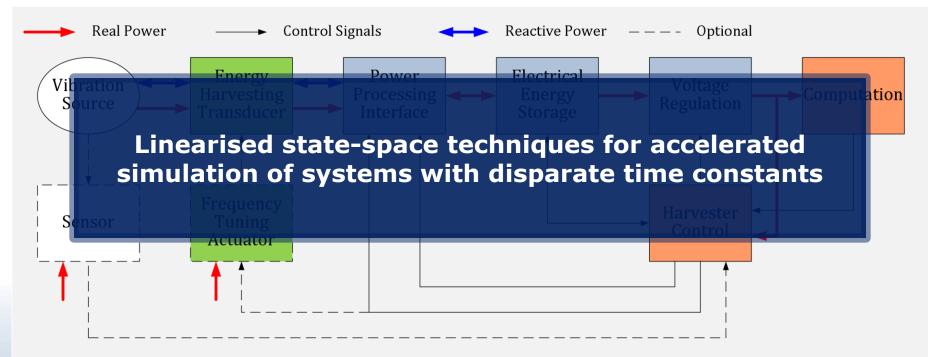


Theme C outputs

Holistic energy-harvesting project workshop and showcase Imperial College, 11 Feb 2013

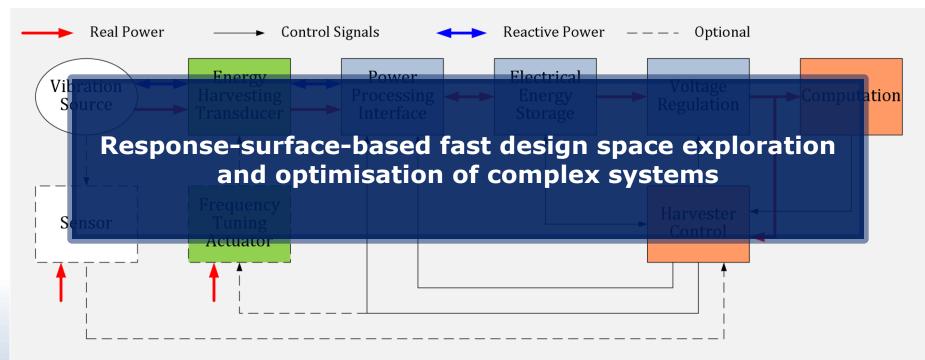
T J Kazmierski, University of Southampton tjk@ecs.soton.ac.uk

Outline


- Theme C objective
- Research Contributions
 - Accelerated simulation technique for energy harvesters based on linearised state-space equation formulation
 - Fast design explorer based on response surface modelling
 - Accurate supercapacitor modelling
- Software toolkit for fast design exploration
- Publications

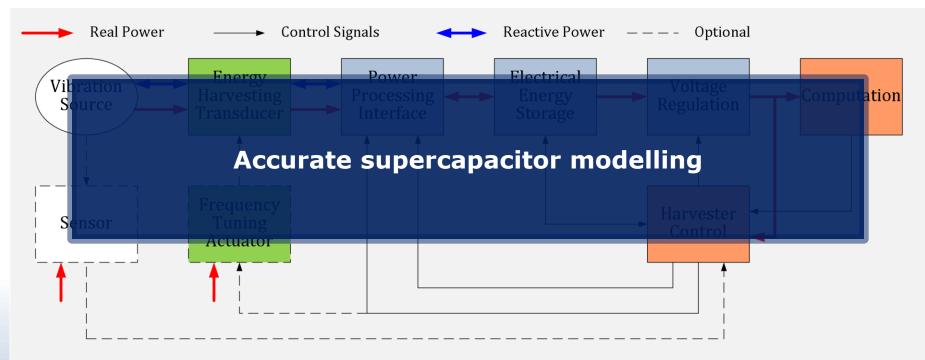
Theme C objective

- To develop an automated EH design flow that can
 - Specify micro generator type and find suitable/optimised dimensions
 - Identify suitable/optimised power processing configuration(s)
 - Based on the performance of a whole system and according to given excitation and application
- Component models from Themes A and B
 - Micro-generator including different types of transduction (piezoelectric, electromagnetic and electrostatic) and mechanical structures (e.g. cantilevers, in-plane/out-of-plane gap closing)
 - Associated interface electronics, including storage elements (super-caps)
 - Computational logic loads (power profile)
- Design toolkit for modelling and performance optimisation



A novel simulation technique particularly suitable for energy harvesting systems, which has demonstrated an increase in simulation speed of two orders of magnitude.

