Southampton

A Holistic Approach to Vibration Energy Harvesting

Alex Weddell, 19 June 2012 Energy Harvesting Workshop, S2K 2012

Overview

- Applications of Vibration Energy Harvesting
- Real Vibration Data
- Holistic Design of Energy Harvesting Systems
- Accelerated Simulation
- Case Study: Ferry Engine
- Contributions from Project Partners
- The Energy Harvesting Network

- Typically condition monitoring, using wireless sensors
 - Sensors can be retro-fitted without electrician/batteries

 Also applications in asset tracking, monitoring of rotating machinery, even human health monitoring

Limitations of Vibration EH

Starting Point

An energy-aware wireless condition monitoring sensor node powered by very low vibration levels, 0.02ms⁻²rms.

Cutaway of the Electromagnetic Micro-generator, optimal power output of 58μ Wrms @ 0.06ms⁻².

Torah, R., Glynne-Jones, P., Tudor, J., O'Donnell, T., Roy, S. and Beeby, S. (2008) Selfpowered autonomous wireless sensor node using vibration energy harvesting. Measurement Science and Technology, 19 (12). ISSN 1361-6501

Southampton Tuneable Generator

Zhu, Dibin, Roberts, Stephen, Tudor, John and Beeby, Steve (2010) Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator. Sensors and Actuators A, 159, (2), 284-293.

Holistic Design of EH Systems

- Design sub-systems, define interfaces, plug them together
- Few have considered interactions in the entire system.
- How do we design and model systems containing mechanics, circuits, devices, computation and algorithms?

energy harvesting

Simulation and Optimisation

• EH-nodes are complex and hard to simulate

Mix of long and short time-constants

Disparity between vibration (ms) & storage (hrs)

Simulation of the supercapacitor charging curve of an energy harvester											
Simulator	SystemVision	OrCAD	Visual C++								
	(VHDL-AMS)	(PSPICE)	(SystemC-A)								
CPU time (P4, 2G RAM)	4h 24min	9h 48min	6h 40min								

Wang, Leran, Kazmierski, Tom, Al-Hashimi, Bashir, Weddell, Alex, Merrett, Geoff and Ayala Garcia, Ivo (2011) Accelerated simulation of tunable vibration energy harvesting systems using a linearised state-space technique. In, Design, Test and Automation in Europe (DATE 2011), Grenoble, France, 14 - 18 Mar 2011.

- Able to simulate complete tuneable EH systems
 - New simulation technique: accurate and 100x faster
 - Permits system optimisation, and potentially synthesis

	Existing to	echnique	Proposed technique			
Integration	Implicit N	Newton-	Explicit linearized			
method	Raphson	based	Adams-Bashforth			
HDL	VHDL-AMS	S	SystemC-A			
Scenario 1	2448 sec	3155 sec	23.3 sec			

Download: Holistic Energy Harvesting Simulation Toolkit, http://www.holistic.ecs.soton.ac.uk/resources.php

L. Wang, T.J. Kazmierski, B.M. Al-Hashimi, A.S. Weddell, G.V. Merrett, I.A Garcia, "Accelerated simulation of tunable vibration energy harvesting systems using a linearised state-space technique. In, Design, Test and Automation in Europe (DATE 2011), Grenoble, France, 14 - 18 Mar 2011.

Simulating EH-WSNodes

Kazmierski, Tom, Merrett, Geoff V., Wang, Leran, Al-Hashimi, Bashir, Weddell, Alex S. and Ayala Garcia, Ivo (2012) Modeling of Wireless Sensor Nodes Powered by Tunable Energy Harvesters: HDL-Based Approach. IEEE Sensors Journal (In Press)

EH-WSN Design Explorer

- Ability to explore a design in real-time
 - Energy-aware node, simulated for 10 hours

Engine Condition Monitoring

http://www.imcbrokers.com/blog/overview/p/detail/propulsion-voith-schneider

Acceleration Data

- Is the vibration signature similar on
 - different crossings, and
 - different ferries?

Tuneable Generator

- Specification
 - Frequency range: 42-55Hz
 - Max Amplitude 1 `g'

Tuneable Energy Harvester

Results

- Manually tuned
- 300Ω load

System Diagram

Project Details

- £1.6M, three-year, EPSRC-funded project **EPSRC**
- Kicked off in Q4 2009
- Over 25 people at four UK institutions:

• Industrial advisory board:

Project Partners

- University of Bristol
 - Input power conditioning: maximise harvester utilisation
- Newcastle University
 - Asynchronous circuits for power-modulated computing
- Imperial College
 - Novel tuning mechanisms (including MEMS)

Energy Harvesting

www.eh-network.org

The EH Network: <u>*eh-network.org*</u>

• Started 01 March 2010, funded by EPSRC for 3 years

- Motivated by UK/Europe's strength in EH, potential for new applications and to identify new research challenges
- Objectives: define research challenges, catalyse collaboration, disseminate advances
- UK Steering Board (academic/industrial)
- 304 members in 243 companies/institutions worldwide, ~50/50 academia/industry
- EH Network Data Repository
 - An open-access EH database for researchers to download and share data
 - Wide range of sources cars, bridges, ferries, humans, CHP, machinery etc

