
Vikas Deora, Arnaud Contes and Omer Rana
Cardiff University

Practice and Experience: Developing
and Deploying Tools and Services in
the Emerging Portal Frameworks

 VRE Developers Workshop 18 - 19 January 2006

 Portlet Development in Exo

Contents

 EU Provenance Project
 Why Portal Framework
 Comparison of Portal Framework
 Portlet developed using Exo
 Demo
 Problems
 Lessons learnt
 Conclusion

EU Provenance Project
 IBM United Kingdom Limited

 Alexis Biller
 John Ibbotson
 Neil Hardman

 University of Southampton
 Luc Moreau
 Paul Groth
 Simon Miles
 Victor Tan

 University of Wales, Cardiff
 Arnaud Contes
 Omer Rana
 Vikas Deora

 German Aerospace Center
(DLR)

 Andreas Schreiber
 Guy K. Kloss

 Universitat Politecnica de
Catalunya

 Javier Vazquez
 Sergio Alvarez
 Steven Willmott

 MTA SZTAKI Computer and
Automation Research
Institute, Hungarian
Academy of Sciences

 Arpad Andics
 Laszlo Varga
 Tamás Kifor

EU Provenance Project

 Today's grid architectures suffer from limitations,
such as lack of mechanisms to trace results and
infrastructures to build up trusted networks.

 Provenance enables users to trace how a
particular result has been arrived at by identifying
the individual and aggregated services that
produced a particular output.

Project Requirement

 In order to achieve the provenance project aim,
following support was required:
 a scalable and secure architecture
 an open proposal for standardising the

protocols and data structures
 a set of tools for configuring and using the

provenance architecture
 an open source reference implementation
 a deployment and validation in industrial

context.

Project Tool Suite

 The aim of the tool suite developed at Cardiff was
to allow the information's history, including the
processes that created and modified it, to be
inspected, validated and reasoned about by
authorised users.

 The target applications
 aerospace engineering and
 organ transplant management

Relations

Comparison Conflict

Analysis Assertion
Engine

A BTools overview
uses

A makes use of B

VisualisationNavigation

How to implement Tool suite?

 We considered following interfaces to
implement the tool suite:
 Standalone Java Swing programs
 HTML and JSP providing browser based

access
 JAVA Applets providing browser based

access
 Portal and Portlets providing browser based

access

Requirements

 The implementation of the tool suite was dependent
on various application requirement, most importantly
which included:
 A access mechanism that allows application users to gain

access to distributed provenance sources seamlessly. For
example, in organ transplant application a patient records
could be held at different hospitals. This needs to be
aggregated and displayed quickly and reliably.

 Provide customised content to the application users. For
example in organ transplant application a doctor performing
the organ transplant surgery needs different information than
a administration staff at the hospital.

Why Portal Framework

 The decision to choose portal framework was based
on the capability of portal framework to fit rightly with
our application requirements. Most importantly, the
portal framework provided us with following features:
 Customization: Application users (for example doctors) get

straight to the information they need, thus resulting in quick
decision making.

 Aggregation: Aggregates information from different sources
to be displayed in one place. For example, the information
from different hospital about a patient, logistic information
and other information can all be aggregated and displayed in

one web page.

Why Portal Framework

 Single sign-on: Allowed access to distributed information
sources without having to authenticate again. This provided
with increased efficiency in decision making for application
users (doctors for example). For example a doctor can have
access to patient records, blood banks, logistic data from
different systems without having to authenticate again and
again.

 Personalisation: Allowed application users to personalise
information according to their needs. For example a doctor
performing organ transplant might require different
information than a doctor performing routine medical tests.

JSR 168 and WSRP
 Java Specification Request (JSR) 168

 JSR 168 enables interoperability among portlets and
portals.

 JSR 168 establishes a standard API for creating portlets
thus enabling them to be deployable under any JSR 168
compliant container.

 Web Services for Remote Portlets (WSRP)
 Enables interactive, presentation-oriented web services to

be easily plugged into standards-compliant portals (
http://www.oasis-open.org/)

 The standard allows a portlet to be published as a WSRP
producer, which can then be consumed by one or many
compliant portals (WSRP consumers).

 The standared provides ease of adding remote portlets on
a portal page just like adding any other local portlet.

http://www.oasis-open.org/

Portal framework

 In order to select a portal framework to use, we
analysed different Portal frameworks based on a set of
custom criteria that represented requirements suited
to the project needs and ease of development.

 Many portal framework exists both open-source and
commercial based, our project required use of open
source portal framework, thus only open source portal
frameworks were compared.

