) the conflict tool: evaluates whether submissions being made about
the same event by two different actors differ in some way. 

Significant work has been undertaken so far on identifying the requirements that the tools
need to address (with reference to WP7 and WP8), and particular architecture components
that are needed to support tools (WP3). This analysis has informed the design of the Tool
Suite.  A comparison between different portal  frameworks has been undertaken, with the
selection  of  “eXo”.  Similarly,  evaluation  has  been  undertaken  between  different  rule
engines, with the selection of “JESS”. 

Work in the immediately future is to focus on how the currently developed tools can be
used in mini-workflow scenarios  identified by the DLR and OTM applications. Initial work
has already started on how DLR queries for access to recorded PAs can be mapped to rules,
and the identification of suitable wrappers for DLR applications that allow submission of
PAs. A possible schedule to Summer 2006 is as follows: 

December 2005
• Establish setup protocol

• Complete comparison and analysis tool

March 2006
• Implement setup protocol

• Implement workflow visualization portlet. As part of this effort, it will also be necessary to
better  understand  how  an  application  specific  workflow  should  be  described,  and
subsequently how it should be reconstructed. For instance, given a particular PA, it may be
possible  to  look  back to  all  the  PAs that  were  submitted  before  it.  Identifying  how a
workflow graph could be constructed as new PAs are retrieved and related to PAs that
have already been processed by the tools is an important part of this activity. 

• Implement example of a relationship plug-in. This will be undertaken in collaboration with
WP7.

• Integrate tools with OTM and DLR application mini-workflow examples.

• Investigate any constraints on use of Portal Framework.

• Design of configuration tool.

version 6, dated  
40



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

July 2006
• Integrate Tools with OTM and DLR application

• Integrate Tools with Security Framework (for Setup Protocol)

version 6, dated  
41



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

References

[D2.2.1] Project  Deliverable  D2.2,  “Software  Requirements  Document”.  Version  1.0,
2005,
http://twiki.gridprovenance.org/pub/Restricted/DeliverableD2dot2dot1/SRD-v1-
ofr-JBI10-03-05.sxw (Project internal web site). 

[Moreau05] “Logical Architecture Strawman for Provenance Systems”.  Version 1.11, 2005,
http://twiki.gridprovenance.org/pub/Restricted/LogicalArchitecture/strawman1-
11.pdf (Project internal web site).

[D8.1.1] Project  Deliverable  D8.1.1,  “Specification  of  mapping  to  provenance
architecture,  and  domain  specific  provenance  handling”.  Version  1.0,  2005,
http://twiki.gridprovenance.org/pub/Restricted/DeliverableD8dot1dot1/OTM_M
apping_and_Provenance_Handling_Document_v0.62.sxw (Project  internal  web
site).

[DROOLS] http://drools.org, November 2005. 

[WP3] “An  Architecture  for  Provenance  Systems”.  Version  0.3,  2005,
http://twiki.gridprovenance.org/pub/Restricted/LogicalArchitectureFrozen/logar
ch-v0.3.pdf (Project internal web site).

[Jetspeed] http://portals.apache.org/jetspeed-1/, September 2005.

[JESS] Java Expert System Shell --  http://herzberg.ca.sandia.gov/jess/, November 2005.

[JSR168] “Introduction  to  JSR  168  -  The  Portlet  Specification”,  Sun  Microsystems
Developer  Network,  July  2003.  Available  at:
http://developers.sun.com/prodtech/portalserver/reference/techart/jsr168/ 

[JSR168-IBM] “Comparing the JSR 168 Java Portlet Specification with the IBM Portlet API”,
Stefan  Hepper,  IBM  Developer  Works,  December  2003.  Available  at:
http://www-
128.ibm.com/developerworks/websphere/library/techarticles/0312_hepper/hepper.html

[JSR94] Java  Rule  Engine  API  Specification.  Available  at:
http://www.jcp.org/aboutJava/communityprocess/review/jsr094/. 

[Gridsphere] http://www.gridsphere.org/gridsphere/gridsphere, September 2005.

[Liferay] http://www.liferay.com/web/guest/home, September 2005.

[eXo] http://www.exoplatform.com/portal/faces/public/exo, September 2005.

version 6, dated  
42



PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems                                                                       Contract Number: 511085

[ORULES] Rule-based Web Development (Open Rules) – http://openrules.com/, November
2005. 

[WSRL] http://webservices.sys-con.com/read/39555.htm

[WSRP] OASIS  –  Web  Services  for  Remote  Portlets  Specification.  Available  at:
http://www.oasis-open.org/committees/ tc_home.php?wg_abbrev=wsrp 

version 6, dated  
43