Join for free: http://eh-network.org/join.php

www.eh-network.org

EH Network Data Repository

Visit: http://eh-network.org/data

Join for free: http://eh-network.org/join.php

Energy Harvesting

www.eh-network.org

Pack Acceleration Francescy and Amolitude															
		19 - (*	- -	2	011-11-08 F	ord Focus E	ingine (Plate).	sv [Read-C	Only] - Micro	osoft Exce					Analysis
CLOKC	File	Home	Insert	Page Lay	out Fo	rmulas	Data Revi	ew Vie	W			0	a 🕜 🗆 🗗	23	ramatarc
Engineering and Physi Research Council		🔏 Ca	libri	• 11 •	= = =		General 🔹	🛐 Condi	tional Forma	tting •	•■ Insert 👻	Σ·Α	7 🏔 🗌		
Но	Paste	Br B	<u> </u>	A A			∛ ~ % ,	Forma	t as Table 🔻		🎽 Delete 🔻	Sor	rt & Find &		p s
	*	✓ <u>□</u>	<u>1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -</u>	<u>A</u> -		\$2.4	.00 ->.0	📑 Cell St	yles *		Format 🔻		er ▼ Select ▼		10 s
x 7'1 !	Clipboard 🕼 Font 🗔 Alignment 🕼 Number 🕼 Styles Cells Editing									_	5				
Vibration	D9 \checkmark f_{x} Uint16										s performed: 3870				
		A	В	С	D	E	F	G	Н	1	J	K	L		
General Inform	1	FromSome	21:11.4												vibration axis: x
	3	ToSample	3879.85		Raw	data i	in time	dom	ain av	vaila	ble as	.csv	file.		
Institution: Universi	4	rooumpre	5075105												l: 1946.7 m a at 35.0 Hz at 35 s
Parameter: Vibratio	5	Channels	3												peak peak
Specific Location: A	6	PerChann	1024.066												el Ampl above 50% of Max Ampl: 142.0 s (3.7 %)
Sampling Frequenc	7														q Range (above 50% of Max Ampl): 22.0 234.0 Hz
Date Obtained: 08-	8	ChannelN	ChannelN	Units	DataType	RangeMi	in RangeMa>	DataScale	DataOffse	SensorS	ca SensorO	ffset			q (above 50% of Max Ampl), 05.7 Hz
Acknowledgment:	9	Ain 1	1	Volts	Uint16		0 4095	0.004883	-10		1	0			eleration Ampl (whole test): 470.8 m ${m g}_{\sf peak}$
Approach"	10	Ain 2	2	Volts	UINT16		0 4095	0.004883	-10		1	0			eleration Freq (whole test): 69.9 Hz
	12	AIII 5		VOILS	UIIIII		0 4055	0.004005	-10		1	0			
	13	Ain 1	Ain 2	Ain 3											
11 all	14	0	0	0											1: 1022.0 mg _{peak} at 35.0 Hz at 2918 s
THE SECTION	15	0	0	0											el Ampl above 50% of Max Ampl: 322.0 s (8.3 %)
29	69283	0.136719	0.107422	-0.15625											q Range (above 50% of Max Ampl): 78.0 124.0 Hz
The second second	69284	-0.10254	-0.05371	-0.00488											q (above 50% of Max Ampl): 92.7 Hz
	69285	-0.02441	0.004883	-0.11719											eleration Ampl (whole test): 250.5 m g _{peak}
D BE	69286	0.078125	-0.04395	0.014648											eleration Freq (whole test): 54.6 Hz
Contection	69288	0.078125	-0.04883	0.019531											
	69289	-0.18066	-0.07813	-0.05859											
	69290	-0.15137	0.009766	0.107422										Ŧ	l: 1490.7 m g _{peak} at 35.0 Hz at 3105 s
Detailed Test In	H 4)	▶ 2011	-11-08 For	rd Focus Er	ngine (P 🏑	2							▶		al Ampliahovo 50% of Max Ampl: 421.0 c (11.1.%)
	- Ready 100%										g Range (above 50% of Max Ampl): 431.0 S (11.1 %)				

Visit: http://eh-network.org/data

Join for free: http://eh-network.org/join.php

www.eh-network.org

Events: Workshops and Conferences

- 3 workshops to define new challenges: human power, structural monitoring, and MEMS/NEMS
 - Road-mapping reports available to download from the Network's website
- Energy Harvesting 2011 (EH Network's annual conference) was held in February 2011 (London)
- Energy Harvesting 2012 was held in March 2012 (London)
 - ~100 attendees, 12 presentations (academia/industry), 10 PhD posters, 5 company stands
 - Will be held again next year join to find out more!

Join for free: http://eh-network.org/join.php

Thank you!

Any Questions?

Dr Alex Weddell Research Fellow

Electronic and Software Systems Tel: +44 (0)23 8059 9204 Fax: +44 (0)23 8059 2901 Email: asw@ecs.soton.ac.uk ww.ecs.soton.ac.uk Highfield Campus, Southampton, SO17 1BJ UK