Output: 3 papers (DATE'11 - best paper candidate, IEEE Trans CAD 2012, IEEE Sensors J 2012), downloadable simulation toolkit Institutions: Southampton (lead), Bristol, Imperial, Newcastle (collaborators) Themes: Theme C, Theme A, Theme B



A fast design space exploration and optimisation technique based on Response Surface Models, which has been demonstrated for wireless sensor nodes with energy harvesters.

Output: 1 paper (DATE'12), downloadable design space explorer Institutions: Southampton (lead), Bristol, Imperial, Newcastle (collaborators) Themes: Theme C, Theme A, Theme B

Supercapacitor model with non-linear behaviour, multiple time constants and leakage.

Output: 2 papers (EnHaNSS'12, IEEE TCAS II, 2012) Institutions: Southampton Themes: Theme C,

Software Tool

- Holistic Energy Harvesting Design Explorer and Simulation Toolkit
 - Based on Response Surface Modelling Technique
 - It allows designers to adjust parameters of vibration energy harvesting system and instantly obtain desired performance trade-offs.
- Available for download from website
- Video is available on website, where Dr Tom Kazmierski and Dr Leran Wang (Phil) discuss the design explorer

Energy Harvester Design Explorer

holistic energy harvesting

Publications

Accelerated simulation and fast design exploration

- T.J. Kazmierski, G.V. Merrett, L. Wang, B.M. Al-Hashimi, A.S. Weddell and I. Ayala Garcia, "Modeling of Wireless Sensor Nodes Powered by Tunable Energy Harvesters: HDL-Based Approach", IEEE Sensors Journal, Aug 2012
- T. Kazmierski, L. Wang, B. Al-Hashimi, and G. Merrett, "An explicit linearized statespace technique for accelerated simulation of electromagnetic vibration energy harvesters", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 31, No. 4, pp. 522-531.
- L. Wang, T. J. Kazmierski, B. M. Al-Hashimi, A. S. Weddell, G. V. Merrett, and I. N. Ayala Garcia, "Accelerated simulation of tunable vibration energy harvesting systems using a linearised state-space technique", Design, Automation and Test in Europe 2011 (DATE 2011), Grenoble, France, 14-18 March 2011, pp. 1267-1272 (Best Paper Candidate).
- L. Wang, T.J. Kazmierski, B.M. Al-Hashimi, M. Aloufi and J. Wenninger, "Responsesurface-based design space exploration and optimisation of wireless sensor nodes with tunable energy harvesters". In Design, Automation and Test in Europe (DATE 2012), Dresden, Germany, 12 - 16 Mar 2012, pp. 733-738.

Publications Supercapacitor modelling

- A. Weddell, G. Merrett, T. Kazmierski, and B. Al-Hashimi, "Accurate Supercapacitor Modeling for Energy-Harvesting Wireless Sensor Nodes", IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 58, No. 12, pp. 911-915.
- G. V. Merrett and A. S. Weddell, "Supercapacitor leakage in energyharvesting sensor nodes: fact or fiction?", International Workshop Algorithms and Concepts for Networked Sensing Systems Powered by Energy Harvesters 2012 (EnHaNSS'12), Antwerp, Belgium, 11 June 2012. 5pp.

Publications Other related to Theme C

- A. Weddell, G. Merrett, and B. Al-Hashimi, "Photovoltaic Sample-and-Hold Circuit Enabling MPPT Indoors for Low-Power Systems". IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 59, No. 6, pp. 1196-1204.
- H. Huang, G. Merrett, and N. White, "Human-powered inertial energy harvesters: the effect of orientation, location and activity on obtainable power", Eurosensors XXV, 4-7 September 2011, Athens, Greece.
- A. S. Weddell, G. V. Merrett, and B. M. Al-Hashimi, "Ultra Low-Power Photovoltaic MPPT Technique for Indoor and Outdoor Wireless Sensor Nodes", Design, Automation & Test in Europe 2011 (DATE 2011), Grenoble, France, 14-18 March 2011, pp. 905-908