 Also many open source portal frameworks exists and
due to time constraints only few were selected to be
evaluated for selection purposes.

Portal selection matrix








Setup is easy

but lack of
documentation

 (not truly
compliant)

JBoss

5. Sample portlets – this is
quite essential due to lack of
documentation linked to most
free portal software

4. IDE integration – this
allows ease of development
and debugging

3. Community – how popular
the portal tool is in various
forums and blogs to share
knowledge


Difficult to

setup


Average


Average


Difficult to

setup initially
and lack of

documentatio
n

2. Ease of initial setup and
documentation – ease of
initial start-up from download
to first running of portal

 (no WSRP
compliance)

 (no WSRP
compliance)

1. JSR 168 and WSRP
compliance

uPortalJetspeed1GridsphereLiferayeXoCriteria








Setup is easy

but lack of
documentation

 (not truly
compliant)

JBoss

5. Sample portlets – this is
quite essential due to lack of
documentation linked to most
free portal software

4. IDE integration – this
allows ease of development
and debugging

3. Community – how popular
the portal tool is in various
forums and blogs to share
knowledge


Difficult to

setup


Average


Average


Difficult to

setup initially
and lack of

documentatio
n

2. Ease of initial setup and
documentation – ease of
initial start-up from download
to first running of portal

 (no WSRP
compliance)

 (no WSRP
compliance)

1. JSR 168 and WSRP
compliance

uPortalJetspeed1GridsphereLiferayeXoCriteria

Average -  Good -  Very Good - 

Portal selection matrix

6. Ease of developing new
portal pages and linking to a
navigation portlet

11. Portal management tasks

10. Security setup

7. Ease of portlet deployment –
A interface to achieve this can
considerably save
development time, specially
during debugging stage

JBossuPortalJetspeed 1GridsphereLiferayeXoCriteria

181822182329Final Conclusion


(crashes

a lot)

9. Performance

8. Dependency on servlet
container – compatibly with
only single server environment
is very restrictive for web
deployment

6. Ease of developing new
portal pages and linking to a
navigation portlet

11. Portal management tasks

10. Security setup

7. Ease of portlet deployment –
A interface to achieve this can
considerably save
development time, specially
during debugging stage

JBossuPortalJetspeed 1GridsphereLiferayeXoCriteria

181822182329Final Conclusion


(crashes

a lot)

9. Performance

8. Dependency on servlet
container – compatibly with
only single server environment
is very restrictive for web
deployment

Portal framework selection

 We decided to implement a portal framework
based on eXo portal framework.

 The first implementation decision was to create a
simple navigation tool portlet to provide some of
the navigation capabilities required out of the
navigation tool part of the tool suite.

Navigation Portlet
 Navigation portlet consist of two portlets currently

(1) the tree navigation portlet and (2) the XPath
navigation portlet

 Tree Navigation portlet currently provide
capabilities to accept provenance assertions (in
form of xml) to create a tree graph object to help
visual navigation through provenance store.

 XPath navigation portlet provides an interface for
Xpath query navigation, which helps analyse
Xpath expressions.

Workflow re-construction
portlet
 A workflow re-construction portlet is being

developed to inspect the provenance information's
history, including the processes that created and
modified it.

 The workflow portlet would also assist in visual
validation of how a piece of provenance
information was derived and if it was indeed the
right means of achieving it.

 This portlet is currently in a early development
stage.

Demo

Problems faced in Portlet development

 Directory Structure: How the resources that a portlet
need to access are placed is very important in order

for the portlets to work as required.

 Database Connection: There is a problem in accessing
provenance data stores, as the applet can only talk to
the web server that holds the applet. Any
communication with the outside web server is
restricted.

Problems faced in Portlet development

 Inter-portlet communication: Found inter-portlet to be
a problem while using applet based interface. Still
needs to answer bigger questions, such as how
dependencies between portlets are resolved when one
or the other portlet seize to exist.

 Visual interface of exo portal: We found it difficult to
manipulate the portal interface that exo provides for
displaying portlets.

Lessons learnt

 Database Connection: Using a intermediate Java
program that have access to the required resource OR
by using applet certification both at the client and
server end, we were able to get around the problem.

 Directory Structure: By placing the resources that
portlets need to access outside the WEB-INF folder of
the application folder we were able to solve the
resource access problem.

 Inter-portlet communication: A simple approach to
allow independent portlets to exist by providing input
medium of required data was implemented.

Conclusion

 We have taken a step into creating a implementation
of tools for provenance information inspection and
validation using the emerging portal framework, we
hope to in future exploit the features that the portal
framework provides us into further improving the tools
and interface provided to application users of
provenance system.

